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— Rayleigh-Bénard convection

e ‘“granddaddy of canonical examples used to study pattern
formation and behavior in spatially extended systems” [1]
e “ahallmark flow beloved by fluid dynamicists and
mathematicians alike for its analytical tractability, yet rich
behaviour” [2]
e Relevance for many geophysical and astrophysical flows
[3]:
o Convection in atmospheric boundary layer
o Convection in Earth mantle

[1] A.C. Newell, T. Passot, and J. Lega, Order parameter equations for patterns, Ann. Rev. Fluid Mech., 25: 399 - 453, 1993.
[2] https://blogs.egu.eu/divisions/as/2019/09/20/a-simple-model-of-convection-to-study-the-atmospheric-surface-layer/
[3] A. Pandey, J. Scheel, and J. Schumacher. Turbulent superstructures in Rayleigh-Bénard convection. Nature Communications, 9:2118, 2018.
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— Governing equations: mass + momentum

e Mass + momentum conservation, “incompressible”

V-u=0
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e Boussinesq: density variations only important in gravity term
e Density varies only with temperature, not with pressure

p(T') = po — Bpo(T — Tp)



Governing equations: internal energy

e Temperature follows from internal energy equation:
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viscous dissipation ® = ||Vu||2

Note:

e If density = constant, then mass + momentum decouple from internal energy
equation. Our approach still applicable for that case.

e Three equations, three unknowns (u, p, T)




Kinetic, internal, total energy

e Kinetic energy: momentum x u
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e Internal energy
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e Total eneréy (kinetic + internal)
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— Kinetic, internal, total energy

e Common assumption: neglect ® = HVuH2
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e Total energy conservation is violated



— Importance of ®: non-dimensionalization

e Non-dimensionalize:
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e With @ included, we have 3 dimensionless quantities (instead of 2)
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e For air at atmospheric conditions:

B~1073/K g~ 10m/s* c¢~10°J/kg/K — Ge~10°H



Convection in Earth mantle
Rotating systems
Planets with strong gravity or large in size

Wind farms?
High-speed (typically: compressible) flows

“dissipative energy should be included in numerical
weather prediction models, particularly in models
that resolve mesoscale structures in storms” [1]
Seems to be included in NCAR model [2]

[1] Businger et al., Viscous Dissipation of Turbulence Kinetic Energy in Storms, 2001
[2] Boville et al., Heating and Kinetic Energy Dissipation in the NCAR Community Atmosphere Model, 2003
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The effect of viscous dissipation in natural convection is appreciable when the
induced kinetic energy becomes appreciable compared to the amount of heat
transferred. This occurs when either the equivalent body force is large or when
the convection region is extensive. Viscous dissipation is considered here for
vertical surfaces subject to both isothermal and uniform-flux surface conditions.
A perturbation method is used and the first temperature perturbation function is
calculated for Prandtl numbers from 1072 to 10%. The magnitude of the effect
depends upon a dissipation number, which is not expressible in terms of the
Grashof or the Prandtl number.




—  Non-dimensionalization

e Independent of the choice of urer, we get
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u=0,T=0 cold
— Non-dimensional total energy e .
e Choice lll gives consistent non-dim. of global L‘ w=01-1 hot

internal and kinetic energy
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A=L/H «w=0T=0 cold
— Quantity of interest . -
e Heat flux on hot and cold plate: Nusselt number L‘ w=0r=1_hot

1 (A1 .. oT ’
Nu(y') = — —T% — — dz
u(y') A/o <a4 v 8;&)( ) T
T,y

e From internal energy equation:
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e Dissipation causes difference between heat flux on hot and cold plate



— Viscous and thermal dissipation relations

origin without viscous dissipation with viscous dissipation
internal Nu(1) = Nu(0) as(Nu(1) — Nu(0)) = azey(1)
kinetic aras(Nu(0) — 1) = apey(1)  apray(Nu(0) — 1) = ajepy(1) — araz j&l ey(F)dy
internal energy xT Nu(0) = e a,Nu(0) = ayer — % Jo T®dQ

Table 2: Steady-state Nusselt number relations, with and without viscous dissipation.



Let's discretize
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— Discretization of mass + momentum | |
Dij
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e Implied kinetic energy equation: Global dissipation.

What is the local one?
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(based on skew-symmetry convection; divergence-free velocity; div-grad relation)




dt A Jg
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— Internal energy equation | |
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e &; cannot be chosen independently, but is implied by momentum
discretization. Consistency requirement:
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— Energy-consistent discretization of ¢

e How? Choose a local kinetic energy (at the pressure point):
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e Substitute momentum equations, e.g.
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e Rewrite viscous terms with discrete version of
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boundary term
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Energy-consistent discretization of ¢

e Our new expression for®,: |®
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e Resulting total energy equation:

potential energy heat flux over

flux cold and hot plate
dEh _ dEk,h N dEi,h
a - ar




ay(Nu(l) — Nu(0)) = azey

— Discrete Nusselt number

e Nusselt relations:
044(NU.C — NU.H) = OéngQp(I)h(Vh)
Ny

TZ - T '7 Yy
Nugy = —Z &TyHAa: Nucg = —Z A, Ax
i=1 2 —

e Definition Nusselt number implied by discretization diffusion term



Numerical tests



— Results - steady state
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Table 2: Steady-state Nusselt number relations, with and without viscous dissipation.
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— Results - Rayleigh-Taylor

e Exact exchange of kinetic +
internal energy vs. potential
energy




Results - 3D Rayleigh-Bénard

c11010 and Ge=1



Results 3D Raylelgh Benard

Same initial field
cor'r'espondmg to

Ra-lO and Ge=0
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— Results - 3D Rayleigh-Benard
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origin without viscous dissipation with viscous dissipation

internal Nu(1) = Nu(0) as(Nu(l) — Nu(0)) = azep(1)
kinetic a0,(Nu(0) — 1) = ajegp(1)  aay(Nu(0) — 1) = aqep(l) — apas fol ey(¥) dy
internal energy xT Nu(0) = ¢r a,Nu(0) = ayer — % JoT@dh

Table 2: Steady-state Nusselt number relations, with and without viscous dissipation.

— Results - 3D Rayleigh-Benard
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— Conclusions

e Energy-consistent discretization of viscous dissipation leads to total energy
conservation

e Proposed new non-dimensionalization: consistency momentum & internal energy

e Derived local discrete kinetic energy eqn. on staggered grid -> discrete viscous
dissipation term in internal energy egn.

e Derived continuous & discrete Nusselt number relations that include dissipation

e Excellent starting point for development of sub-grid scale models
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Abstract

A new energy-consistent discretization of the viscous dissipation function in incompressible flows is proposed.
It is implied by choosing a discretization of the diffusive terms and a discretization of the local kinetic energy
equation and by requiring that continuous identities like the product rule are mimicked discretely. The proposed
viscous dissipation function has a quadratic, strictly dissipative form, for both simplified (constant viscosity)
stress tensors and general stress tensors. The proposed expression is not only useful in evaluating energy budgets
in turbulent flows, but also in natural convection flows, where it appears in the internal energy equation and is
responsible for viscous heating. The viscous dissipation function is such that a consistent tofal energy balance is
obtained: the ‘implied’ presence as sink in the kinetic energy equation is exactly balanced by explicitly adding it
as source term in the internal energy equation.

Numerical experiments of Rayleigh-Bénard convection (RBC) and Rayleigh-Taylor instabilities confirm that
with the proposed dissipation function, the energy exchange between kinetic and internal energy is exactly pre-
served. The experiments show furthermore that viscous dissipation does not affect the critical Rayleigh number
atwhich instabilities form, but it does significantly impact the development of instabilities once they occur. Con-
sequently, the value of the Nusselt number on the cold plate becomes larger than on the hot plate, with the dif-
ference increasing with increasing Gebhart number. Finally, 3D simulations of turbulent RBC show that energy
balances are exactly satisfied even for very coarse grids; therefore, we consider that the proposed discretization
forms an excellent starting point for testing sub-grid scale models.

Keywords: viscous dissipation, energy conservation, staggered grid, natural convection, Rayleigh-Bénard,
Gebhart number




