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Abstract. An energy-consistent formulation of incompressible natural convection flows is pro-
posed. In particular, a discretization of the viscous dissipation term is derived which is consistent
with the local kinetic energy equation that follows from the momentum equation. Simulations
of the Rayleigh-Taylor problem show that total energy is indeed conserved with the new formu-
lation, in contrast to the case where viscous dissipation is neglected.

1 Introduction

The presence of diffusion in the Navier-Stokes equations causes dissipation, acting as a sink of
kinetic energy and a source of internal energy. Evaluating the dissipation function locally is for
example important in studying natural convection flows with large length scales, such as in the
Earth mantle [1, 2]. In this paper, we include the viscous dissipation term in the internal energy
equation such that we get a correct global energy balance. We propose a discrete dissipation
operator, and show that it cannot be chosen freely but is implied by the discretization of the
viscous terms in the momentum equations and by the definition of the kinetic energy. This
discrete dissipation operator is not only of use in the internal energy equation, but also useful
beyond the context of natural convection flows, e.g. when estimating the dissipation of kinetic
energy in turbulent flows in a numerical simulation. We also propose a time integration method
that preserves the total energy balance upon time marching.
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2 Methodology

We are studying incompressible flow under the Boussinesq approximation, consisting of the
mass, momentum and internal energy equations:

∇ · u = 0, (1)

ρ0

(
∂u

∂t
+∇ · (u⊗ u)

)
= −∇p+ µ∇2u− ρ0β(T − T0)g, (2)

∂

∂t
(ρ0cT ) +∇ · (u(ρ0cT )) = µΦ + λ∇2T. (3)

The focus here is on the viscous dissipation term Φ := ‖∇u‖2, which is commonly ignored in
equation (3). The viscous dissipation is responsible for a decrease in kinetic energy and an
increase in internal energy, which for a closed box with no-slip boundary conditions reads:

dEk
dt

= −µ
∫

Ω
ΦdΩ +

∫
Ω
βgρ0(T − T0)vdΩ, (4)

dEi
dt

= µ

∫
Ω

ΦdΩ +

∫
∂Ω
λ∇T · ndS, (5)

such that the sum of the two cancels when considering the global energy equation:

dE

dt
=

dEk
dt

+
dEi
dt

=

∫
Ω
βgρ0(T − T0)vdΩ +

∫
∂Ω
λ∇T · ndS. (6)

In order to have a discrete equivalent of (4)-(6), we need a carefully designed discretization
method, which will be obtained by extending the well-known energy-conserving (‘MAC’) dis-
cretization on a staggered grid [3]. The staggered grid discretization naturally leads to the
following local kinetic energy definition:

ki,j :=
1

4
u2
i+1/2,j +

1

4
u2
i−1/2,j +

1

4
v2
i,j+1/2 +

1

4
v2
i,j−1/2. (7)

This kinetic energy definition, together with the momentum equations, implies the following
discrete dissipation function

Φi,j =
1

4
Φu
i+1/2,j +

1

4
Φu
i−1/2,j +

1

4
Φv
i,j+1/2 +

1

4
Φv
i,j−1/2, (8)

where

Φu
i+1/2,j = −

(
ui+3/2,j − ui+1/2,j

∆x

)2

−
(
ui+1/2,j − ui−1/2,j

∆x

)2

−
(
ui+1/2,j+1 − ui+1/2,j

∆y

)2

−
(
ui+1/2,j − ui+1/2,j−1

∆y

)2

(9)

Φv
i,j+1/2 = −

(
vi+1,j+1/2 − vi,j+1/2

∆x

)2

−
(
vi+1,j−1/2 − vi,j−1/2

∆x

)2

−
(
vi,j+3/2 − vi,j+1/2

∆y

)2

−
(
vi,j+1/2 − vi,j−1/2

∆y

)2

(10)
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We employ the implicit midpoint method to integrate the spatially discretized equations in time.
Based on (i) our proposed discrete dissipation function (8), (ii) the energy-conserving nature of
the implicit midpoint method [4], (iii) the compatibility of the divergence and gradient operators
on a staggered grid, and (iv) the skew-symmetry of the convective terms, we obtain a discrete
energy balance that mimics (6):

En+1
h − Enh

∆t
= βgρ0(V

n+1/2
h )T (AT

n+1/2
h + yT ) + λ1T (DTT

n+1/2
h + ŷT ). (11)

Here, Eh = Ek,h+Ei,h = 1
2V

T
h ΩV Vh+ 1TΩpTh is the discrete approximation to the total energy,

A is an averaging operator from temperature locations to velocity locations, DT is the discrete
diffusion operator for the temperature, and yT and ŷT take boundary conditions into account.

3 Results

We simulate the well-known Rayleigh-Taylor problem, which features a square box (all bound-
aries no-slip and adiabatic) with a cold fluid on top of a warm fluid. The domain size is 1× 2,
the grid is 64 × 128, the time step ∆t = 5 · 10−3 and the end time T = 100. There are 3 di-
mensionless quantities: the Rayleigh number Ra = 106, the Prandtl number Pr = 0.71 and the
Gebhart number Ge = 10−1. The Gebhart number is defined as Ge = βgH

c and arises due to in-
clusion of viscous dissipation [1]. After an initial instability has developed, an asymmetry in the
solution appears around t = 30, triggering a sequence of well-known ‘mushroom’ type plumes:
hot plumes rising upward and cold plumes sinking downward (figures 1a-1b). The viscous dis-
sipation causes an increase in average temperature. Most existing natural convection models,
which ignore the viscous dissipation term, would not predict such a temperature increase. In
our model the temperature increase exactly matches the kinetic energy loss through viscous
dissipation, and this is confirmed by figure 1c, which shows the different terms in equation (11).
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(a) t = 30, Ge = 0.1
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(b) t = 35, Ge = 0.1
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(c) Energy exchange: kinetic+internal versus
potential energy.

Figure 1: Rayleigh-Taylor simulation results.
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