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Abstract

Direct numerical simulations of the incompressible Navier-Stokes equations at
high Reynolds numbers are not yet feasible, so dynamically less complex
mathematical formulations such as Large Eddy Simulation (LES) have been
developed. In this work, we will focus on the application and comparative
performance of the S3PQR and other LES models on the free boundary
layer case and over a fully developed boundary layer wind farm, using a
simplified wind turbine model.

Introduction

LES equations result from applying a spatial filter to the incompressible
Navier-Stokes equations that let us prescribe an eddy viscosity νe for each LES
algorithm. For most models, this νe depends on combinations of invariants
of some tensor related to the velocity gradient. This is the case for the
Smagorinsky, WALE, Vreman’s, σ-model, and all the S3PQR models.
The different types of S3PQR models (Trias et al. (2015)) were obtained by a
combination of two invariants of the tensor GGT (formally based on the
lowest-order approximation of the subgrid stress tensor), that is
PGGT ,QGGT ,RGGT . Then,

νS3PQ
e = (Cs3pq∆)2P−5/2

GGT Q3/2
GGT

νS3PR
e = (Cs3pr∆)2P−1

GGTR1/2
GGT

νS3QR
e = (Cs3qr∆)2Q−1

GGTR5/6
GGT

where ∆ is the subgrid characteristic length.
There are two ways to determine the remaining model constant Cs3pq:
1. Imposing numerical stability and less or equal dissipation than Vreman’s
model.

Cs3pq = Cs3pr = Cs3qr =
√

3CVr ≈ 0.458
2. Granting that the averaged dissipation of the models is equal to that of the
Smagorinsky model.

Cs3pq = 0.572, Cs3pr = 0.709, Cs3qr = 0.762
Therefore, there are six possible combinations S3PQR to test (3 model
types x 2 constants, namely PQ1, PQ2 and so on)

Case especifications

For all the current computations of this work, the grid size of the domain is
Nx = 32, Ny = 64, and Nz = 32 points, where x , y , and z, are the streamwise,
wall-normal, and spanwise directions. The Reynolds number is fixed along the
simulation to Reδ∗ = 1000, where δ∗ is the displacement thickness. We will test
the zero mean pressure gradient case.

Boundary layer results

We will follow the general method proposed by Spalart and Leonard (1987) for
the boundary layer. We will compare three main parameters: uτ as the friction
velocity, H as the ratio of the displacement thickness to the momentum
thickness, and κ as the Von Kármán constant (”SL” stands for the reference
values and ”Vr.” as Vreman’s model).

Case: SL No mod. Vr. WALE PQ1 PR1 QR1 PQ2 PR2 QR2
uτ 0.049 0.049 0.050 0.046 0.048 0.050 0.049 0.046 0.049 0.048
H 1.52 1.61 1.51 1.54 1.58 1.54 1.57 1.57 1.53 1.57
κ 0.39 0.35 0.47 0.47 0.35 0.44 0.35 0.42 0.39 0.32
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The main differences between the models can be seen in plotting the derivative
of the velocity profile y+du+/dy+. The logarithmic layer corresponds to the
minimum (red line, κ = 0.4). PR2 model (plotted on the left) seems to perform
the best. Smagorinsky, in this configuration, fails to reproduce the behavior near
the wall.

Wind farm results

We will follow Calaf, Meneveau, and Meyers (2010) using a disk actuator for
every wind turbine. The force of the turbine (per unit mass), in the streamwise
direction, at a given grid point i , j , k , is given by

F (i , j , k) = −1
2

C ′
T⟨u

T⟩2
d
γj ,k

∆x
where C ′

T is a thrust coefficient, ⟨uT⟩2
d is the disk local averaged velocity, γj ,k is

the fraction area overlap of the disk and ∆x is the distance between turbines.
The layout geometry is 24 disk actuators evenly distributed in four rows and six
columns.
Some of the several quantities that may be of interest are: z0Hi/zH, as the ratio
of the effective roughness above the turbine hub and the height of the turbines’
center; uτ , the usual friction velocity at the wall; u∗, the computed friction
velocity above the hub; P, the time and horizontally averaged power extracted
for every turbine; Wt, the time, horizontally, and vertically (along the hub)
averaged power; δΦ, the vertical flux of kinetic energy; EB, for energy budget.

MODEL z0Hi/zH uτ u∗ uτ/u∗ P/δΦ Wt/δΦ EB
no model 0.160 0.051 0.109 0.47 0.68 0.81 94%
Vreman 0.072 0.056 0.085 0.66 0.67 0.78 94%
WALE 0.082 0.050 0.089 0.56 0.79 0.90 94%
PQ1 0.096 0.052 0.092 0.57 0.75 0.86 96%
PR1 0.105 0.052 0.094 0.55 0.74 0.85 95%
QR1 0.123 0.052 0.100 0.52 0.73 0.84 95%
PQ2 0.074 0.052 0.085 0.61 0.75 0.86 95%
PR2 0.065 0.052 0.083 0.63 0.77 0.88 97%
QR2 0.098 0.052 0.093 0.56 0.74 0.86 95%

From the column of P/δΦ, it seems that it also reproduces the observed
behavior that the wind turbines, in a fully developed boundary layer regime,
extract kinetic energy through vertical fluxes.
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On the left, we can see the PR2 model streamwise velocity profile. The green
vertical line is the position of the bottom of the turbine hub. The red line is the
top. On the right, the y+du+/dy+ plot. Note the presence of one or two minima
corresponding to the log laws. The red horizontal line shows the expected
second log law with, by definition, κ = 0.4

Conclusions

We have shown that S3PQR models yield good performance for the boundary
layer and wind farm cases. The accuracy is similar to other LES methods in the
case of the boundary layer, with perhaps S3PR standing as the best of all. For
the wind farm, most of the S3PQR give the expected two log law profile, the
right magnitude values, and the correct energy flux balance, with, again, PR as
the most reliable.
Therefore, we can confidently say that at least the S3PR models are
well-suited for both free boundary layer and wind farm simulations.
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