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Abstract
Direct numerical simulations of the incompressible

Navier-Stokes equations at high Reynolds numbers are
not yet feasible, so dynamically less complex mathe-
matical formulations such as Large Eddy Simulation
(LES) have been developed. For the well-known eddy-
viscosity models for LES, the computational method is
based on the combination of invariants of a symmet-
ric tensor that depends on the gradient of the resolved
velocity field, G = ∇u. Several models (namely
S3PQR) have been developed using the first three prin-
cipal invariants of the symmetric tensor GGT with ex-
cellent results. Therefore, in this work, we will focus
on the application of the S3PQR and other LES mod-
els on the free boundary layer case. Then, we will
test their performances over a fully developed bound-
ary layer wind farm, using a simplified wind turbine
model.

1 Introduction
Large Eddy Simulation (LES) equations result

from applying a spatial filter to the incompressible
Navier-Stokes equations, yielding:

∂tu+ C(u,u) = D(u)−∇p−∇ · τ(u); (1)
∇ · u = 0

where u is the filtered velocity and τ(u) is the subgrid
stress (SGS) tensor that approximates the effect of the
under-resolved scales.

This equation needs a closure model to be numer-
ically solved. The LES closure is of the type τ(u) ≈
−2νeS(u) where S(u) = 1/2(∇u + ∇uT ) is the
rate-of-strain tensor. We must define an eddy viscos-
ity: νe = (Cm∆)2Dm(u) where Cm is the model
constant, ∆ is the subgrid characteristic length, and
Dm(u) is the differential operator with units of fre-
quency associated with the model (Nicoud, Toda, et
al. (2011)).

Most of the models of the LES algorithms are
based on combinations of invariants of some tensor de-
pending on the gradient of the velocity. The Smagorin-
sky (1963) model, Vreman (2004), WALE (Nicoud
and Ducros (1999)), or the S3PQR models (Trias,
Folch, A. Gorobets, et al. (2015)) are examples
thereof. From the several mathematical invariants that
can be calculated from the gradient tensor G = ∇u,

besides PG = tr(G) we will restrict ourselves on

{QG, RG, QS, RS, V
2
G }

where, given this second-order tensor G, one can de-
fine

QG = (1/2)(tr2(G)− tr(G2)) (2)
RG = det(G)

QS = (1/2)(tr2(S)− tr(S2))

RS = det(S)

V 2
G = 4(tr(S2Ω2)− 2QSQΩ)

with S = 1/2(G+ GT ) and Ω = 1/2(G− GT ) as the
symmetric and the skew-symmetric parts of the gradi-
ent tensor, respectively. For every incompressible flux,
any invariant can be written as a function of the five so
defined.

Then, the LES models can be written as:

• Smagorinsky model νSmag
e = f(QS)

• Verstappen (2011) model νV e
e = f(RS, QS)

• WALE model νWe = f(QG, V,QS)

• Vreman’s model νV r
e = f(V,QG, QΩ, QS)

• σ-model νσe = f(λ1, λ2, λ3) where λ1, λ2, λ3

are the GGT tensor eigenvalues; Nicoud, Toda,
et al. (2011)

One can construct new models that involve three
types of invariants of the symmetric tensor GGT , for-
mally based on the lowest-order approximation of the
subgrid stress tensor (Clark, Ferziger, and Reynolds
(1979)).

τ(u) =
∆2

12
GGT +O(∆4) (3)

These invariants are directly related to the previous
ones:

PGGT = tr(GGT ) = 2(QΩ −QS) (4)
QGGT = 2(QΩ −QS)

2 −Q2
G + 4tr(S2Ω2)

RGGT = det(GGT ) = det(G)det(GT ) = R2
G

The general form can be written as:

νe = (Cs3pqr∆)2P p
GGTQ

q
GGTR

r
GGT (5)



The different types of S3PQR models were ob-
tained by restricting them to solutions with only two
of those invariants:

νS3PQ
e = (Cs3pq∆)2P

−5/2

GGT Q
3/2

GGT (6)

νS3PR
e = (Cs3pr∆)2P−1

GGTR
1/2

GGT (7)

νS3QR
e = (Cs3qr∆)2Q−1

GGTR
5/6

GGT (8)

or for simplicity, PQ, PR, QR.
There are two ways to determine the remaining

model constant:
1. Imposing numerical stability and less or equal

dissipation than Vreman’s model. Then,
Cs3pq = Cs3pr = Cs3qr =

√
3CV r ≈ 0.458

2. Granting that the averaged dissipation of the
models is equal to that of the Smagorinsky model.
Then,

Cs3pq = 0.572, Cs3pr = 0.709, Cs3qr = 0.762
Therefore, and finally, there are six possible com-

binations to test (3 model types x 2 constants) that we
will call PQ1, PQ2, and so on, in this article.

Depending on the constant chosen, there have been
found differences in the numerical results. For exam-
ple, simulations of decaying isotropic turbulence have
shown that only the type 2 constant values provide the
right SGS dissipation (Trias, Folch, A. Gorobets, et al.
(2015)).

Another important property of each of the S3PQR
models is its 2D behavior: only RGGT -dependent mod-
els switch off for 2D flows, so we may expect that
S3PR and S3QR models would adjust better in our
current cases.

Further key characteristics are positiveness, local-
ity, Galilean invariance, and proper near-wall O(y3)
dependence on normal direction (Chapman and Kuhn
(1986)).

To assure the validity of the models, and to dis-
criminate between them, they have been already tested
on benchmark cases like the channel flow (Trias, A.
Gorobets, and Oliva (2013)), and also compared with
the DNS of Moser, Kim, and Mansour (1999)); and
the homogeneous isotropic turbulence (Trias, Folch,
A. Gorobets, et al. (2015), both in the decaying and
forced simulations, compared with classical Comte-
Bellot and Corrsin (1971) experiment, giving excellent
results.

Note that there also could be technical specifica-
tions of the algorithm that could yield different perfor-
mances of the model. That is, for example, the time-
stepping procedure, the characteristic of the domain,
or the mathematical approximations.

2 Model Layout and Results
For all the current computations of this work,

the grid size of the domain is Nx = 32, Ny =
64, and Nz = 32 points, where x, y, and z, are
the streamwise, wall-normal, and spanwise directions.
The Reynolds number is fixed along the simulation to
Reδ∗ = 1000, where δ∗ is the displacement thickness.

Pseudo-spectral methods provide high resolution
when working with derivatives and have been seen
as a very good tool for cases where periodic condi-
tions could be applied. Indeed, pseudo-spectral algo-
rithms, by construction, demand strict periodic condi-
tions (Boyd (2001)). But one of the main features of
the boundary layer case is that it continually develops
over the streamwise direction. To solve this issue, the
general algorithm for our boundary layer is based on
the method proposed by Spalart and Leonard (1987),
which includes normal coordinate similarity transfor-
mations, growing terms GT (u, U) and scaling factors.

There are some differences with our (pseudo-
spectral) implementation, though. First, our algo-
rithm is based on the strong formulation of the Navier-
Stokes equations with a Poisson - pressure correction
term. Second, we use the standard algebraic scaling
(Boyd (2001)), y∞ = L 1+y

1−y , for the the semi-infinite
domain over the normal direction. Finally, the com-
putation relies on a fully explicit second-order time-
integration method (Trias, Folch, A. Gorobets, et al.
(2019)). We will test the zero mean pressure gradient
case.

Boundary layer
First, we deal with the free boundary layer cases

without the turbine model. To compare the LES mod-
els and Spalart and Leonard (1987) results, we can list
three main parameters: uτ as the friction velocity, H
as the ratio of the displacement thickness to the mo-
mentum thickness, and κ as the Von Kármán constant
(see Table 1, where Sp-Le stands for the reference val-
ues).

Case: uτ H κ
Sp-Le DNS 0.049 1.52 0.39
No model 0.049 1.61 0.35
Vreman 0.050 1.51 0.47
WALE 0.046 1.54 0.47
PQ1 0.048 1.58 0.35
PR1 0.050 1.54 0.44
QR1 0.049 1.57 0.35
PQ2 0.046 1.57 0.42
PR2 0.049 1.53 0.39
QR2 0.048 1.57 0.32

Table 1: boundary layer characteristic parameters calculated
for each model. First line results from reference.
Grid size for all the other cases: 32x64x32

The Smagorinsky method did not yield meaningful
results with the current algorithm (incorrect near-wall
behavior). The rest of the LES models give reason-
able results. All of the S3PQR cases present compa-
rable values, with PR2 standing as nearly the best in
the global analysis. As an example of the performance
of this model, we plot the velocity profile and the root
mean square of the velocities (Figure 1). The main
differences between the models can be seen in plot-
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Figure 1: Case PR2, present results. Top: normalized aver-
age streamwise velocity profile, U+; law of the
wall, U+ = y+; log law. Bottom: rms u+; rms
v+; rms w+; δ is the boundary layer thickness

ting the derivative of the velocity profile y+du+/dy+

(see Figure 2). As Spalart (1988) recalls in his work,
the logarithmic layer corresponds to the minimum, and
the value of κ is thus determined, despite the noise due
to the lack of resolution. Moreover, the values of the
maxima can be directly compared with that of Spalart.
Then we can confidently say that S3PQR models cap-
ture the general trend. Besides, the PR2 model values
are within the range of the expected ones. Moreover,
PR2 also performs better than Vreman, WALE, or no-
model algorithms.

We can also plot the rms u+ values for all of them
(Figure 3) yielding apparently no further discrimina-
tion between the models, but as a demonstration of
their similar performance.

Thus so far, for the S3PQR models, we have ob-
tained reliable results with low computational effort
for the free boundary layer.

Wind farm
We will follow the model used by Calaf, Mene-

veau, and Meyers (2010) which is based on the con-
cept of a disk actuator for every wind turbine. The
force of the turbine (per unit mass), in the streamwise
direction, at a given grid point i, j, k, is given by

F (i, j, k) = −1

2
C ′

T ⟨uT ⟩2d
γj,k
∆x
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Figure 2: y+du+/dy+ vs y+. Top: S3PQR models. Bot-
tom: comparison with other LES models. The hor-
izontal line marks the point(s) where the log law
would be with κ = 0.4

where C ′
T is a thrust coefficient, ⟨uT ⟩2d is the disk local

averaged velocity, γj,k is the fraction area overlap of
the disk and ∆x is the distance between turbines. This
disk actuator model can be straightforwardly applied
to our algorithm. We will compute our wind farm with
the same number and array geometry of the turbines
that a specific case of the reference: 24 disk actuators
evenly distributed in four rows and six columns.

However, all the other configuration parameters,
like the Reynolds number, energy supply, and wall
boundary conditions, are different. So, at this moment
the comparison can only rely on the general behavior
of the vertical profiles and the magnitude orders of the
values.

The adaptation of Spalart’s boundary layer method
to that of the wind farm poses some challenges. The
growing terms of Spalart that supply energy to the sys-
tem rely on the existence of one single log law and its
transition to a velocity defect law. The main param-
eter is friction velocity. In the case of the wind farm,
we expect two log laws (Calaf, Meneveau, and Meyers
(2010)) with two defined friction velocities. The solu-
tion adopted in this case is simply an average between
the two friction velocities, so the error for the growing
terms is, at least, reasonably bounded. In Figure 4, on
top, we show the results for the velocity profile with



 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0  0.2  0.4  0.6  0.8  1  1.2  1.4

rm
s
 u

+

y/δ

PQ1
PR1
QR1
PQ2
PR2
QR2

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0  0.2  0.4  0.6  0.8  1  1.2  1.4

rm
s
 u

+

y/δ

no model
Vreman

WALE
PR2

Figure 3: rms u+. Top: S3PQR models. Bottom: compari-
son with other LES models

PR2. On the bottom, some energy terms values.
Some of the several quantities that may be of in-

terest are listed in Table 2 and Table 3. All of them
are also computed in Calaf, Meneveau, and Meyers
(2010). The meaning of the terms is as follows:

i) Table 2, quantities related to velocity profiles:
z0Hi/zH , as the ratio of the effective roughness above
the turbine hub and the height of the turbines’ center (it
should be written y0Hi/yH but we used the reference
nomenclature); uτ , the usual friction velocity at the
wall; u∗, the computed friction velocity above the hub;

ii) Table 3, quantities related to energy: P , the
time and horizontally averaged power extracted for ev-
ery turbine; Wt, the time, horizontally, and vertically
(along the hub) averaged power; δΦ, the vertical flux
of kinetic energy. Finally, the term EB (for energy
budget) is the balance between all the energy contri-
bution terms. For a perfect match, it should be 100%
(the reference achieves 98%). As it can be seen, all the
magnitudes are of the same order as reference. From
the column of P/δΦ, it seems that it also reproduces
the observed behavior that the wind turbines, in a fully
developed boundary layer regime, extract kinetic en-
ergy through vertical fluxes.

As said before, we can expect two well-defined log
laws along the vertical velocity profile, represented
as two minima in the y+du+/dy+ vs y+ plot. In
the present algorithm and configuration, QR1 and no-
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Figure 4: Model PR2 as an example. Top: average stream-
wise velocity. The green vertical line is the posi-
tion of the bottom of the turbine hub. The red line
is the top. Note the law of the wall and the two
log laws. Bottom: Normalized mean kinetic en-
ergy contributions: flux, δΦ = − < uv > U/u3

∗;
GT, normalized growing terms; diss, − < uv >
∂yU/(u3

∗/δ)

MODEL z0Hi/zH uτ u∗ uτ/u∗
no model 0.160 0.051 0.109 0.47
Vreman 0.072 0.056 0.085 0.66
WALE 0.082 0.050 0.089 0.56
PQ1 0.096 0.052 0.092 0.57
PR1 0.105 0.052 0.094 0.55
QR1 0.123 0.052 0.100 0.52
PQ2 0.074 0.052 0.085 0.61
PR2 0.065 0.052 0.083 0.63
QR2 0.098 0.052 0.093 0.56

Table 2: some velocity profile related quantities of a wind
farm simulation. Grid size:32x64x32

model fail to yield these two log laws, while PQ1 and
PR1, barely do. Despite this, for them, we have calcu-
lated the values as if there were a log law in the same
approximate position as it appears in the other models
(see Figure 5). The remaining ones fulfill this condi-
tion, as can be seen in the same figure. The lack of this



MODEL P/δΦ Wt/δΦ EB
no model 0.68 0.81 94%
Vreman 0.67 0.78 94%
WALE 0.79 0.90 94%
PQ1 0.75 0.86 96%
PR1 0.74 0.85 95%
QR1 0.73 0.84 95%
PQ2 0.75 0.86 95%
PR2 0.77 0.88 97%
QR2 0.74 0.86 95%

Table 3: energy-related quantities of a wind farm simulation
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Figure 5: y+du+/dy+. All the values normalized by u∗;
Top: S3PQR models. Bottom: other LES mod-
els. Note the presence of one or two minima cor-
responding to the log laws. The horizontal line
shows the expected second log law with, by def-
inition, κ = 0.4 Note too, that in cases where it is
present, it appears approximately in the same po-
sition

second log law could be due again to noise (the deriva-
tive is more sensitive to it), low resolution, or intrinsic
behavior of the models. The question remains open to
future work.

3 Conclusions
Without benchmark values for this wind farm par-
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Figure 6: Velocity profiles. Some LES models. The other
S3PQR models follow nearly the same pattern as
PR2.

ticular case, it is not possible to assess confidently
which model gives better results or whether S3PQR
algorithms are better than other LES models because
all of them (except maybe the no-model) are in the
same range of values. See as an example Figure 6.
Despite this, for most of them, we have seen that the
general behavior matches reasonably that of reference.
Therefore, we can say at this moment that at least the
S3PQR type 2 algorithms are well-suited for both free
boundary layer and wind farm simulations.
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