

Robust and reliable DNS and LES on unstructured grids

<u>F.Xavier Trias</u>¹, Jannes Hopman¹, Daniel Santos¹, Andrey Gorobets², Assensi Oliva¹

¹Heat and Mass Transfer Technological Center, Technical University of Catalonia ²Keldysh Institute of Applied Mathematics of RAS, Russia

Robust and reliable DNS and LES on unstructured grids:

playing with matrices to preserve symmetries using a small set of algebraic kernels

<u>F.Xavier Trias</u>¹, Jannes Hopman¹, Daniel Santos¹, Andrey Gorobets², Assensi Oliva¹

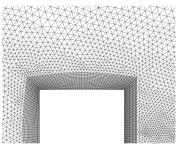
¹Heat and Mass Transfer Technological Center, Technical University of Catalonia ²Keldysh Institute of Applied Mathematics of RAS, Russia

Contents

- Motivation
- Preserving symmetries at discrete level
- Portability and beyond
- 4 Rethinking CFD
- Conclusions

Research question #1:

 Can we construct numerical discretizations of the Navier-Stokes equations suitable for complex geometries, such that the symmetry properties are exactly preserved?

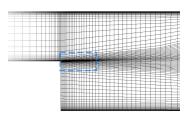


DNS¹ of the turbulent flow around a square cylinder at Re = 22000

¹F.X.Trias, A.Gorobets, A.Oliva. *Turbulent flow around a square cylinder at Reynolds number 22000: a DNS study,* **Computers&Fluids**, 123:87-98, 2015.

Research question #1:

 Can we construct numerical discretizations of the Navier-Stokes equations suitable for complex geometries, such that the symmetry properties are exactly preserved?



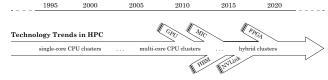
DNS 2 of backward-facing step at $Re_{\tau}=395$ and expansion ratio 2

²A.Pont-Vílchez, F.X.Trias, A.Gorobets, A.Oliva. *DNS of Backward-Facing Step flow at Re* $_{\tau}=395$ *and expansion ratio 2.* **Journal of Fluid Mechanics**, 863:341-363, 2019.

Motivation

Research question #2:

 How can we develop portable and efficient CFD codes for large-scale simulations on modern supercomputers?



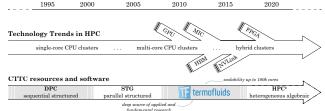
³X.Álvarez, A.Gorobets, F.X.Trias. A hierarchical parallel implementation for heterogeneous computing. Application to algebra-based CFD simulations on hybrid supercomputers. Computers & Fluids, 214:104768, 2021.

⁴ À.Alsalti-Baldellou, X.Álvarez-Farré, F.X.Trias, A.Oliva. Exploiting spatial symmetries for solving Poisson's equation. Journal of Computational Physics, 486:112133, 2023.

⁵À.Alsalti-Baldellou, G.Colomer, J.A.Hopman, X.Álvarez-Farré, A.Gorobets, F.X.Trias, A.Oliva. *Reliable overnight industrial LES: challenges and limitations. Application to CSP technologies.* **On Friday at 15:40**

Research question #2:

 How can we develop portable and efficient CFD codes for large-scale simulations on modern supercomputers?



HPC²: portable, algebra-based framework for heterogeneous computing is being developed^{3,4}. Traditional stencil-based data and sweeps are replaced by algebraic structures (sparse matrices and vectors) and kernels. SpMM-based strategies to increase the arithmetic intensity are presented in this conference⁵.

 $^{^3}$ X.Álvarez. A.Gorobets, F.X.Trias. A hierarchical parallel implementation for heterogeneous computing. Application to algebra-based CFD simulations on hybrid supercomputers. Computers & Fluids, 214:104768, 2021.

À.Alsalti-Baldellou, X.Álvarez-Farré, F.X.Trias, A.Oliva. Exploiting spatial symmetries for solving Poisson's equation. Journal of Computational Physics, 486:112133, 2023.

⁵ À.Alsalti-Baldellou, G.Colomer, J.A.Hopman, X.Álvarez-Farré, A.Gorobets, F.X.Trias, A.Oliva. Reliable overnight industrial LES: challenges and limitations. Application to CSP technologies. On Friday at 15:40

Motivation 00●00

Frequently used general purpose CFD codes:

• STAR-CCM+

ANSYS-FLUENT

Code-Saturne

OpenFOAM

Frequently used general purpose CFD codes:

• STAR-CCM+

ANSYS-FLUENT ANSYS

Code-Saturne

OpenFOAM

- Unstructured finite volume method, collocated grid
- Second-order spatial and temporal discretisation
- Eddy-viscosity type LES models

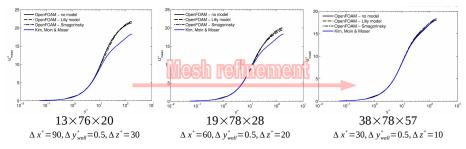
Motivation ○○○●○

Open ∇ FOAM® LES⁶ results of a turbulent channel for at $Re_{\tau}=180$

⁶E.M.J.Komen, L.H.Camilo, A.Shams, B.J.Geurts, B.Koren. *A quantification method for numerical dissipation in quasi-DNS and under-resolved DNS, and effects of numerical dissipation in quasi-DNS and under-resolved DNS of turbulent channel flows, Journal of Computational Physics*, 345, 565-595, 2017.

Motivation

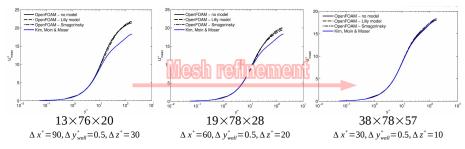
Open $\sqrt{\text{FOAM}}$ ® LES⁶ results of a turbulent channel for at $Re_{\tau} = 180$



• Are LES results are merit of the SGS model?

⁶E.M.J.Komen, L.H.Camilo, A.Shams, B.J.Geurts, B.Koren. *A quantification method for numerical dissipation in quasi-DNS and under-resolved DNS, and effects of numerical dissipation in quasi-DNS and under-resolved DNS of turbulent channel flows, Journal of Computational Physics*, 345, 565-595, 2017.

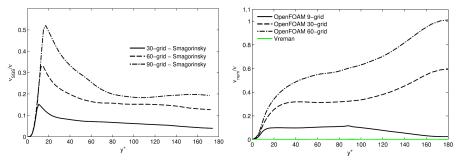
Open $\sqrt{\text{FOAM}}$ ® LES⁶ results of a turbulent channel for at $Re_{\tau} = 180$



Are LES results are merit of the SGS model? Apparently NOT!!! X

⁶E.M.J.Komen, L.H.Camilo, A.Shams, B.J.Geurts, B.Koren. *A quantification method for numerical dissipation in quasi-DNS and under-resolved DNS, and effects of numerical dissipation in quasi-DNS and under-resolved DNS of turbulent channel flows, Journal of Computational Physics*, 345, 565-595, 2017.

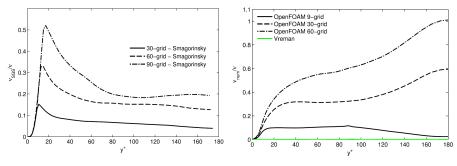
Open ∇ FOAM® LES⁷ results of a turbulent channel for at $Re_{\tau}=180$



 $\nu_{num} \neq 0$

⁷E.M.J.Komen, L.H.Camilo, A.Shams, B.J.Geurts, B.Koren. *A quantification method for numerical dissipation in quasi-DNS and under-resolved DNS, and effects of numerical dissipation in quasi-DNS and under-resolved DNS of turbulent channel flows, Journal of Computational Physics*, 345, 565-595, 2017.

Open ∇ FOAM® LES⁷ results of a turbulent channel for at $Re_{\tau} = 180$

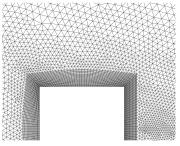


 $\nu_{SGS} < \nu_{num} \neq 0$

⁷E.M.J.Komen, L.H.Camilo, A.Shams, B.J.Geurts, B.Koren. A quantification method for numerical dissipation in quasi-DNS and under-resolved DNS, and effects of numerical dissipation in quasi-DNS and under-resolved DNS of turbulent channel flows, Journal of Computational Physics, 345, 565-595, 2017.

Research question #1:

 Can we construct numerical discretizations of the Navier-Stokes equations suitable for complex geometries, such that the symmetry properties are exactly preserved?



 DNS^1 of the turbulent flow around a square cylinder at Re = 22000

¹F.X.Trias, A.Gorobets, A.Oliva. *Turbulent flow around a square cylinder at Reynolds number 22000: a DNS study,* **Computers&Fluids**, 123:87-98, 2015.

Continuous

$$\frac{\partial \mathbf{u}}{\partial t} + C(\mathbf{u}, \mathbf{u}) = \nu \nabla^2 \mathbf{u} - \nabla \rho$$
$$\nabla \cdot \mathbf{u} = 0$$

Symmetry-preserving discretization

Continuous

$$\frac{\partial \mathbf{u}}{\partial t} + C(\mathbf{u}, \mathbf{u}) = \nu \nabla^2 \mathbf{u} - \nabla p$$
$$\nabla \cdot \mathbf{u} = 0$$

$$\Omega \frac{d\boldsymbol{u}_h}{dt} + C(\boldsymbol{u}_h) \boldsymbol{u}_h = D\boldsymbol{u}_h - G\boldsymbol{p}_h$$
$$M\boldsymbol{u}_h = \boldsymbol{0}_h$$

Continuous

$$\frac{\partial \mathbf{u}}{\partial t} + C(\mathbf{u}, \mathbf{u}) = \nu \nabla^2 \mathbf{u} - \nabla p$$
$$\nabla \cdot \mathbf{u} = 0$$

$$\langle \boldsymbol{a}, \boldsymbol{b} \rangle = \int_{\Omega} \boldsymbol{a} \boldsymbol{b} d\Omega$$

$$\Omega \frac{d\mathbf{u}_h}{dt} + C(\mathbf{u}_h) \mathbf{u}_h = \mathbf{D}\mathbf{u}_h - G\mathbf{p}_h$$
$$\mathbf{M}\mathbf{u}_h = \mathbf{0}_h$$

$$\langle \boldsymbol{a}_h, \boldsymbol{b}_h \rangle_h = \boldsymbol{a}_h^T \Omega \boldsymbol{b}_h$$

Continuous

$$\frac{\partial \mathbf{u}}{\partial t} + C(\mathbf{u}, \mathbf{u}) = \nu \nabla^2 \mathbf{u} - \nabla p$$

$$\langle \boldsymbol{a}, \boldsymbol{b} \rangle = \int_{\Omega} \boldsymbol{a} \boldsymbol{b} d\Omega$$

$$\left\langle \textit{C}\left(\textbf{\textit{u}},\varphi_{1}\right),\varphi_{2}\right\rangle =-\left\langle \textit{C}\left(\textbf{\textit{u}},\varphi_{2}\right),\varphi_{1}\right\rangle$$

$$\Omega \frac{d\boldsymbol{u}_h}{dt} + C(\boldsymbol{u}_h) \boldsymbol{u}_h = \mathbf{D}\boldsymbol{u}_h - \mathbf{G}\boldsymbol{p}_h$$

$$\mathsf{M}\boldsymbol{u}_h = \mathbf{0}_h$$

$$\langle \boldsymbol{a}_h, \boldsymbol{b}_h \rangle_h = \boldsymbol{a}_h^T \Omega \boldsymbol{b}_h$$

$$C\left(\boldsymbol{u}_{h}\right)=-C^{T}\left(\boldsymbol{u}_{h}\right)$$

Symmetry-preserving discretization

Continuous

$$\frac{\partial \mathbf{u}}{\partial t} + C(\mathbf{u}, \mathbf{u}) = \nu \nabla^2 \mathbf{u} - \nabla \mathbf{p}$$
$$\nabla \cdot \mathbf{u} = 0$$

$$\langle \boldsymbol{a}, \boldsymbol{b} \rangle = \int_{\Omega} \boldsymbol{a} \boldsymbol{b} d\Omega$$

$$\langle C(\mathbf{u}, \varphi_1), \varphi_2 \rangle = -\langle C(\mathbf{u}, \varphi_2), \varphi_1 \rangle$$
$$\langle \nabla \cdot \mathbf{a}, \varphi \rangle = -\langle \mathbf{a}, \nabla \varphi \rangle$$

$$\Omega \frac{d\mathbf{u}_h}{dt} + C(\mathbf{u}_h) \mathbf{u}_h = \mathbf{D}\mathbf{u}_h - \mathbf{G}\mathbf{p}_h$$

$$\mathbf{M}\mathbf{u}_h = \mathbf{0}_h$$

$$\langle \boldsymbol{a}_h, \boldsymbol{b}_h \rangle_h = \boldsymbol{a}_h^T \Omega \boldsymbol{b}_h$$

$$C(\boldsymbol{u}_h) = -C^T(\boldsymbol{u}_h)$$
$$\Omega_G^G = -M^T$$

Symmetry-preserving discretization

Continuous

$$\frac{\partial \mathbf{u}}{\partial t} + C(\mathbf{u}, \mathbf{u}) = \nu \nabla^2 \mathbf{u} - \nabla \mathbf{p}$$
$$\nabla \cdot \mathbf{u} = 0$$

$$\langle \boldsymbol{a}, \boldsymbol{b} \rangle = \int_{\Omega} \boldsymbol{a} \boldsymbol{b} d\Omega$$

$$\langle C(\mathbf{u}, \varphi_1), \varphi_2 \rangle = -\langle C(\mathbf{u}, \varphi_2), \varphi_1 \rangle$$
$$\langle \nabla \cdot \mathbf{a}, \varphi \rangle = -\langle \mathbf{a}, \nabla \varphi \rangle$$
$$\langle \nabla^2 \mathbf{a}, \mathbf{b} \rangle = -\langle \mathbf{a}, \nabla^2 \mathbf{b} \rangle$$

$$\Omega \frac{d\mathbf{u}_h}{dt} + C(\mathbf{u}_h) \mathbf{u}_h = \mathbf{D}\mathbf{u}_h - \mathbf{G}\mathbf{p}_h$$
$$\mathbf{M}\mathbf{u}_h = \mathbf{0}_h$$

$$\langle \boldsymbol{a}_h, \boldsymbol{b}_h \rangle_h = \boldsymbol{a}_h^T \Omega \boldsymbol{b}_h$$

$$C(\mathbf{u}_h) = -C^T(\mathbf{u}_h)$$

$$\Omega G = -M^T$$

$$D = D^T \quad def - C^T(\mathbf{u}_h)$$

Why collocated arrangements are so popular?

STAR-CCM+

CD-adapco SIEMENS

ANSYS-FLUENT

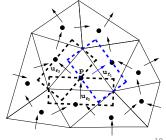
Code-Saturne

OpenFOAM

$$\Omega_{s} \frac{d\mathbf{u}_{s}}{dt} + C(\mathbf{u}_{s}) \mathbf{u}_{s} = \mathbf{D}\mathbf{u}_{s} - \mathbf{G}\mathbf{p}_{c}; \quad \mathbf{M}\mathbf{u}_{s} = \mathbf{0}_{c}$$

In staggered meshes

- p-u_s coupling is naturally solved √
- C (u_s) and D difficult to discretize X

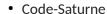


Why collocated arrangements are so popular?

STAR-CCM+

CD-adapco SIEMENS

ANSYS-FLUENT

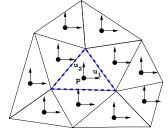


OpenFOAM

$$\Omega_{c} \frac{d\boldsymbol{u}_{c}}{dt} + C(\boldsymbol{u}_{s}) \boldsymbol{u}_{c} = D\boldsymbol{u}_{c} - G_{c}\boldsymbol{p}_{c}; \quad M_{c}\boldsymbol{u}_{c} = \boldsymbol{0}_{c}$$

In collocated meshes

- p-uc coupling is cumbersome X
- C (u_s) and D easy to discretize √
- Cheaper, less memory,... √



Why collocated arrangements are so popular?

Everything is easy except the pressure-velocity coupling...

STAR-CCM+

CD-adapco SIEMENS

ANSYS-FLUENT

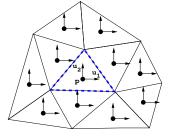
Code-Saturne

OpenFOAM Open∇FOAM®

$$\Omega_{c} \frac{d\boldsymbol{u}_{c}}{dt} + C(\boldsymbol{u}_{s}) \boldsymbol{u}_{c} = D\boldsymbol{u}_{c} - G_{c}\boldsymbol{p}_{c}; \quad M_{c}\boldsymbol{u}_{c} = \boldsymbol{0}_{c}$$

In collocated meshes

- p-uc coupling is cumbersome X
- $C(u_s)$ and D easy to discretize $\sqrt{}$
- Cheaper, less memory,... √



A vicious circle that cannot be broken...

In summary⁸:

- Mass: $M\Gamma_{c\to s} \mathbf{u}_c = M\Gamma_{c\to s} \mathbf{u}_c L_c L^{-1} M\Gamma_{c\to s} \mathbf{u}_c \approx \mathbf{0}_c \mathbf{X}$
- Energy: $p_c (L L_c) p_c \neq 0 X$

⁸F.X.Trias, O.Lehmkuhl, A.Oliva, C.D.Pérez-Segarra, R.W.C.P.Verstappen. *Symmetry-preserving discretization of Navier-Stokes equations on collocated unstructured grids*, **Journal of Computational Physics**, 258 (1): 246-267, 2014.

A vicious circle that cannot be broken...

In summary⁸:

- Mass: $M\Gamma_{c\to s} \boldsymbol{u}_c = M\Gamma_{c\to s} \boldsymbol{u}_c \left[\mathsf{L}_c \mathsf{L}^{-1}\right] M\Gamma_{c\to s} \boldsymbol{u}_c \approx \boldsymbol{0}_c \ \boldsymbol{X}$
- Energy: $p_c(L-L_c)p_c \neq 0 X$

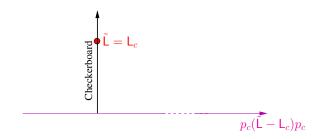
⁸F.X.Trias, O.Lehmkuhl, A.Oliva, C.D.Pérez-Segarra, R.W.C.P.Verstappen. Symmetry-preserving discretization of Navier-Stokes equations on collocated unstructured grids, Journal of Computational Physics, 258 (1): 246-267, 2014.

A vicious circle that cannot be broken...

In summary⁸:

• Mass:
$$M\Gamma_{c \to s} \boldsymbol{u}_c = M\Gamma_{c \to s} \boldsymbol{u}_c - \boxed{\mathsf{L}_c \mathsf{L}^{-1}} M\Gamma_{c \to s} \boldsymbol{u}_c \approx \boldsymbol{0}_c \ \boldsymbol{X}$$

• Energy: $\boldsymbol{p}_c (\mathsf{L} - \mathsf{L}_c) \boldsymbol{p}_c \neq 0 \ \boldsymbol{X}$



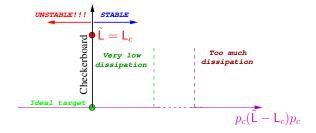
⁸F.X.Trias, O.Lehmkuhl, A.Oliva, C.D.Pérez-Segarra, R.W.C.P.Verstappen. Symmetry-preserving discretization of Navier-Stokes equations on collocated unstructured grids, Journal of Computational Physics, 258 (1): 246-267, 2014.

A vicious circle that cannot be broken...

In summary⁸:

• Mass:
$$M\Gamma_{c\to s} \boldsymbol{u_c} = M\Gamma_{c\to s} \boldsymbol{u_c} - \left(L_c L^{-1}\right) M\Gamma_{c\to s} \boldsymbol{u_c} \approx \boldsymbol{0_c} \boldsymbol{X}$$

• Energy: $p_c(L-L_c)p_c \neq 0$ X



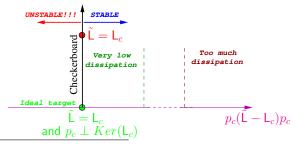
⁸F.X.Trias, O.Lehmkuhl, A.Oliva, C.D.Pérez-Segarra, R.W.C.P.Verstappen. Symmetry-preserving discretization of Navier-Stokes equations on collocated unstructured grids, Journal of Computational Physics, 258 (1): 246-267, 2014.

A vicious circle that cannot be broken...

In summary⁸:

• Mass:
$$M\Gamma_{c\to s} \boldsymbol{u_c} = M\Gamma_{c\to s} \boldsymbol{u_c} - \left[L_c L^{-1}\right] M\Gamma_{c\to s} \boldsymbol{u_c} \approx \boldsymbol{0_c} \boldsymbol{X}$$

• Energy: $p_c(L-L_c)p_c \neq 0$ X



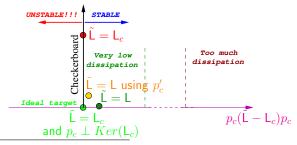
⁸Shashank, J.Larsson, G.laccarino. *A co-located incompressible Navier-Stokes solver with exact mass, momentum and kinetic energy conservation in the inviscid limit*, **Journal of Computational Physics**, 229: 4425-4430,2010.

A vicious circle that cannot be broken...

In summary⁸:

• Mass:
$$M\Gamma_{c\to s} \boldsymbol{u_c} = M\Gamma_{c\to s} \boldsymbol{u_c} - \left(L_c L^{-1}\right) M\Gamma_{c\to s} \boldsymbol{u_c} \approx \boldsymbol{0_c} \boldsymbol{X}$$

• Energy: $p_c(L-L_c)p_c \neq 0$ X



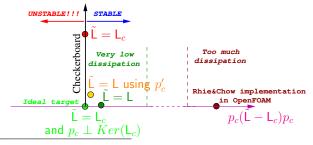
⁸F.X.Trias, O.Lehmkuhl, A.Oliva, C.D.Pérez-Segarra, R.W.C.P.Verstappen. Symmetry-preserving discretization of Navier-Stokes equations on collocated unstructured grids, Journal of Computational Physics, 258 (1): 246-267, 2014.

A vicious circle that cannot be broken...

In summary⁸:

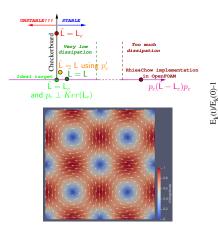
• Mass:
$$M\Gamma_{c \to s} \boldsymbol{u_c} = M\Gamma_{c \to s} \boldsymbol{u_c} - \left[L_c L^{-1}\right] M\Gamma_{c \to s} \boldsymbol{u_c} \approx \boldsymbol{0_c} \boldsymbol{\chi}$$

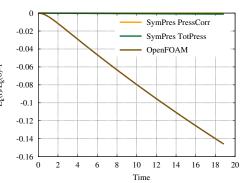
• Energy: $p_c(L-L_c)p_c \neq 0$ X



⁸E.Komen, J.A.Hopman, E.M.A.Frederix, F.X.Trias, R.W.C.P.Verstappen. "A symmetry-preserving second-order time-accurate PISO-based method". **Computers & Fluids**, 225:104979, 2021.

A vicious circle that cannot be broken can almost be broken...

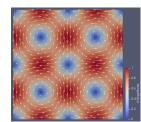


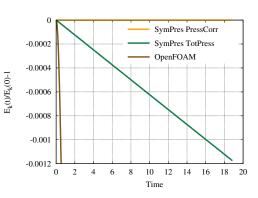


Results for an inviscid Taylor-Green vortex⁹

⁹E.Komen, J.A.Hopman, E.M.A.Frederix, F.X.Trias, R.W.C.P.Verstappen. "A symmetry-preserving second-order time-accurate PISO-based method". Computers & Fluids. 225:104979. 2021.

A vicious circle that cannot be broken can almost be broken...



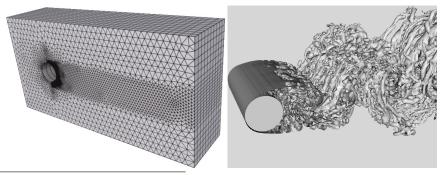


Results for an inviscid Taylor-Green vortex⁹

⁹E.Komen, J.A.Hopman, E.M.A.Frederix, F.X.Trias, R.W.C.P.Verstappen. "A symmetry-preserving second-order time-accurate PISO-based method". **Computers & Fluids**, 225:104979, 2021.

Pressure-velocity coupling on collocated grids Examples of simulations

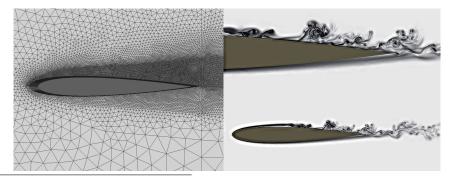
Despite these inherent limitations, symmetry-preserving collocated formulation has been successfully used for DNS/LES simulations¹⁰:



¹⁰R.Borrell, O.Lehmkuhl, F.X.Trias, A.Oliva. *Parallel Direct Poisson solver for discretizations with one Fourier diagonalizable direction*. **Journal of Computational Physics**, 230:4723-4741, 2011.

Pressure-velocity coupling on collocated grids Examples of simulations

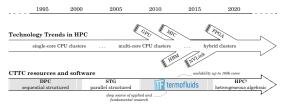
Despite these inherent limitations, symmetry-preserving collocated formulation has been successfully used for DNS/LES simulations¹⁰:



¹⁰F.X.Trias and O.Lehmkuhl. *A self-adaptive strategy for the time-integration of Navier-Stokes equations.* **Numerical Heat Transfer, part B**, 60(2):116-134, 2011.

Research question #2:

 How can we develop portable and efficient CFD codes for large-scale simulations on modern supercomputers?



HPC²: portable, algebra-based framework for heterogeneous computing is being developed. Traditional stencil-based data and sweeps are replaced by algebraic structures (sparse matrices and vectors) and kernels. SpMM-based strategies to increase the arithmetic intensity are/were presented in this conference 11.

À.Alsalti-Baldellou, G.Colomer, J.A.Hopman, X.Álvarez-Farré, A.Gorobets, F.X.Trias, A.Oliva. Reliable overnight industrial LES: challenges and limitations. Application to CSP technologies. On Friday at 15:40

Algebra-based approach naturally leads to portability, to simple and analyzable formulations

Continuous

$$\frac{\partial \mathbf{u}}{\partial t} + C(\mathbf{u}, \mathbf{u}) = \nu \nabla^2 \mathbf{u} - \nabla \mathbf{p}$$
$$\nabla \cdot \mathbf{u} = 0$$

$$\langle \boldsymbol{a}, \boldsymbol{b} \rangle = \int_{\Omega} \boldsymbol{a} \boldsymbol{b} d\Omega$$

$$\begin{split} \langle \mathcal{C} \left(\mathbf{u}, \varphi_1 \right), \varphi_2 \rangle &= - \langle \mathcal{C} \left(\mathbf{u}, \varphi_2 \right), \varphi_1 \rangle \\ \langle \nabla \cdot \mathbf{a}, \varphi \rangle &= - \langle \mathbf{a}, \nabla \varphi \rangle \\ \langle \nabla^2 \mathbf{a}, \mathbf{b} \rangle &= - \langle \mathbf{a}, \nabla^2 \mathbf{b} \rangle \end{split}$$

Discrete

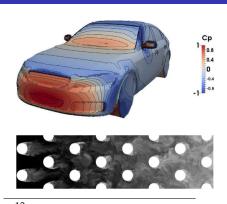
$$\Omega \frac{d\mathbf{u}_{h}}{dt} + C(\mathbf{u}_{h}) \mathbf{u}_{h} = \mathbf{D}\mathbf{u}_{h} - G\mathbf{p}_{h}$$
$$\mathbf{M}\mathbf{u}_{h} = \mathbf{0}_{h}$$

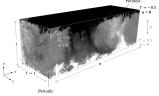
$$\langle \boldsymbol{a}_h, \boldsymbol{b}_h \rangle_h = \boldsymbol{a}_h^T \Omega \boldsymbol{b}_h$$

$$C(\mathbf{u}_h) = -C^T(\mathbf{u}_h)$$

$$\Omega G = -M^T$$

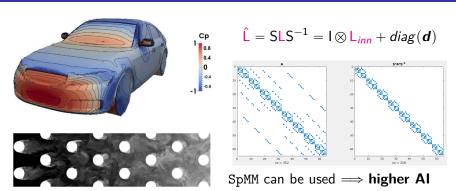
$$D = D^T \quad def - C^T(\mathbf{u}_h)$$





¹² À. Alsalti-Baldellou, X. Álvarez-Farré, F.X.Trias, A.Oliva. Exploiting spatial symmetries for solving Poisson's equation.
Journal of Computational Physics, 486:112133, 2023.

¹³ A. Alsalti-Baldellou, G. Colomer, J.A. Hopman, X. Álvarez-Farré, A. Gorobets, F.X. Trias, A. Oliva. Reliable overnight industrial LES: challenges and limitations. Application to CSP technologies. On Friday at 15:40



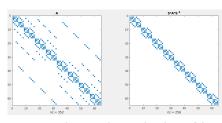
 $^{^{12} \}hbox{\^{A}.Alsalti-Baldellou}, \hbox{X.\'{Alvarez-Farr\'e}, F.X.Trias, A.Oliva.} \textit{ Exploiting spatial symmetries for solving Poisson's equation.} \\ \textbf{Journal of Computational Physics, } 486:112133, 2023.}$

¹³ À.Alsalti-Baldellou, G.Colomer, J.A.Hopman, X.Álvarez-Farré, A.Gorobets, F.X.Trias, A.Oliva. Reliable overnight industrial LES: challenges and limitations. Application to CSP technologies. On Friday at 15:40

Benefits for Poisson solver are 3-fold:

- Reduction of memory footprint
- Reduction in the number of iterations

$$\hat{\mathsf{L}} = \mathsf{SLS}^{-1} = \mathsf{I} \otimes \mathsf{L}_{inn} + diag(\mathbf{d})$$



SpMM can be used \Longrightarrow higher Al

¹² A.Alsalti-Baldellou, X.Álvarez-Farré, F.X.Trias, A.Oliva. Exploiting spatial symmetries for solving Poisson's equation.
Journal of Computational Physics, 486:112133, 2023.

¹³ Å. Alsalti-Baldellou, G. Colomer, J. A. Hopman, X. Álvarez-Farré, A. Gorobets, F. X. Trias, A. Oliva. Reliable overnight industrial LES: challenges and limitations. Application to CSP technologies. On Friday at 15:40

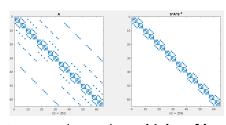
Benefits for Poisson solver are 3-fold:

 Reduction in the number of iterations

$$\rightarrow$$
 Overall speed-up up to **x2-x3** \checkmark

→ Memory reduction of
$$\approx$$
2 \checkmark

$$\hat{\mathbf{L}} = \mathsf{SLS}^{-1} = \mathsf{I} \otimes \mathsf{L}_{inn} + diag(\mathbf{d})$$



SpMM can be used \Longrightarrow higher AI

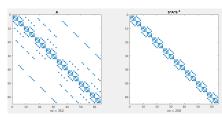
¹² Å. Alsalti-Baldellou, X.Álvarez-Farré, F.X.Trias, A.Oliva. Exploiting spatial symmetries for solving Poisson's equation. Journal of Computational Physics, 486:112133, 2023.

¹³ À. Alsalti-Baldellou, G. Colomer, J.A. Hopman, X. Álvarez-Farré, A. Gorobets, F.X. Trias, A. Oliva. Reliable overnight industrial LES: challenges and limitations. Application to CSP technologies. On Friday at 15:40

Other SpMM-based strategies to increase AI and reduce memory footprint:

- Multiple transport equations
- Parametric studies
- Parallel-in-time simulations
- Go to higher-order?

$$\hat{\mathsf{L}} = \mathsf{SLS}^{-1} = \mathsf{I} \otimes \mathsf{L}_{inn} + diag(\boldsymbol{d})$$



SpMM can be used \Longrightarrow higher Al

¹² À.Alsalti-Baldellou, X.Álvarez-Farré, F.X.Trias, A.Oliva. Exploiting spatial symmetries for solving Poisson's equation.
Journal of Computational Physics, 486:112133, 2023.

¹³ À.Alsalti-Baldellou, G.Colomer, J.A.Hopman, X.Álvarez-Farré, A.Gorobets, F.X.Trias, A.Oliva. Reliable overnight industrial LES: challenges and limitations. Application to CSP technologies. On Friday at 15:40

In summary...

¹⁴ N.Valle, X.Álvarez, A.Gorobets, J.Castro, A.Oliva, F.X.Trias. On the implementation of flux limiters in algebraic frameworks. Computer Physics Communications, 271:108230, 2022.

In summary...

- Computational challenge: SpMV has a low AI
 - <u>Solution</u>: make use of SpMM whenever possible (multiple transport equations, spatial symmetries, parallel-in-time simulations, parametric studies,...) to increase AI and, therefore, perfomance.
 - <u>Positive side-effects</u>: reduction of memory footprint (crucial for GPUs), improvement of the convergence for the Poisson solver...

¹⁴ N.Valle, X.Álvarez, A.Gorobets, J.Castro, A.Oliva, F.X.Trias. On the implementation of flux limiters in algebraic frameworks. Computer Physics Communications, 271:108230, 2022.

In summary...

- Computational challenge: SpMV has a low AI
 - <u>Solution</u>: make use of SpMM whenever possible (multiple transport equations, spatial symmetries, parallel-in-time simulations, parametric studies,...) to increase AI and, therefore, perfomance.
 - <u>Positive side-effects</u>: reduction of memory footprint (crucial for GPUs), improvement of the convergence for the Poisson solver...
- Implementation challenge: there still exists a list of standard CFD methods that do not seem to fit well on an algebraic framework (e.g. flux limiters¹⁴, boundary conditions, CFL condition,...).
 - Dilemma: "add more and more specific kernels" vs "rethink them"

¹⁴ N.Valle, X.Álvarez, A.Gorobets, J.Castro, A.Oliva, F.X.Trias. On the implementation of flux limiters in algebraic frameworks. Computer Physics Communications, 271:108230, 2022.

In summary...

- Computational challenge: SpMV has a low AI
 - <u>Solution</u>: make use of SpMM whenever possible (multiple transport equations, spatial symmetries, parallel-in-time simulations, parametric studies,...) to increase AI and, therefore, perfomance.
 - <u>Positive side-effects</u>: reduction of memory footprint (crucial for GPUs), improvement of the convergence for the Poisson solver...
- Implementation challenge: there still exists a list of standard CFD methods that do not seem to fit well on an algebraic framework (e.g. flux limiters¹⁴, boundary conditions, CFL condition,...).
 - Dilemma: "add more and more specific kernels" vs "rethink them"

¹⁴ N.Valle, X.Álvarez, A.Gorobets, J.Castro, A.Oliva, F.X.Trias. On the implementation of flux limiters in algebraic frameworks. Computer Physics Communications, 271:108230, 2022.

CFL-like condition

Step #1: forget about classical formulae from textbooks...

$$\Delta t \leqslant C_{conv} \left(\frac{\Delta x}{U} \right)_{min}$$
 and $\Delta t \leqslant C_{diff} \left(\frac{\Delta x^2}{V} \right)_{min}$

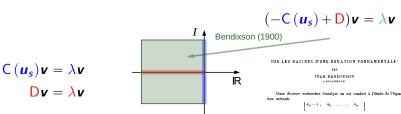
CFL-like condition

Step #1: forget about classical formulae from textbooks...

$$\Delta t \leqslant C_{conv} \left(\frac{\Delta x}{U} \right)_{min}$$
 and $\Delta t \leqslant C_{diff} \left(\frac{\Delta x^2}{V} \right)_{min}$

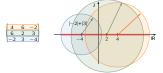
...and replace it by an eigenbounding problem of $C(u_s)$ and D matrices

$$\Omega_{s} \frac{d\mathbf{u}_{s}}{dt} + C(\mathbf{u}_{s}) \mathbf{u}_{s} = D\mathbf{u}_{s} - G\mathbf{p}_{c}; \quad M\mathbf{u}_{s} = \mathbf{0}_{c}$$



CFL-like condition

Step #2: compute eigenbounds of $C(u_s)$ and D in an inexpensive way¹⁵



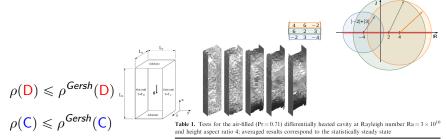
$$\rho(\mathsf{D}) \leqslant \rho^{\mathsf{Gersh}}(\mathsf{D})$$
$$\rho(\mathsf{C}) \leqslant \rho^{\mathsf{Gersh}}(\mathsf{C})$$

$$\rho(\mathsf{C}) \leqslant \rho^{\mathsf{Gersh}}(\mathsf{C})$$

 $^{^{15}\}mathrm{F.X.Trias}$ and O.Lehmkuhl. A self-adaptive strategy for the time-integration of Navier-Stokes equations. Numerical Heat Transfer, part B, 60(2):116-134, 2011.

CFL-like condition

Step #2: compute eigenbounds of $C(u_s)$ and D in an inexpensive way¹⁵

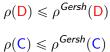


	N_x	N_y	N_z	$\bar{\phi}/(\pi/2)$	$\delta t_{\text{CFL+AB2}}$	$\overline{\delta t}_{\text{EigenCD}+\kappa 1L2}$	$\overline{\delta t}_{EigenCD+\kappa 1L2}/\overline{\delta t}_{CFL+AB2}$
MeshA	128	338	778	0.072	1.04×10^{-4}	3.02×10^{-4}	2.90
MeshB	64	168	338	0.158	4.31×10^{-4}	1.21×10^{-3}	2.80
MeshC	32	84	168	0.252	1.80×10^{-3}	4.69×10^{-3}	2.59
MeshD	32	56	112	0.408	4.21×10^{-3}	8.75×10^{-3}	2.08
MeshE	16	42	84	0.504	6.88×10^{-3}	1.35×10^{-3}	1.96

¹⁵F.X.Trias and O.Lehmkuhl. *A self-adaptive strategy for the time-integration of Navier-Stokes equations.* **Numerical Heat Transfer, part B**, 60(2):116-134, 2011.

CFL-like condition

Step #2: compute eigenbounds of $C(u_s)$ and D in an inexpensive way¹⁵



$$\rho(\mathsf{C}) \leqslant \rho^{\mathsf{Gersh}}(\mathsf{C})$$

Table 2. Tests for the flow around a NACA 0012 airfoil at Reynolds number 5×10^4 and an angle of attack of 5°; averaged results correspond to the statistically steady state

	N_x	Mesh2D	$\bar{\phi}/(\pi/2)$	$\overline{\delta t}_{\mathrm{CFL+AB2}}$	$\overline{\delta t}_{\rm EigenCD+\kappa 1L2}$	$\overline{\delta t}_{\rm EigenCD+\kappa 1L2}/\overline{\delta t}_{\rm CFL+AB2}$
UMeshA UMeshB	64 32	$\begin{array}{l} \approx \! 2.65 \times 10^5 \\ \approx \! 4.69 \times 10^4 \end{array}$	0.593 0.956	$\begin{array}{c} 4.69 \times 10^{-5} \\ 1.61 \times 10^{-4} \end{array}$	$\begin{array}{c} 1.30 \times 10^{-4} \\ 6.86 \times 10^{-4} \end{array}$	(2.77 4.27)

 $^{^{15}\}mathrm{F.X.Trias}$ and O.Lehmkuhl. A self-adaptive strategy for the time-integration of Navier-Stokes equations. Numerical Heat Transfer, part B, 60(2):116-134, 2011.

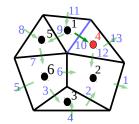
CFL-like condition

Step #3:

reformulate the problem in a way that we avoid constructing $C(u_s)$ and D

$$\boxed{\mathsf{C}\left(\mathbf{\textit{u}}_{s}\right) \equiv -1/2\,\mathsf{T}_{cs}^{\mathsf{T}}\mathsf{A}_{s}\,\mathsf{U}_{s}|\mathsf{T}_{cs}| \qquad \mathsf{D} \equiv -\mathsf{T}_{cs}^{\mathsf{T}}\mathsf{A}_{s}\mathsf{\Lambda}_{s}\mathsf{\Delta}_{s}^{-1}\,\mathsf{T}_{cs}}$$

face-to-cell oriented incidence matrix



CFL-like condition

Step #3 ... #4 (some maths that would take too long to explain): reformulate the problem in a way that we avoid constructing $C(u_s)$ and D

$$\boxed{\mathsf{C}\left(\boldsymbol{u}_{s}\right) \equiv -1/2T_{cs}^{T}A_{s}U_{s}|T_{cs}| \qquad \mathsf{D} \equiv -T_{cs}^{T}A_{s}\Lambda_{s}\Delta_{s}^{-1}T_{cs}}$$

$$\rho(\mathsf{D}) \leqslant \rho^{\mathsf{Gersh}}(\mathsf{D})$$

$$\rho(\mathbf{C}) \leqslant \rho^{\mathit{Gersh}}(\mathbf{C})$$

where T_{cs} is the face-to-cell oriented incidence matrix; $\tilde{\Delta}_s \equiv A_s \Lambda_s \Delta_s^{-1}$ (diffusivity-like fluxes) and $\tilde{F}_s \equiv A_s U_s$ (mass fluxes) are diagonal matrices.

CFL-like condition

Step #3 ... #4 (some maths that would take too long to explain): reformulate the problem in a way that we avoid constructing $C(u_s)$ and D

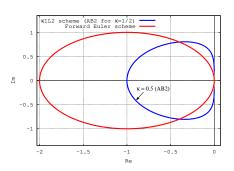
$$\boxed{ \mathbf{C} \left(\mathbf{u}_{s} \right) \equiv -1/2 T_{cs}^{T} A_{s} U_{s} | T_{cs} | \qquad \mathbf{D} \equiv -T_{cs}^{T} A_{s} \Lambda_{s} \Delta_{s}^{-1} T_{cs} }$$

$$\rho(\mathsf{D}) \leqslant \qquad \ldots \qquad \leqslant \qquad \rho(\ T_{\mathsf{cs}} \, T_{\mathsf{cs}}^{\mathsf{T}} \, \tilde{\Delta}_{\mathsf{s}}) \leqslant \qquad \max(\underbrace{|T_{\mathsf{cs}} \, T_{\mathsf{cs}}^{\mathsf{T}}| \, \mathsf{diag}(\tilde{\Delta}_{\mathsf{s}})}_{\mathsf{SpMV}})$$

$$\rho(\mathsf{C}) \leqslant \dots \leqslant 1/4 \rho(|T_{cs}T_{cs}^T||\tilde{F}_s|) \leqslant 1/4 \max(\underbrace{|T_{cs}T_{cs}^T| \operatorname{diag}(|\tilde{F}_s|)}^{Constant})_{\operatorname{SpMV}})$$

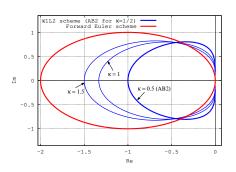
where T_{cs} is the face-to-cell oriented incidence matrix; $\tilde{\Delta}_s \equiv A_s \Lambda_s \Delta_s^{-1}$ (diffusivity-like fluxes) and $\tilde{F}_s \equiv A_s U_s$ (mass fluxes) are diagonal matrices.

CFL-like condition



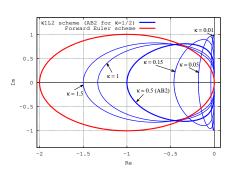
$$\frac{\left(\kappa + \frac{1}{2}\right)\phi^{n+1} - 2\kappa\phi^n + \left(\kappa - \frac{1}{2}\right)\phi^{n-1}}{\Delta t} = f\left((1+\kappa)\phi^n - \kappa\phi^{n-1}\right)$$

CFL-like condition



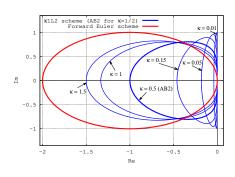
$$\frac{\left(\kappa + \frac{1}{2}\right)\phi^{n+1} - 2\kappa\phi^n + \left(\kappa - \frac{1}{2}\right)\phi^{n-1}}{\Delta t} = f\left((1+\kappa)\phi^n - \kappa\phi^{n-1}\right)$$

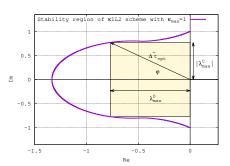
CFL-like condition



$$\frac{\left(\kappa + \frac{1}{2}\right)\phi^{n+1} - 2\kappa\phi^n + \left(\kappa - \frac{1}{2}\right)\phi^{n-1}}{\Delta t} = f\left((1+\kappa)\phi^n - \kappa\phi^{n-1}\right)$$

CFL-like condition

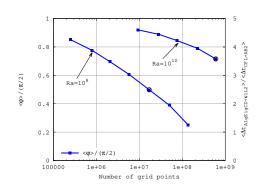




$$\frac{\left(\kappa + \frac{1}{2}\right)\phi^{n+1} - 2\kappa\phi^n + \left(\kappa - \frac{1}{2}\right)\phi^{n-1}}{\Delta t} = f\left((1+\kappa)\phi^n - \kappa\phi^{n-1}\right)$$

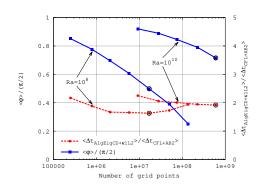
CFL-like condition: results

Numerical test #1: air-filled Rayleigh–Bénard convection

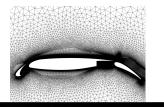


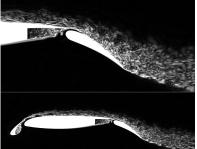
CFL-like condition: results

Numerical test #1: air-filled Rayleigh–Bénard convection

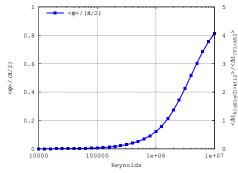


CFL-like condition: results

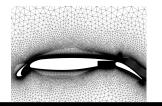


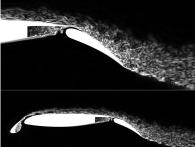


Numerical test #2: 30P30N airfoil

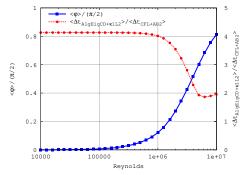


CFL-like condition: results

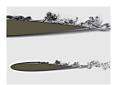




Numerical test #2: 30P30N airfoil



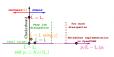
 Preserving symmetries either using staggered or collocated formulations is the key point for reliable LES/DNS simulations.



¹⁶ N.Valle, X.Álvarez, A.Gorobets, J.Castro, A.Oliva, F.X.Trias. *On the implementation of flux limiters in algebraic frameworks.* **Computer Physics Communications**, 271:108230, 2022.

Concluding remarks

- Preserving symmetries either using staggered or collocated formulations is the key point for reliable LES/DNS simulations.
- Algebra-based approach naturally leads to portability, to simple and analyzable formulations and opens the door to new strategies to improve its perforance.

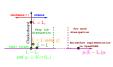


 $^{^{16}}$ N.Valle, X.Álvarez, A.Gorobets, J.Castro, A.Oliva, F.X.Trias. On the implementation of flux limiters in algebraic frameworks. Computer Physics Communications, 271:108230, 2022.

Concluding remarks

 Preserving symmetries either using staggered or collocated formulations is the key point for reliable LES/DNS simulations.

 Algebra-based approach naturally leads to portability, to simple and analyzable formulations and opens the door to new strategies to improve its performance.



On-going research:

Rethinking standard CFD operations (e.g. flux limiters¹⁶, boundary conditions, CFL,...) to adapt them into an algebraic framework (Motivation: maintaining a minimal number of basic kernels is crucial for portability!!!)

¹⁶ N.Valle, X.Álvarez, A.Gorobets, J.Castro, A.Oliva, F.X.Trias. On the implementation of flux limiters in algebraic frameworks. Computer Physics Communications, 271:108230, 2022.