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Abstract
An energy-consistent formulation of incompress-

ible natural convection flows is proposed. In particu-
lar, a discretization of the viscous dissipation term is
derived which is consistent with the local kinetic en-
ergy equation that follows from the momentum equa-
tion. Numerical experiments of Rayleigh–Bénard con-
vection (RBC) and Rayleigh–Taylor instabilities con-
firm that with the proposed dissipation function, the
energy exchange between kinetic and internal energy
is exactly preserved. Consequently, the value of the
Nusselt number on the cold plate becomes larger than
on the hot plate, with the difference increasing with in-
creasing Gebhart number. Finally, three-dimensional
simulations of turbulent RBC show that energy bal-
ances are exactly satisfied even for very coarse grids;
therefore, we consider that the proposed discretization
forms an excellent starting point for testing sub-grid
scale models.

1 Introduction
The presence of diffusion in the Navier–Stokes

equations causes dissipation, acting as a sink of ki-
netic energy and a source of internal energy. Evaluat-
ing the dissipation function locally is for example im-
portant in studying natural convection flows with large
length scales, such as in the Earth mantle (see Geb-
hart (1962); Turcotte et al. (1974)). In this paper, we
include the viscous dissipation term in the internal en-
ergy equation such that we get a correct global energy
balance. We propose a discrete dissipation operator,
and show that it cannot be chosen freely but is im-
plied by the discretization of the viscous terms in the
momentum equations and by the definition of the ki-
netic energy. This discrete dissipation operator is not
only of use in the internal energy equation, but also
useful beyond the context of natural convection flows,
e.g. when estimating the dissipation of kinetic energy
in turbulent flows in a numerical simulation. We also
propose a time integration method that preserves the
total energy balance upon time marching.

2 Methodology
We are studying incompressible flow under the

Boussinesq approximation, consisting of the mass,
momentum and internal energy equations:

∇ · u = 0, (1)

ρ0

(
∂u

∂t
+∇ · (u⊗ u)

)
= −∇p+ µ∇2u

− ρ0β(T − T0)g, (2)
∂

∂t
(ρ0cT ) +∇ · (u(ρ0cT )) = µΦ + λ∇2T. (3)

The focus here is on the viscous dissipation term Φ :=
‖∇u‖2, which is commonly ignored in equation (3).
The viscous dissipation is responsible for a decrease
in kinetic energy and an increase in internal energy,
which for a closed box with no-slip boundary condi-
tions reads:

dEk
dt

= −µ
∫

Ω

ΦdΩ +

∫
Ω

βgρ0(T − T0)vdΩ, (4)

dEi
dt

= µ

∫
Ω

ΦdΩ +

∫
∂Ω

λ∇T · n dS, (5)

such that the sum of the two cancels when considering
the global energy equation:

dE

dt
=

dEk
dt

+
dEi
dt

=

∫
Ω

βgρ0(T − T0)vdΩ +

∫
∂Ω

λ∇T · n dS.

(6)

In order to have a discrete equivalent of Eqs.(4)-(6),
we need a carefully designed discretization method,
which will be obtained by extending the well-known
energy-conserving (‘MAC’) discretization on a stag-
gered grid Harlow and Welch (1965). The staggered
grid discretization naturally leads to the following lo-
cal kinetic energy definition:

ki,j :=
1

4
u2
i+1/2,j +

1

4
u2
i−1/2,j+

1

4
v2
i,j+1/2 +

1

4
v2
i,j−1/2. (7)
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(a) t = 30, Ge = 0.1
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(b) t = 35, Ge = 0.1
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(c) Energy exchange: kinetic+internal versus potential energy.

Figure 1: Rayleigh–Taylor simulation results.

This kinetic energy definition, together with the mo-
mentum equation, implies the following discrete dissi-
pation function

Φi,j =
1

4
Φui+1/2,j +

1

4
Φui−1/2,j+

1

4
Φvi,j+1/2 +

1

4
Φvi,j−1/2, (8)

where

Φui+1/2,j =−
(
ui+3/2,j − ui+1/2,j

∆x

)2

−
(
ui+1/2,j − ui−1/2,j

∆x

)2

−
(
ui+1/2,j+1 − ui+1/2,j

∆y

)2

−
(
ui+1/2,j − ui+1/2,j−1

∆y

)2

, (9)

and

Φvi,j+1/2 =−
(
vi+1,j+1/2 − vi,j+1/2

∆x

)2

−
(
vi+1,j−1/2 − vi,j−1/2

∆x

)2

−
(
vi,j+3/2 − vi,j+1/2

∆y

)2

−
(
vi,j+1/2 − vi,j−1/2

∆y

)2

. (10)

We employ the implicit midpoint method to integrate
the spatially discretized equations in time. Based on
(i) our proposed discrete dissipation function (8), (ii)
the energy-conserving nature of the implicit midpoint
method (see Sanderse (2013)), (iii) the compatibility
of the divergence and gradient operators on a stag-
gered grid, and (iv) the skew-symmetry of the convec-
tive terms, we obtain a discrete energy balance that

mimics Eq.(6):

En+1
h − Enh

∆t
= βgρ0(V

n+1/2
h )T (AT

n+1/2
h + yT )+

λ1T (DTT
n+1/2
h + ŷT ). (11)

Here, Eh = Ek,h + Ei,h = 1
2V

T
h ΩV Vh + 1TΩpTh

is the discrete approximation to the total energy, A is
an averaging operator from temperature locations to
velocity locations, DT is the discrete diffusion opera-
tor for the temperature, and yT and ŷT take boundary
conditions into account.

3 Results for Rayleigh–Taylor flow
We firstly simulate the well-known Rayleigh–

Taylor problem, which features a rectangular box (all
boundaries no-slip and adiabatic) with a cold fluid on
top of a warm fluid. The domain size is 1× 2, the grid
is 64 × 128, the time step ∆t = 5 · 10−3 and the end
time t = 100. There are 3 dimensionless quantities:
the Rayleigh number Ra = 106, the Prandtl number
Pr = 0.71 and the Gebhart number Ge = 10−1. The
Gebhart number is defined as Ge = βgH

c and arises
due to inclusion of viscous dissipation (see the seminal
paper by Gebhart (1962)). After an initial instability
has developed, an asymmetry in the solution appears
around t = 30, triggering a sequence of well-known
‘mushroom’ type plumes: hot plumes rising upward
and cold plumes sinking downward (figures 1a-1b).
The viscous dissipation causes an increase in average
temperature. Most existing natural convection models,
which ignore the viscous dissipation term, would not
predict such a temperature increase. In our model the
temperature increase exactly matches the kinetic en-
ergy loss through viscous dissipation, and this is con-
firmed by figure 1c, which shows the different terms
in equation (11).
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Figure 2: Energy exchanges for RBC: between potential and kinetic, (v, T ) =
∫

Ω
vTdΩ, and between kinetic and internal

energies,
√

Pr /RaεU . Moreover, energy exchanges through the domain (top at yc and bottom at yh) boundaries are
twofold: (i) input of potential energy, ((Nuc − 1)yc + (Nuh − 1)yh)/

√
Pr Ra, and (ii) output of internal energy,

(Nuh −Nuc)/
√

Pr Ra.

(a) Ra = 108 and Ge = 0. (b) Ra = 108 and Ge = 1.

(c) Ra = 1010 and Ge = 0. (d) Ra = 1010 and Ge = 1.

Figure 3: Visualization of instantaneous temperature fields corresponding to the statistically steady state of the DNS simulations
using meshes of 400×208×208 ≈ 17.3M (Ra = 108) and 1024×768×768 ≈ 604M (Ra = 1010), respectively.
The distribution of isothermal surfaces is the same for all the four cases.

4 Turbulent Rayleigh–Bénard flow
As a final test-case, we consider the numerical sim-

ulation of a turbulent air-filled (Pr = 0.71) Rayleigh–
Bénard convection (RBC) at two different Rayleigh
numbers, Ra = 108 and 1010. Results are presented
in non-dimensional form by taking the cavity height,
H , and the temperature difference, ∆T , as reference
length and temperature, respectively. Then, depending
on the choice for the reference velocity, uref , the di-
mensionless governing equations can take a different

form. Namely,

∇ · u = 0, (12)
∂u

∂t
+∇ · (u⊗ u) = −∇p′ + α1∇2u + α2Tey,

(13)
∂T

∂t
+∇ · (uT ) = α3Φ + α4∇2T. (14)

where the αi’s can be expressed in terms of three
above-mentioned dimensionless numbers, being the



Rayleigh number Ra, the Prandtl number Pr and the
Gebhart number Ge (also known as the dissipation
number; see Schubert et al. (2001), for instance):

Ra =
βg∆TH3

νκ
, (15)

Pr =
ν

κ
, (16)

Ge =
βgH

c
. (17)

Here, we take uref =
√
βg∆TH as the buoyant veloc-

ity, leading to the following values of αi’s in Eqs.(13)
and (14)

α1 =

√
Pr

Ra
α2 = 1 α3 = Ge

√
Pr

Ra
, (18)

α4 =
1√

Pr Ra
γ =

α1

α3
=

1

Ge
. (19)

Direct numerical simulations (DNS) were carried out
and analyzed in previous studies by Dabbagh et al.
(2016, 2020) without taking into account the viscous
dissipation effects (Ge = 0). Here, the results are
extended to Ge = 0.1 and Ge = 1 keeping the
same domain size (π × 1 × 1) and mesh resolution
(400×208×208 for Ra = 108, and 1024×768×768
for Ra = 1010). Grids are constructed with a uniform
grid spacing in the periodic x-direction whereas wall-
normal points (y and z directions) are distributed fol-
lowing a hyperbolic-tangent function as follows (iden-
tical for the z-direction)

yi =
1

2

(
1 +

tanh {γy(2(i− 1)/Ny − 1)}
tanh γy

)
(20)

with i = {1, . . . , Nz + 1}, where Ny and γy are
the number of control volumes and the concentration
factor in the y-direction, respectively. In our case,
γy = γz = 1.4 for Ra = 108 and γy = γz = 1.6 for
Ra = 1010. For further details, the reader is referred
to previous works by Dabbagh et al. (2016, 2020).

Instantaneous temperature fields corresponding to
the statistically steady state are displayed in Figure 3.
As expected, thermal dissipation effects at Ge = 1
lead to a significant increase in the average cavity
temperature which is clearly visible for both Rayleigh
numbers. Therefore, the flow symmetry (in average
sense) with respect to the mid-height plane is lost for
Ge > 0 leading to higher (lower) Nusselt number for
the top (bottom) wall. Subsequently, the top (bottom)
thermal boundary layer becomes thinner (thicker) with
respect to the case at Ge = 0. This implies that
mesh resolution requirements in the near-wall region
are also asymmetrical; however, in this work, for the
sake of simplicity, the grid spacing at the two walls is
the same regardless of the Gebhart number.

All simulations have been carried out for 500 time-
units starting from a zero velocity field and uniformly
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(a) Finest grid: 400× 208× 208 ≈ 17.3M.
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(b) Coarsest grid: 50× 26× 26 ≈ 0.034M.

Figure 4: Time-evolution of the most relevant energy contri-
butions for Ge = 1.

distributed random temperatures between TC and TH .
Therefore, initially the discrete kinetic energy of the
system increases. Then, after a sufficiently long period
of time (around 50 time-units) a statistically steady
state is reached. This is clearly observed in Figure 4
where the time-evolution of various rate-of-changes of
energy are shown. Results correspond to Ra = 108

and Ge = 1 using a very fine (400 × 208 × 208 ≈
17.3M) and a very coarse mesh. Similar results are ob-
tained for the other tested configurations. As expected,
once a statistically steady state is reached, the kinetic
energy fluctuates around its mean value and, therefore,
its rate-of-change, dEk,h/dt, fluctuates around zero.
Only two terms contribute to the kinetic energy of the
system (see Figure 2): the global viscous dissipation,
εU,h, given by

εU,h =

∫
Ω

ΦdΩ, (21)

and the contribution of the buoyancy forces given by
α2V

T
h (ATh(t) + yT ). These two contributions ex-



actly cancel each other on average when a statisti-
cally steady state is reached. The former is transferred
into internal energy, Ei,h, whereas the latter can be
viewed as a transfer from potential to kinetic energy.
An interesting observation can be made in this regard:
the time-evolution of the discrete potential energy is
obtained by left-multiplying the discrete temperature
transport equation by yh, which is a vector containing
the y-coordinate (i.e. in the direction of the gravita-
tional field) of the cell centers where the discrete tem-
perature field, Th, is stored. This leads to three con-
tributions: from the convective term, yThCT (Vh)Th,
from the viscous dissipation term, α3y

T
hΩpΦh(Vh),

and from the diffusive term, α4y
T
h (DTTh+ ŷT ). Like-

wise the continuous case (see Figure 2), the contribu-
tion from the convective term exactly cancels with the
buoyancy flux, α2(ATh(t) + yT ), whereas the other
two contributions appear as additional terms in the
time derivative of potential energy. If we ignore these
two extra terms, global balance is exactly preserved at
the discrete level

dEk,h
dt

+ γ
dEi,h

dt
=

α2V
T
h (ATh + yT ) + γα4(NuH −NuC) (22)

This proofs that the viscous dissipation function has
indeed been discretized correctly, since an imbalance
between the viscous dissipation implied by the kinetic
energy equation and the explicitly added viscous dissi-
pation in the internal energy equation would otherwise
show up. These energy balances are exactly satisfied
even for very coarse grids (see Figure 4b) which is
a very relevant feature of the discretization approach
presented in this work. Namely, energy transfers are
exactly preserved at the discrete level without intro-
ducing any artificial source/sink of energy. This im-
plies that global energy balances that lead to exact re-
lations such as

α4(Nu(1)−Nu(0)) = α3εU (1), (23)
α4(Nu(y′)−Nu(0)) = α3εU (y′), (24)

and

α2α4(Nu(0)− 1) = α1εU (1)− α2α3

∫ 1

0

εU (y) dy.

(25)
where

εU (y′) =

∫
Ω|y<y′

ΦdΩ (26)

are preserved at the discrete level. This is clearly
shown in Figure 5 where Nusselt numbers obtained
for a wide range of meshes are displayed. The finest
meshes correspond to the DNS simulations shown in
Figure 3 whereas coarser and coarser meshes have
been generated by reducing the number of grid points
in each spatial direction by factors of approximately√

2. Hence, after six successive mesh coarsenings,

the total number of grid points is reduced by approxi-
mately ((

√
2)6)3 = 29 = 512. This under-resolution

causes a pile-up of (kinetic) energy close to the small-
est resolved scales, that leads to higher values of εU
and, therefore, an increase of both NuH (see equa-
tion 25) and NuC −NuH (see equation 23). Since the
numerical discretization is not interfering with these
energy balances, the solution errors can only be at-
tributed to the (lack of) effect of the sub-grid scales.
Therefore, we consider that the discretization pre-
sented here forms an excellent starting point for testing
sub-grid scale models.

10
4

10
5

10
6

10
7

10
8

number of grid points

0

10

20

30

40

50

60

70

N
u

Ge=0

Ge=0.1, lower

Ge=0.1, upper

Ge=1, lower

Ge=1, upper

(a) Ra = 108.

10
6

10
7

10
8

10
9

number of grid points

0

50

100

150

200

250

300

350

N
u

Ge=0

Ge=0.1, lower

Ge=0.1, upper

Ge=1, lower

Ge=1, upper

(b) Ra = 1010.

Figure 5: Nusselt numbers at lower and upper plate for a set
of meshes at Ge = 0, Ge = 0.1 and Ge = 1.

5 Conclusions
In this work, we have proposed an energy-

consistent discretization of the viscous dissipation
function. The viscous dissipation function is an im-
portant quantity, for example in turbulent flow compu-
tations, where it is critical to assess the global energy
balances, or in natural convection flows, where it leads



to internal heating. This latter case has been the fo-
cus of this article, and we have shown that including
the viscous dissipation function in the internal energy
equation leads to a consistent total energy balance:
viscous dissipation acts as a sink in the kinetic energy
equation and as a source in the internal energy equa-
tion, such that the sum of internal and kinetic energy
only changes due to buoyancy and thermal diffusion.
An important avenue for future work lies in the as-
sessment of subgrid-scale models for turbulent flows,
including those driven by buoyancy. For example,
in large-eddy simulation, the kinetic energy equation
of the resolved scales and of the subgrid-scales fea-
tures viscous dissipation terms, and the current work
provides a basis for proper discrete representations of
these terms.
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