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Research question #1:

@ Can we construct numerical discretizations of the Navier-Stokes

equations suitable for complex geometries, such that the symmetry
properties are exactly preserved?

1F X.Trias, A.Gorobets, A.Oliva. Turbulent flow around a square cylinder at Reynolds
number 22000: a DNS study, Computers&Fluids, 123:87-98, 2015.
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DNS? of backward-facing step at Re; = 395 and expansion ratio 2

2A.Pont-Vilchez, F.X.Trias, A.Gorobets, A.Oliva. DNS of Backward-Facing Step flow
at Rer = 395 and expansion ratio 2. Journal of Fluid Mechanics, 863:341-363, 2019.
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Research question #2:
@ How can we develop portable and efficient CFD codes for large-scale
simulations on modern supercomputers?

1995 2000 2005 2010 2015 2020

CopLin oy

Technology Trends in HPC Cey

single-core CPU clusters ... multicore CPUclusters ...  hybrid clusters >

\ V\?"k \\3‘0{&

3X.Alvarez, A.Gorobets, F.X.Trias. A hierarchical parallel implementation for heterogeneous computing. Application to
algebra-based CFD simulations on hybrid supercomputers. Computers & Fluids, 214:104768, 2021.

4A.A|sa|ti—Ba|dellou, X.Alvarez-Farré, F.X.Trias, A.Oliva. Exploiting spatial symmetries for solving Poisson’s equation.
Journal of Computational Physics, 486:112133, 2023.
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@ How can we develop portable and efficient CFD codes for large-scale

simulations on modern supercomputers?
1995 2000 2005 2010 2015 2020

Lo Lo Ui,

Technology Trends in HPC 2
single-core CPU clusters = multi-core CPU clusters = hybrid clusters >
T
S W
T
CTTC resources and software _——_scalability up to 100k cores
DPC STG ] 7 HPC?
sequential structured parallel structured | termofluids heterogeneous algebr>

deep source of applied and
fundamental research

HPC?: portable, algebra-based framework for heterogeneous computing is being
developed3’4. Traditional stencil-based data and sweeps are replaced by algebraic
structures (sparse matrices and vectors) and kernels. SpMM-based strategies to increase
the arithmetic intensity are presented in this conference®.
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Frequently used general purpose CFD codes:

+ STARCCM+  (Liesaarce SIEMENS
« ANSYS-FLUENT TAWNIE®

FLUENT

q
® - ‘3 €% CODE &
codesatume ¢ Soeor  [HEl

* OpenFOAM  openVFOAM®
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Motivation

Frequently used general purpose CFD codes:

+ STARCCM+  (Liesaarce SIEMENS
« ANSYS-FLUENT TAWNIE®

FLUENT

q
hd - ‘3 €% CODE &
codesatume ¢ Soeor  [HEl

* OpenFOAM  OpenVFOAM® G’i’“

Main common characteristics of LES in such codes:

@ Unstructured finite volume method, collocated grid
@ Second-order spatial and temporal discretisation
o Eddy-viscosity type LES models

5
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OpenVFOAM® | ESCresults of a turbulent channel for at Re, = 180
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6E.M.J.Komen, L.H.Camilo, A.Shams, B.J.Geurts, B.Koren. A quantification method
for numerical dissipation in quasi-DNS and under-resolved DNS, and effects of numerical
dissipation in quasi-DNS and under-resolved DNS of turbulent channel flows, Journal of

Computational Physics, 345, 565-595, 2017.
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@ Are LES results are merit of the SGS model? Apparently NOT!!! X
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Motivation

Research question #1:
@ Can we construct numerical discretizations of the Navier-Stokes
equations suitable for complex geometries, such that the symmetry
properties are exactly preserved?
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1F X.Trias, A.Gorobets, A.Oliva. Turbulent flow around a square cylinder at Reynolds
number 22000: a DNS study, Computers&Fluids, 123:87-98, 2015.
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Symmetry-preserving discretization

Continuous Discrete
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Why collocated arrangements are so popular?
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@ p-us coupling is naturally solved v
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Why collocated arrangements are so popular?

Everything is easy except the pressure-velocity coupling...
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Pressure-velocity coupling on collocated grids

A vicious circle that cannot be broken...

In summary?®:

e Mass: MI_,cue = MM ete — Ll MM cue ~ 00 X
e Energy: p. (L—Lc) p_#0x

8F.X.Trias, O.Lehmkuhl, A.Oliva, C.D.Pérez-Segarra, R.W.C.P.Verstappen.
Symmetry-preserving discretization of Navier-Stokes equations on collocated

unstructured grids, Journal of Computational Physics, 258 (1): 246-267, 2014.
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Pressure-velocity coupling on collocated grids

A vicious circle that cannot be broken can almost be broken...
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Pressure-velocity coupling on collocated grids
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Pressure-velocity coupling on collocated grids

Examples of simulations

Despite these inherent limitations, symmetry-preserving collocated
formulation has been successfully used for DNS/LES simulations!?:
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19R Borrell, O.Lehmkuhl, F.X.Trias, A.Oliva. Parallel Direct Poisson solver for
discretizations with one Fourier diagonalizable direction. Journal of Computational

Physics, 230:4723-4741, 2011.
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Portability and beyond
000

Algebra-based approach naturally leads to portability

Research question #2:
@ How can we develop portable and efficient CFD codes for large-scale simulations
on modern supercomputers?

1995 2000 2005 2010 2015 2020
y
. // 2 // Jr // 5
Technology Trends in HPC & e Q)
single-core CPU clusters . multicore CPUclusters . hybrid clusters >
S S
PSS
V7N
CTTC resources and software scalability up to 100k cores
DPC STG ] ; HPCE
sequential structured parallel structured 13 termofluids ulgcb;.;

a

HPCZ: portable, algebra-based framework for heterogeneous computing is being
developed. Traditional stencil-based data and sweeps are replaced by algebraic
structures (sparse matrices and vectors) and kernels. SpMM-based strategies to increase
the arithmetic intensity are/were presented in this conference 1

llA.AIsaIti—BaIdellou, G.Colomer, J.A.Hopman, X.Alvareszarré, A.Gorobets, F.X.Trias, A.Oliva. Reliable overnight
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Algebra-based approach naturally leads to portability, to

simple and analyzable formulations

Continuous Discrete
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L =SLS ! = 1® Ly, + diag(d)
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Benefits for Poisson solver are 3-fold: |
L =SLS ! = 1® Ly, + diag(d)

@ Higher arithmetic intensity (Al)

@ Reduction of memory footprint

@ Reduction in the number of
iterations

— Overall speed-up up to x2-x3 v
— Memory reduction of ~2 SpMM can be used = higher Al
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Algebra-based approach naturally leads to portability, to

simple and analyzable formulations and opens the door to
new strategies'?!3 to improve its perfomance...

Other SpMM-based strategies to [ =sLs5 ! = |® Linn + diag(d)
increase Al and reduce memory
footprint:

@ Multiple transport equations
@ Parametric studies

@ Parallel-in-time simulations

@ Go to higher-order?
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000000

Rethinking standard CFD operations

In summary...

Leitmotiv: relying on a minimal set of (algebraic) kernels is
crucial for code portability and maintenance!!!

4N.Va||e, X.Alvarez, A.Gorobets, J.Castro, A.Oliva, F.X.Trias. On the implementation of flux limiters in algebraic
frameworks. Computer Physics Communications, 271:108230, 2022.
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@ Implementation challenge: there still exists a list of standard CFD
methods that do not seem to fit well on an algebraic framework
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Rethinking standard CFD operations
CFL-like condition

Step #1: forget about classical formulae from textbooks...
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Rethinking standard CFD operations
CFL-like condition

Step #1: forget about classical formulae from textbooks...

...and replace it by an eigenbounding problem of C (us) and D matrices

du
QST: + C(us) us = Dus — Gp.; Mus =0,
(—C(us) +D)v = v
14 Bendixson (1900)
“ SUR LES RACINES D'UNE EQUATION FONDANENTALE'
C(us)v=>\v -
Dv = \v
Ay . e l
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Rethinking standard CFD operations
CFL-like condition

Step #2: compute eigenbounds of C (us) and D in an inexpensive way'®

7

"

2

-4

w N
w

2 4 R

p(D) < p%r=h(D)

p(C) < p%r(C)

15F X.Trias and O.Lehmkuhl. A self-adaptive strategy for the time-integration of
Navier-Stokes equations. Numerical Heat Transfer, part B, 60(2):116-134, 2011.
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Rethinking standard CFD operations
CFL-like condition

Step #2: compute eigenbounds of C (us) and D in an inexpensive way

Table 1. Tests for the air-filled (Pr=0.71) differentially heated cavity at Rayleigh number Ra =3 x 10'°

and height aspect ratio 4 averaged results correspond to the stz lly steady state
Ne N, N @/(x/2)  Sicrieam:  SlkigmcDexil2  OlgigencDoxiL2/SlCFLEAB2
MeshA 128 338 778 0.072 1.04x107* 3.02x107¢ 2.90
MeshB 64 168 338 0058 431x 107 121x107° 2.80
MeshC 32 84 168 0.252 1.80x107% 4691073 2.59
MeshD 32 56 112 0408 421x107°  875x107° \ 208
MeshE 16 2 84 0.504 6.88x 1073 135%10°% \ 196 /
/

15F X.Trias and O.Lehmkuhl. A self-adaptive strategy for the time-integration of
Navier-Stokes equations. Numerical Heat Transfer, part B, 60(2):116-134, 2011.
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Rethinking standard CFD operations
CFL-like condition

Step #2: compute eigenbounds of C (us) and D in an inexpensive way'®

1 7
y / >
/
1721+13 /
/
-4 2 4 R

4 6 -2
6 2 3
-2 3 -4

p(D) < p%r=h(D)

Q) < Gersh(c)
p(C) <p

Table 2. Tests for the flow around a NACA 0012 airfoil at Reynolds number 5 x 10 and an angle of
attack of 5°; averaged results correspond to the statistically steady state

Ny Mesh2D ©/(r/2)  BicrLiam  OlEignCDixIL2  OEigenCDxil2/OICFLAB
UMeshA 64 ~2.65x 10° 0593 4.69x107°  130x10°* [ 277
UMeshB 32 ~4.69x 10* 0.956 161x10*  686x10°* 427 )

15F X.Trias and O.Lehmkuhl. A self-adaptive strategy for the time-integration of

Navier-Stokes equations. Numerical Heat Transfer, part B, 60(2):116-134, 2011.
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Rethinking standard CFD operations
CFL-like condition

Step #3:
reformulate the problem in a way that we avoid constructing C (us) and D

Clus)=—-12TLAU|Tes| D=-TLANATIT,,

10 12 13

0 0 0 0O 0 O 0 0 1 1 -1 0 O

1 -1 0 0O 0 -1 O 0 0 0 0 -1 0

T = 0 1 -1 -1 0 0 0 0 0 0 0 0 0
“71o o 0 0O 0 O 0 0 0O -1 0 1 1
0 0 0 0O 0 O 1 -1 -1 0 0 0 O

0 0 1 o 1 1 -1 0 0 0 0 0 O

 face-to-cell oriented incidence matrix |
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Rethinking standard CFD operations
CFL-like condition

Step #3 ... #4 (some maths that would take too long to explain):
reformulate the problem in a way that we avoid constructing C (us) and D

Clus)=—-12TLAU|Tes| D=-TLANATIT,,

p(D) < p&h(D)

p(C) < p%rh(C)

where T_. is the face-to-cell oriented incidence matrix; A, = AS/\SA;1

(diffusivity-like fluxes) and Fy = AsUs (mass fluxes) are diagonal matrices.
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Rethinking standard CFD operations
CFL-like condition

Step #3 ... #4 (some maths that would take too long to explain):
reformulate the problem in a way that we avoid constructing C (us) and D

Clus)=—-12TLAU|Tes| D=-TLANATIT,,

Constant
matrix

p(D) < o < p(TeTL Ay < max(|Te T | diag(A))

—
SpMv

Constant
matrix

~ /——/H ~
p(C) < oo < LUap(I T TLIIFS]) < 1/4max(| Tes T2 diag(|Fs)

_

SphV
where T_. is the face-to-cell oriented incidence matrix; A, = AS/\SA;1

(diffusivity-like fluxes) and Fy = AsUs (mass fluxes) are diagonal matrices.
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Rethinking standard CFD operations
CFL-like condition

Step #5: self-adaptation of the stability region

K1L2 scheme ‘lABZ for K:1)2)
Forward Euler scheme
1
0.5 \
& 0
k= 0.5 (AB2) /
o \ >A
-1
2 1.5 -1 0.5 0

1 n+1 n 1 n—1
(n+5) 0™ 2ZQZ+(KJ 3) ¢ = ((1+ k)" — Ko™ )
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K1L2 scheme (AB2 for k=1/2)
Forward Euler scheme
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K1L2 scheme (AB2 for k=1/2)
Forward Euler scheme
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Rethinking standard CFD operations
CFL-like condition

Step #5: self-adaptation of the stability region

K112 scheme (AB2 for K=1/2) Stability region of KIL2 scheme with K, =1 ——

Forward Euler scheme
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Rethinking standard CFD operations

CFL-like condition: results

Numerical test #1:
air-filled Rayleigh—Bénard convection

0.8 ‘\\\\\ --‘\\\;\ 4
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0.4 ‘\\\ 2

<>/ (m/2)
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—— <>/ (n/2)
o \
100000 le+06 le+07 le+08 le+09
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Rethinking standard CFD operations

CFL-like condition: results

Numerical test #2: 30P30N airfoil
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Rethinking standard CFD operations

CFL-like condition: results

Numerical test #2: 30P30N airfoil
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Concluding remarks

o Preserving symmetries either using staggered or
collocated formulations is the key point for reliable
LES/DNS simulations.
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o Preserving symmetries either using staggered or
collocated formulations is the key point for reliable
LES/DNS simulations.

@ Algebra-based approach naturally leads to
portability, to simple and analyzable formulations
and opens the door to new strategies to improve
its perfomance.

On-going research:

e Rethinking standard CFD operations (e.g. flux limiters'®, boundary
conditions, CFL,...) to adapt them into an algebraic framework
(Motivation: maintaining a minimal number of basic kernels is crucial
for portability!!!)
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