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Abstract

Preserving the operators symmetries at discrete

level is the key aspect to enable reliable DNS and LES

simulations of turbulent flows. On the other hand, real-

world applications demand robust and stable numeri-

cal methods suitable for complex geometries. In this

regard, this work presents a symmetry-preserving dis-

cretization for unstructured collocated grids that, apart

from being virtually free of artificial dissipation, it is

shown to be unconditionally stable. Special attention

is given to the (de)construction of the discrete oper-

ators into fundamental geometrical entities. On this

basis, a new inexpensive method to compute strict

eigenbounds for the convective and diffusive opera-

tors, which are needed to determine the time-step à

la CFL, is presented. Apart from providing better esti-

mations than previous methods, it is relies on a sparse-

matrix vector product where only vectors change on

time. Hence, both implementation in existing codes

and cross-platform portability are straightforward. Al-

together leads to a simple and robust approach for

DNS and LES simulations of complex turbulent flows.

1 Introduction

The essence of turbulence are the smallest scales

of motion. They result from a subtle balance between

convective transport and diffusive dissipation. Mathe-

matically, these terms are governed by two differential

operators differing in symmetry: the convective oper-

ator is skew-symmetric, whereas the diffusive is sym-

metric and negative-definite. At discrete level, opera-

tor symmetries must be retained to preserve the anal-

ogous (invariant) properties of the continuous equa-

tions (see Verstappen and Veldman (2003); Trias et al.

(2014)): namely, the convective operator is repre-

sented by a skew-symmetric matrix, the diffusive op-

erator by a symmetric, negative-definite matrix and the

divergence is minus the transpose of the gradient oper-

ator. It is noteworthy to mention that in the last decade,

many DNS reference results have been successfully

generated using this type of discretization (see Fig-

ure 1, for example). Moreover, we also consider that

symmetry-preserving discretizations form a solid basis

for testing sub-grid scale models for LES. Namely, for

Figure 1: Examples of DNSs computed using symmetry-

preserving discretizations. Top: Rayleigh–Bénard

configuration studied in Dabbagh et al. (2020).

Bottom: turbulent flow around a square cylinder

at Re = 22000 studied in Trias et al. (2015).

coarse grids, the energy of the resolved scales of mo-

tion is convected in a stable manner, i.e. the discrete

convective operator transports energy from a resolved

scale of motion to other resolved scales without dis-

sipating any energy, as it should be from a physical

point-of-view.

2 Symmetry-preserving discretization
on unstructured grids

For unstructured meshes, it is (still) a common

argument that local accuracy should take precedence

over the properties of the operators. Contrary to this,

our philosophy is that operator symmetries are critical

to the dynamics of turbulence and must be preserved.

With this in mind, a fully-conservative discretization

method for general unstructured grids was proposed

in Trias et al. (2014): it exactly preserves the sym-

metries of the underlying differential operators on a

collocated mesh. In summary, and following the same



notation, the method is based on a set of five basic

operators: the cell-centered and staggered control vol-

umes (diagonal matrices), Ωc and Ωs, the matrix con-

taining the face normal vectors, Ns, the cell-to-face

scalar field interpolation,Πc→s and the cell-to-face di-

vergence operator, M. Once these operators are con-

structed, the rest follows straightforwardly from them.

Hence, as shown in Komen et al. (2021), the proposed

method constitutes a robust and easy-to-implement ap-

proach to solve incompressible turbulent flows in com-

plex configurations that can be easily implemented in

already existing codes such as OpenFOAM R©.

3 Pressure-velocity coupling: reconcil-
ing accuracy and robustness

Pressure-correction methods on collocated grids

suffer two inherent drawbacks: the cell-centered ve-

locity field is not exactly incompressible and some ar-

tificial dissipation is inevitably introduced (see Felten

and Lund (2006); Trias et al. (2014)). The former er-

ror can have severe implications for DNS and LES

simulations of turbulent flows since this artificial dis-

sipation can significantly affect the dynamics of the

small scales, even overwhelming the dissipation in-

troduced by the subgrid-scale LES models. This was

clearly observed in Komen et al. (2017) for LES sim-

ulations using OpenFOAM R©. It is worth to notice

that the ideal target, i.e. no artificial dissipation and

no checkerboard, can be achieved by explicitly remov-

ing those nonphysical components of the pressure field

that belong to the kernel of the so-called wide-stencil

Laplacian. Alternatively, it is possible to minimize the

amount of dissipation while still keeping the solution

virtually free of checkerboard modes by preserving the

symmetries of the discrete operators (see companion

paper by Hopman et al. (2023)). Special attention must

be paid to the construction of the face-to-cell and cell-

to-face interpolations, in order to guarantee that the

numerical method is unconditionally stable (see com-

panion paper by Santos et al. (2023)).

4 A robust and efficient time-integration

Deconstructing convection and diffusion matrices

Let us consider the convective operator

Cc (us) ≡ MUsΠc→s ∈ R
n×n, (1)

where M ∈ R
n×m is the face-to-cell divergence oper-

ator, Πc→s ∈ R
m×n is cell-to-face interpolation and

Us = diag(us) ∈ R
m×m is a diagonal matrix that

contains the face velocities, us ∈ R
m, that change ev-

ery time-step. Here, n and m correspond to the total

number of mesh cells and faces, respectively. More-

over, the diffusive operator with non-constant (in time)

diffusivity reads

Dc(αs) ≡ MΛsG ∈ R
n×n, (2)
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Figure 2: Definition of the volumes, Ωs, associated with the

the face-normal velocities, us. Thick dashed rect-

angle is the volume associated with the staggered

velocity U4 = [us]4, i.e. [Ωs]4,4 = A4δ4 where

A4 is the face area and δ4 = |n4 ·
−−→
c1c2| is the

projected distance between adjacent cell centers.

where Λs = diag(αs) ∈ R
m×m is a diagonal ma-

trix containing the diffusivity values at the faces, αs ∈
R

m. Notice that this is also relevant for eddy-viscosity

turbulence models. For details about the discretiza-

tion, the reader is referred to the original paper by Trias

et al. (2014).

At this point, we aim to answer the following re-

search question: can we avoid to explicitly reconstruct

at each time-step both convective, Cc (us), and diffu-

sive, Dc(αs), matrices while still being able to com-

pute proper eigenbounds in an inexpensive manner?

To do so, let us firstly write the divergence operator,

M, in terms of the cell-to-face, Tcs ∈ R
m×n and face-

to-cell, Tsc ∈ R
n×m, incidence matrices

M ≡ TscAs ∈ R
n×m, (3)

where As ∈ R
m×m is a diagonal matrix containing the

face surfaces. Moreover, recalling the duality between

the divergence and the gradient operators

M = −(ΩsG)
T =⇒ G = −Ω

−1
s M

T , (4)

together with the relation Tsc = TT
cs leads to

G ≡ −Ω
−1
s AsT

T
sc = −∆

−1
s Tcs, (5)

where ∆s ≡ ΩsA
−1
s ∈ R

m×m is a diagonal matrix

containing the projected distances, δnf = |nf ·
−−→
c1c2|,

between the cell centers, c1 and c2, of the two cells

adjacent to a face, f4 (see Figure 2). Plugging all this

into the definition of the diffusive operator (2) leads to

Dc(αs) = −TscAsΛs∆
−1
s Tcs = −T

T
csΛ̃sTcs, (6)

where the diagonal matrix Λ̃s = AsΛs∆
−1
s ∈ R

m×m

has strictly positive diagonal coefficients. Hence, the



diffusive operator is symmetric and negative semi-

definite likewise the continuous Laplacian, ∇2.

Similarly, the convective term given in Eq.(1) can

be written as follows

Cc (us) = TscUsAsΠc→s, (7)

where the cell-to-face interpolation, Πc→s, defines the

numerical scheme we are using. For instance, taking

ΠSP
c→s =

1

2
|Tcs| (mid-point), (8)

leads to a skew-symmetric matrix, i.e. Cc (us) =
−CT

c (us) that corresponds to a second-order

symmetry-preserving discretization (see Verstappen

and Veldman (2003); Trias et al. (2014)). Here |A|
denotes the entry-wise absolute value of a real-valued

matrix, i.e. [|A|]ij = |[A]ij |. In summary, convective

and diffusive operators read

Dc(αs) = −T
T
csΛ̃s Tcs , (9)

2Cc (us) = T
T
csFs|Tcs|, (10)

where Λ̃s is a diagonal matrix with [diag(Λ̃s)]i > 0 ∀i
and Fs ≡ AsUs and diag(Fs) ∈ ker(TT

cs). Notice

that, in general, both diagonal matrices Λ̃s (diffusive

fluxes) and Fs (mass fluxes) change on time. Notice

that diag(Fs) ∈ ker(TT
cs) follows from the incom-

pressibility constraint, Mus = 0c, and the definition

of the divergence operator given in Eq.(3).

Eigenbounds for the diffusion matrix

The idea at this point is to construct other matri-

ces with the same spectrum (except for the zero-valued

eigenvalues). To do so, we will use the following well-

known property:

Theorem 1. Let A ∈ R
n×m and B ∈ R

m×n be two

rectangular matrices and m ≥ n. Then, the square

matrices AB ∈ R
n×n and ATBT ∈ R

m×m have the

same eigenvalues except for the zero-valued ones.

Therefore, a family of α-dependent matrices with

the same spectrum (except for the zero-valued eigen-

values) as those given in Eqs.(9) and (10) can be con-

structed using Theorem 1. Namely, matrix

−Λ̃
α
sTcs T

T
cs Λ̃

1−α
s (diffusive), (11)

has the same spectrum as −TT
csΛ̃sTcs. Consequently,

ρ(Dc(αs)) = ρ(Λ̃α
sTcs T

T
cs Λ̃

1−α
s ). (12)

regardless of the values of α. Furthermore, matrices

|Fs|
α
Tcs|T

T
cs||Fs|

−α
Fs (convective), (13)

|Fs|
α−1

FsTcs|T
T
cs||Fs|

1−α (convective), (14)

have the same spectrum as T
T
csFs|Tcs|, respectively.

Notice that indeterminate forms 1/0 may eventually

occur for α < 0 or α > 1 in Eqs.(13) and (14) if a

mass flux (diagonal terms of Fs) becomes zero. For

instance, the following four matrices have the same

spectrum (except for the zero-valued eigenvalues)
{

−T
T
csΛ̃sTcs ,−TcsT

T
csΛ̃s ,

−Λ̃
1/2
s TcsT

T
csΛ̃

1/2
s , −Λ̃sTcsT

T
cs

}

, (15)

where the last three correspond to values of α = 0,

1/2, and 1 in Eq.(12), respectively. The advantage of

the new forms is that only the matrix −TcsT
T
cs has to

be computed (once) and stored. Note that this face-

to-face matrix has −2 in the diagonal and ±1 in the

non-zero off-diagonal elements, which correspond to

the faces of the two adjacent control volumes. Then,

to find an upper bound (in absolute value) of the eigen-

values, we can apply the Gershgorin circle theorem as

follows

ρ(TcsT
T
csΛ̃s) ≤max{|TcsT

T
cs| diag(Λ̃s)}, (16)

ρ(Λ̃sTcsT
T
cs) ≤max{diag(Λ̃s) ◦ |TcsT

T
cs|1s}, (17)

where ◦ denotes the Hadamard product (element-wise

product) and 1s ∈ R
m is a vector of ones defined at the

faces. As stated above, these three forms correspond

to values of α = 0, 1/2 and 1 in Eq.(12), respectively.

Remark 1. In practice, we need estimations of

the spectral radius of Ω−1
c Dc(αs) and not Dc(αs).

This can be easily done by replacing |TcsT
T
cs| by

|TcsΩ
−1
c T

T
cs| in Eqs.(16) and (17). An equivalent

remark can be made for the forthcoming discussion

about the convective matrix, Cc (us).

Eigenbounds for the convective matrix

The convective term given in Eq.(10) can be treated

similarly. However, in this case, the diagonal matrix

Fs (mass fluxes across the faces) can take positive and

negative values depending on the flow direction. Sim-

ilarly to Eq.(15), these five matrices have the same

spectrum (except the zero-valued eigenvalues)
{

T
T
csFs|Tcs|, Tcs|T

T
cs|Fs , |Fs|

1/2
Tcs|T

T
cs||Fs|

−1/2
Fs ,

|Fs|
−1/2

FsTcs|T
T
cs||Fs|, FsTcs|T

T
cs|

}

, (18)

where the last four correspond to α = 0, 1/2 in

Eq.(13), and α = 1/2 and 1 in Eq.(14). In the last

four splittings, only the matrix Tcs|T
T
cs| has to be pre-

computed and stored. This matrix is skew-symmetric

with ±1 in the non-zero off-diagonal elements. Then,

the Gershgorin circle theorem can be applied

ρ(Tcs|T
T
cs|Fs) ≤ max{|Tcs|T

T
cs||| diag(|Fs|)}, (19)

ρ(FsTcs|T
T
cs|) ≤ max{diag(|Fs|) ◦ |Tcs|T

T
cs|1s},

(20)

to find an upper bound of their eigenvalues, which, in

this case, lie on the imaginary axis. However, in prac-

tical flows, none of these approaches is able to pro-

vide better (or, at least, similar estimates) as applying



the Gershgorin circle theorem directly to the matrix

Cc (us). A simple explanation for this is that matrix

|Tcs|T
T
cs||Fs has more non-zero off-diagonal coeffi-

cients per row than the matrix TT
csFs|Tcs|, e.g. for a

structured Cartesian mesh in d-dimensions, the former

has 2(2d−1) whereas the latter has only 2d non-zeros.

Hence, more mass fluxes (in absolute value) are con-

tributing to the Gershgorin circle radii.

Theorem 2 (Perron–Frobenius theorem by Perron

(1907); Frobenius (1912)). Given a real positive

square matrix, i.e. A ∈ R
n×n and [A]ij > 0 ∀i, j ,

it has a unique largest (in magnitude) real eigenvalue,

r ∈ R
+, with a corresponding eigenvector, v ∈ R

n,

with strictly positive components, i.e.

Av = rv ⇒ |λ| < r and vi > 0 ∀i ∈ {1, . . . , n},
(21)

where λ denotes any eigenvalue of A except r, and r is

the so-called Perron–Frobenius eigenvalue.

Theorem 3 (Wielandt’s theorem; see Gradshteyn and

Ryzhik (2007)). Given a matrix A ∈ R
n×n that sat-

isfies the conditions of the Perron–Frobenius theorem

(see Theorem 2) and a matrix B ∈ R
n×n such as

|bij | ≤ aij ∀i, j, (22)

where bij = [B]ij and aij = [A]ij . Then, any eigen-

value λB of B satisfies the inequality |λB| ≤ r where r
is the Perron–Frobenius eigenvalue of A.

Theorem 4 (Lemma 2 in Nikiforov (2007)). Let A ∈
R

n×n be an irreducible non-negative symmetric ma-

trix and R ∈ R
n×n be the diagonal matrix of its row-

sums, [R]ii =
∑n

j=1[A]ij . Then

ρ

(

R+
1

q − 1
A

)

≥
q

q − 1
ρ(A), (23)

with equality holding iff all rowsums of A are equal.

To circumvent this problem with the bounds of the

spectral radius of the convective term, Cc (us), we can

use the Wielandt’s theorem (see Theorem 3) to relate

the spectral radius of the matrices

2Cc (us) ≡ T
T
csFs|Tcs| , D

C

c ≡ −T
T
cs|Fs|Tcs, (24)

where Cc (us) is the same convective operator defined

in Eq.(10) and DC
c ∈ R

n×n is a diffusive-like operator

where the face diffusivities are replaced by the mag-

nitude of the mass fluxes, |Fs|. The matrix Cc (us)
is zero-diagonal whereas DC

c has strictly negative di-

agonal coefficients. It is worth noticing that the off-

diagonal elements of 2Cc (us) (in absolute value) and

DC
c are equal. Hence, the zero-diagonal matrix

D
C,off
c ≡ D

C

c − diag(diag(DC

c )) = 2|Cc (us) |, (25)

satisfies the conditions of the Perron–Frobenius theo-

rem (see Theorem 2). Then, we can apply Wielandt’s

theorem (Theorem 3) since

2|[Cc (us)]ij | ≤ [DC,off
c ]ij ⇒ 2|λC| ≤ ρ(DC,off

c ) (26)

In our case, taking R = − diag(diag(DC
c )), A =

DC,off
c and q = 2 in Eq.(23) of Theorem 4 together

with the inequality (26) leads to

ρ(|DC

c |)
Thm 4
≥ 2ρ(DC,off

c )
(25)
=

4ρ(|Cc (us) |)
(26)

≥ 4ρ(Cc (us)). (27)

Recalling that the leitmotiv for all this analysis was

to avoid constructing the matrix Cc (us), it is obvious

that relying on the construction of another (similar in

structure) matrix such as |DC
c | would not make much

sense. At this point, we can make use of the following

properties of incidence and adjacency matrices

|TT
csTcs| = |TT

cs||Tcs|, (28)
∣

∣T
T
cs|Fs|Tcs

∣

∣ = |TT
cs||Fs||Tcs|, (29)

to show that

ρ(|DC

c |) = ρ
(∣

∣T
T
cs|Fs|Tcs

∣

∣

) (29)
= ρ(|TT

cs||Fs||Tcs|)

Thm 1
= ρ(|Tcs||T

T
cs||Fs|)

(28)
= ρ(|TcsT

T
cs||Fs|). (30)

Then, recalling the inequality (27), we can fi-

nally show that ρ(Cc (us)) can be bounded with

ρ(|Fs|
α|TcsT

T
cs||Fs|

1−α), i.e.

ρ(|Fs|
α|TcsT

T
cs||Fs|

1−α)
Thm 1
= ρ(|TcsT

T
cs||Fs|)

(30)
= ρ(|DC

c |)
(27)

≥ 4ρ(Cc (us)), (31)

regardless of the value of α.

Remark 2. In case the discrete convective term is

not skew-symmetric, the method can be easily adapted

as follows: imaginary contributions still come from

Cc (us) whereas negative real-valued contributions

are added to the diffusive term by replacing

Λ̃s −→ Λ̃s +
1

2
diag(|Fs|(1s −Ψs)) (32)

where Ψs ∈ R
m is a vector that defines the local

blending factor between symmetry-preserving (Ψ = 1)

and upwind schemes (Ψ = 0).

5 Numerical tests

Shortly, the newly proposed AlgEigCD method

simply relies on the construction of the matrix

|TcsΩ
−1
c T

T
cs| which can be done at the pre-processing

stage. Then, this matrix is used to compute eigen-

bounds of matrices Ω−1
c D and Ω−1

c C (us) as follows

ρ(Ω−1
c Cc (us)) ≤ 1/4ρ(|TcsΩ

−1
c T

T
cs||Fs|)

≤ 1/4max{|TcsΩ
−1
c T

T
cs| diag(|Fs|)}, (33)

ρ(Ω−1
c Dc(αs)) = ρ( TcsΩ

−1
c T

T
cs Λ̃s )

≤ max{|TcsΩ
−1
c T

T
cs| diag( Λ̃s )}, (34)



Figure 3: 30P30N multi-element high-lift airfoil. Top: zoom

around the airfoil of the unstructured mesh used.

Bottom: visualization of the vorticity magnitude

at Re = 106 and an angle of attack of 5.5o.

where the former inequality follows from Eq.(31) and

the application of the Gershgorin circle theorem to ma-

trix |TcsT
T
cs||Fs|. Similarly, for the latter and Eq.(16).

Notice that in these cases, the diagonal matrix Ω−1
c

has been introduced (see Remark 1). Also notice that

among all the possible values we have chosen α = 0
since it consistently provided the best estimations for

different test-cases (not shown here) for both struc-

tured and unstructured meshes.

The performance of this methodology is tested and

compared with a classical CFL criterion given by

∆tCFL = min

{

CC

λC

CFL

,
CD

λD

CFL

}

where (35)

λC

CFL = max
f

{

[us]f
δf

}

, λD

CFL = max
f

{

4νf
dδ2f

}

,

where d is the number of spatial directions and the val-

ues of CC and CD are set to 0.35 and 0.8, respectively.

These values were used in combination with an AB2

scheme in the first versions of our in-house STG code

to guarantee that all the eigenvalues lie inside the sta-

bility region regardless of the flow conditions.

The tested configuration corresponds to a 3D flow

around a 30P30N multi-element high-lift airfoil at an

angle of attack of 5.5o (see Figure 3). The mesh is

unstructured with ≈ 12.5M control volumes com-

bining hexahedral elements (≈ 8.2M ) and triangu-

lar prisms (≈ 4.3M ). Flow fields have been ob-

tained with the in-house NOISEtte code by Goro-

bets and Bakhvalov (2022). Results for a wide

range of Re are shown in Figure 4 (left). As ex-

pected for low-Re, the diffusive term is dominant,

i.e. ϕ ≈ 0 whereas for (very) high-Re the convective

term becomes the dominant one. Regarding the ra-

tio 〈∆tAlgEigCD+κ1L2〉 / 〈∆tCFL+AB2〉 in this case

it takes values around 4 for Re . 106 and goes down

to approximately 2 at Re = 107. Notice that for the

range of Re-numbers, this mesh is designed for (see

Figure 3, right), the overall gain in terms of ∆t is ap-

proximately 4. This overall gain results from a combi-

nation of factors, which are analyzed in detail in Fig-

ure 4 (right) where the ratio 〈∆tAlgEigCD+κ1L2〉 is

compared with the 〈∆t〉 obtained with other three ap-

proaches apart from the CFL + AB2. Namely, (i)

EigenCD+κ1L2 is the same as AlgEigCD+κ1L2 but

directly using the Gershgorin circle theorem to matri-

ces Ω−1
c Cc (us) and Ω−1

c Dc. Interestingly enough, the

new method provides slightly better estimations. Nev-

ertheless, the main advantage respect to the EigenCD

method proposed in Trias and O. Lehmkuhl (2011)

is that the new method does not require to compute

the coefficients of the matrix and it relies on very

simple algebraic kernels, which simplifies its imple-

mentation and guarantees cross-platform portability.

Then, (ii) AlgEigCD + κ1L2 with κ = 1/2 con-

sists on using the new AlgEigCD method to com-

pute the eigenbounds of the convective and diffusive

operators but forcing κ = 1/2. Finally, the ap-

proach (iii) AlgEigCD+AB2 is basically the same as

the CFL + AB2 method given in Eq.(35) but re-

placing λC

CFL and λD

CFL by the values obtained with

the new AlgEigCD method. Therefore, in this case,

the differences respect to 〈∆tAlgEigCD+κ1L2〉 are due

to the self-adaptivity of the κ1L2 scheme. There-

fore, the difference between this last method and the

CFL +AB2 method can only be attributed to the in-

accuracy in the computation of λC

CFL and λD

CFL in

Eq.(35). From the results shown in Figure 4, it be-

comes clear that the expression used to compute λD

CFL

is quite inaccurate for unstructured grids.

6 Concluding remarks

Numerical results of the new AlgEigCD method

have shown a significant gain respect to a classical

CFL condition, especially for unstructured meshes,

leading to CPU cost reductions up to approximately 4.

This observation was already done in Trias and

O. Lehmkuhl (2011) where the EigenCD method was

proposed. Nevertheless, the new method is slightly

improving the former one. However, the key elements

of the newly proposed AlgEigCD are the fact that no

new matrix have to be re-computed every time-step

and that, in practice, only relies on a sparse matrix-

vector product where only the vectors diag(|Fs|) and
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Figure 4: Numerical results obtained for the high-lift airfoil 30P30N displayed in Figure 3 at different Reynolds numbers using

the same mesh. Left: average ϕ = tan−1(|λC

max|/|λ
D

max|) and ratio between the time-step ∆tAlgEigCD+κ1L2,

computed using the AlgEigCD method in conjunction with the self-adaptive κ1L2 time-integration method,

and ∆tCFL+AB2 obtained with the more classical CFL condition given in Eq.(35). Right: comparison of

〈∆tAlgEigCD+κ1L2〉 with the 〈∆t〉 obtained with other three approaches apart from the CFL+ AB2.

diag(Λ̃s) change on time. Hence, implementation and

cross-platform portability are straightforward.

Although the proposed methodology has been

deduced in the context of the symmetry-preserving

spatial discretization, it can be easily applied to

other schemes resulting from some sort of blend-

ing, e.g. hybrid schemes, flux limiters, etc, between

the symmetry-preserving and the first-order upwind

scheme (see Remark 2). Finally, it worth mentioning

that we have plans to extend this method to other time-

integration schemes with larger stability domains and

subsequently larger time-steps.
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