
ON A HIGH-ORDER ENERGY-PRESERVING
UNCONDITIONALLY STABLE DISCRETIZATION ON

COLLOCATED UNSTRUCTURED GRIDS

D. Santos1, F.X. Trias1, R.W.C.P. Verstappen2, and C.D. Pérez-Segarra1
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Abstract
In this work, an energy-preserving unconditionally

stable fractional step method on collocated unstruc-
tured grids is presented. Its formulation is based on
preserving the underlying symmetries of the differen-
tial operators. This formulation was proven to be un-
conditionally stable even for highly distorted meshes
in Santos et al (2021,2022). However, it was second-
order accurate for Cartesian meshes. Within this con-
text, new insights of higher order accurate operators
are presented. This high-order formulation is based on
a Richardson Extrapolation.

1 Introduction
General purpose CFD codes such as OpenFOAM

or ANSYS-Fluent rely on a finite-volume (stencil) dis-
cretization over unstructured meshes formulation to
solve Navier-Stokes equations due to its simplicity.
The stencil formulations solve the discretized equa-
tions with an algorithm that goes cell by cell, com-
puting the desired quantities. Alternatively, algebraic
formulations preserve them in matrix-vector form, and
compute the desired quantities by using these matrices
and vectors.

A collocated fully-conservative algebraic
symmetry-preserving formulation of incompress-
ible Navier-Stokes equations was proposed by Trias et
al (2014). Assuming n control volumes and m faces:

Ω
duc

dt
+ C(us)uc = Duc − ΩGcpc, (1)

Mus = 0c, (2)

where uc ∈ R3n and pc ∈ Rn are the cell-centered ve-
locity and the cell-centered pressure, respectively. The
face-centered quantities, such as us ∈ Rm are related
to the cell-centered quantities via an interpolation op-
erator Γc→s ∈ Rm×3n:

us = Γc→suc. (3)

Finally, Ω ∈ R3n×3n is a diagonal matrix contain-
ing the cell volumes, C(us) ∈ R3n×3n is the discrete
convective operator, D ∈ R3n×3n is the discrete diffu-
sive operator, Gc ∈ R3n×n is the cell-to-cell discrete
gradient operator and M ∈ Rn×m is the face-to-cell
discrete divergence operator. The velocity correction
after applying the Fractional Step Method (FSM) to
the Navier-Stokes equations reads:

un+1
c = up

c − Γs→cGpn+1
c , (4)

where Γs→c ∈ R3n×m is the face-to-cell interpola-
tor, which is related to the cell-to-face interpolator
via the volume matrices Γs→c = Ω−1Γc→sΩs, and
G ∈ Rm×n is the cell-to-face gradient operator.

Only five discrete operators are needed to formu-
late these equations: the cell-centered and staggered
control volumes (diagonal matrices), Ωc and Ωs, the
face normal vectors, Ns, the scalar cell-to-face inter-
polation, Πc→s and the cell-to-face divergence opera-
tor, M. For more details of these operators and its con-
struction, the reader is referred to Trias et al (2014).
Due to its simplicity, these operators can be easily
builded in existing codes, such as OpenFOAM, see
Komen et al (2021).

2 An energy-preserving unconditionally
stable FSM

From our perspective, respecting the symmetries of
these differential operators is crutial in order to respect
the physical structure of the equations. For example,
constructing G = −Ω−1

s MT is essential to preserve
kinetic energy as in Trias et al (2014), but it is also
mimicking the symmetries of the continuos level op-
erators.

The utility of an algebraic formulation can be
found, as an example, in Santos et al (2021,2022). In
these works, the matrix-vector formulation is used in
order to study the stability of the solution in terms
of the pressure gradient interpolation in collocated
frameworks. To do so, the eigenvalues of L−Lc were
deeply studied (L = MG ∈ Rn×n is the compact



Laplacian operator whereas Lc = MΓc→sΓs→cG ∈
Rn×n is the collocated wide-stencil Laplacian opera-
tor), and the cell-to-face interpolation that leads to an
unconditionally stable FSM turned out to be:

Πc→s = ∆−1
s ∆T

sc ∈ Rm×n, (5)

where ∆s ∈ Rm×m is a diagonal matrix containing
the projected distances between two adjacent control
volumes, and ∆sc ∈ Rn×m is a matrix containing the
projected distance between a cell node and its corre-
sponding face. For details, the reader is referred to
Santos et al (2021,2022).

3 Towards a high-order formulation
High-order formulations are usually preferred over

low-order ones due to computational power reasons:
they have better accuracy for the same mesh resolution
and higher arithmetic intensity. A high-order (stag-
gered) discretization over structured meshes of Navier-
Stokes equations can be found in Verstappen and Veld-
man (2003). This discretization relies on the possibilty
of building coarser meshes using bigger control vol-
umes and then eliminate the leading term error by a
Richardson Extrapolation.

However, this formulation cannot be extended to
unstructured meshes due to the impossibility of build-
ing these coarser meshes. In this work, preliminary
results in constructing high-order operators are pre-
sented. This new formulation does not require to
build coarser meshes (directly) using bigger control
volumes, but it is based on a Richardson extrapola-
tion with a pseudo-control volume constructed with
the collocated velocities. Alternatively, other method-
ologies such as compact schemes (see De Angelis et
al (2018) and Hokpunna (2010) for staggered grids),
could be considered.

Fig. 1 shows a typical collocated arrengements,
where all the variables are located at the cell center.
Considering that the cell center is the point (xi, yi)
and that the mesh size is h, we define, for Cartesian
meshes:

• Control volume:
[xi − h/2, xi + h/2]× [yi − h/2, yi + h/2]

• Pseudo-control volume:
[xi − h, xi + h]× [yi − h, yi + h]

Suppose a quantity A is approximated by means of
a method A(h) that depends on a parameter h, and that
this method has order n, that is:

A = A(h) + Chn +O(hn+1). (6)

One example of a Richardson extrapolation, such
as the one used by Verstappen and Veldman (2003), is
the following one:

R(h, t) =
tnA(h/t)−A(h)

tn − 1
= A+O(hn+1), (7)

Figure 1: Collocated mesh scheme. Black dashed line shows
a typical control volume. Red dashed line shows a
pseudo-control volume.

where h/t is a new step size that depends on the pre-
vious step size h. It is remarkable that R(h, t), has
a higher order error estimation. In the work by Ver-
stappen and Veldman (2003) a parameter of t = 3 was
selected due to the nature of the staggered grid config-
uration.

In this work, a parameter of t = 2 will be selected
in order to be able to eliminate the leading term er-
ror of the divergence operator by means of linearly
combining the divergence of a control volume and the
divergence of the associated pseudo-control volume.
A notation relating continuous and discrete differen-
tial operators will be used for the sake of simplicity.
What is meant by this notation, present for example in
Eq.(8), is that the local error of the discretized opera-
tor, when applied to a discrete field, is of order O(hn).
The left hand side of the equation shows the continu-
ous operator, the first term of the right hand side shows
the discrete operator, and the last term is the order of
the local error. Doing that, the Richardson Extrapola-
tion becomes:

∇· = 4Ω−1M − Ω̃−1M̃
3

+O(h4), (8)

where Ω and M are the volume matrix and the dis-
crete divergence operator, respectively, and Ω̃ and M̃
are the volume matrix of the pseudo-control volumes
and the discrete divergence computed at the pseudo-
control volumes, respectively. This relation can also
be proven using the fact that, for Cartesian meshes,
and assuming a mid-point integration rule for approx-
imating the integrals:

∇· = Ω−1M +O(h2), (9)

∇· = Ω̃−1M̃ + 4O(h2). (10)

One easy way to obtain Eq. (10) from Eq. (9) is
realizing that the jump in step size from the control
volume to the pseudo-control volume in this case is
h → 2h. Now, combining (4Eq.(9)-Eq.(10))/3, the
leading term error is eliminated. The fact that the order
of the error is reduced to 4 and not to 3 is because
some symmetries present in Cartesian meshes, and can
be proved by means of the mid-point integration rule



applied to the discretized divergence theorem. These
symmetries are the same that cancel out the first order
error term in Eq.(9) for Cartesian meshes. They are not
found in triangular grids, for example, whose discrete
divergence has order 1.

In order to illustrate this idea, the divergence
of a test function (u = (Acos(ax + 1)sin(by +
2), Bsin(ax + 3)cos(by + 4)) was computed for a
Cartesian grid of constant mesh size h. Fig. 2 shows
the error of the discrete divergence M computed in a
control volume as a function of h. Order 2 is found for
Eq.(9) and order 4 is found for Eq.(10). In this exam-
ple, it is assumed that the discrete velocity is known at
cell-centers and at the faces.
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Figure 2: Local truncation error of the discrete divergence
M operator. Order 2 is found for the discrete di-
vergence and order 4 is found for the Richardson
Extrapolation.

Collocated arrangement
In Fig. 2, it is shown that the order of the error

of the Richardson Extrapolation is 4. However, this is
only true if we assume that the velocities at the cell-
center and at the faces are known. Unfortunately, this
is not the case for collocated arrangements. The veloc-
ities at the cell-center are known, but the face velocity
needs to be interpolated. Testing the same procedure
with a Cartesian mesh of constant step size h leads to
the result shown in Fig. 3.
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Figure 3: Local truncation error of the discrete divergence
M operator. Order 2 is found for the discrete di-
vergence and order 4 is found for the Richardson
Extrapolation.

Now, order 2 is also found for the Richardson Ex-
trapolation. This feature comes from the fact that the
interpolation used for computing the velocity at the
faces is second order. Thus, the previous Richardson
Extrapolation is not able to eliminate the second order
error. Possible solutions are:

• Using a fourth order interpolation to interpolate
from cells to faces.

• Taking into account that for the first pseudo-
control volume, we also know the velocities at the
vertex, so we can apply Trapezoidal’s rule instead
of the mid-point rule.

• Using a second pseudo-control volume of mesh
size 4h and combining the solutions to eliminate
the leading term error.

The first option was the chosen one in Verstappen
and Veldman (2003) for staggered grids and would
work the same for collocated configurations. The sec-
ond option was not able to provide better accuracy. So,
let us explore the third option, which can exploit some
features of the collocated arrangement.

Double Richardson Extrapolation for the Diver-
gence operator

Let us assume the divergence of a collocated quan-
tity, for example the velocity, wants to be calculated
at a control volume located at [xi − h/2, xi + h/2]×
[yi − h/2, yi + h/2]. Let us consider the following
pseudo-control volumes:

• Pseudo-control volume 1:
[xi − h, xi + h]× [yi − h, yi + h]

• Pseudo-control volume 2:
[xi − 2h, xi + 2h]× [yi − 2h, yi + 2h]

This pseudo-control volumes have already the ve-
locity at the faces, so doing the same procedure like in
Eq.(8) the leading term error can be eliminated. Fig. 4
shows the results for the double Richardson Extrapo-
lation:

Again, order 4 is recovered for the double Richard-
son Extrapolation, while order 2 is found for the dis-
crete divergence computed with a second order inter-
polation at the faces of the control volume. It is re-
markable that no direct interpolation was needed to
obtain order 4, so this procedure does not require to
compute interpolations due to the natural arrangement
of a collocated grid.

Convective operator
Let us assume a scalar quantity f is convected

through a velocity field U = [u, v]. The (discrete) con-
vective operator applied to the discretized (collocated)
field in divergence form fc reads:

Cc(us)fc = MUfΠc→sfc, (11)
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Figure 4: Local truncation error of the discrete divergence M
operator. Order 2 is found for the discrete diver-
gence and order 4 is found for the double Richard-
son Extrapolation.

where us is the staggered velocity, Uf is a diago-
nal matrix containing the staggered velocities, and
Πc→sfc is the interpolation from cells to faces of the
convected quantity. Typically, Πc→s is selected to be
a mid-point interpolation, in order to retain the skew-
symmetry at the discrete level.

Now, let us define the double Richardson Extrapo-
lation divergence matrix as M2R. Observe that now,
when computing the convection of a cell-centered
quantity fc:

C̃c(us)fc = M2RUfff , (12)

where now an interpolation is not needed anymore be-
cause the quantities are at the faces of the pseudo-
control volumes.

Continuing with the previous numerical example,
Fig. 5 shows the order of convergence of the collo-
cated convective operator:
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Figure 5: Local truncation error of the discrete collocated
convective operator Cc(us). Order 2 is found for
the typical discretization and order 4 is found for
the double Richardson Extrapolation.

Algebraic representation of the Double Richardson
Extrapolation

In general, for collocated arrangements, the dis-
crete divergence matrix can be written as:

M = Ts→cAf , (13)

where Ts→c ∈ Rm×n is the incidence matrix from
faces to cells, m is the number of faces and n the num-
ber of cells, and Af is a diagonal matrix containing
face areas. Then, this matrix is multiplied by a vec-
tor containing face-quantities in order to obtain an ap-
proximation of the divergence of this field.

However, taking into account, for example,
Eq.(12), our new discrete divergence operator is acting
in a pseudo-control volume space. The face-quantities
of this pseudo-grid are cell-centered quantities in our
collocated grid. So, it seems more convenient to
rewrite our operators in terms of collocated quantities,
because no interpolations are needed in this new for-
mulation. Let us write the Double Richardson Extrap-
olation divergence matrix as:

M2R = Tc̄→cAc, (14)

where Tc̄→c ∈ Rn×m·n is an incidence matrix from
cells to cells and Ac ∈ Rm·n×m·n is a diagonal ma-
trix containing weighted-face areas. This divergence
will be applied to a vector space of dimension m · n,
containing the collocated vectorial quantities.

In order to illustrate the construction of this matrix,
let us consider Fig. 6. For simplicity, only two direc-
tions will be shown. The other directions are analo-
gous.

i,j i+1,j i+2,j

i,j+1

i,j+2

i+1/2,j

i,j+1/2

Figure 6: Collocated mesh scheme. Red dashed line shows
the first pseudo-control volume and blue dashed
line shows the second pseudo-control volume.

For this example, the number of control volumes is
5: (i, j), (i+1, j), (i+2, j), (i, j +1), (i, j +2); and
the number of faces is 2: (i+1/2, j) and (i, j +1/2).

Ac =

A⃗f1

2A⃗f1

4A⃗f1

A⃗f2

2A⃗f2

4A⃗f2

...


,

where each area is multiplied by the normal vector to
that face. Then, this matrix will be multiplied by the
cell-center vectorial quantity, for example the velocity:



uc =



u⃗i,j

⃗ui+1,j

⃗ui+2,j

u⃗i,j

⃗ui,j+1

⃗ui,j+2

...


At this point, matrix Tc̄→c should do the sumation

over the faces of the pseudo-control volumes with the
appropriate weights:

Tc̄→c =

[
0 4

3 − 1
3 0 4

3 − 1
3 ...

...

]
Note that M2R = Tc̄→cAc gives Eq.(8) for the two

pseudo-control volumes (the dividing volumes can be
included in Ac matrix).

It is remarkable that this matrix construction can
be done for non-regular structured and unstructured
meshes. The extension to non-regular structured
meshes is straightforward. The extension to unstruc-
tured meshes can be done by means of the following
algorithm:

• Select a control volume (i, j) and one of its faces
f .

• Select the corresponding neighbour of (i, j) re-
garding f , neigh(i, j, f) as first pseudo-volume
quantity.

• For the second pseudo-volume quantity, compute
the maximum of nf ·nneigh(i,j,f), where nf is the
normal face vector of f and nneigh(i,j,f). Select
the neighbour of this face as the second pseudo-
volume quantity.

Doing that, the formulation collapses to the pro-
posed for the regular Cartesian grid, which is fourth
order. No work has been done in this direction, so
nothing can be say about the order of convergence for
non-regular structured and unstructured grids. How-
ever, this algorithm is a good starting point in order to
implement the procedure in general purpose codes.

Gradient and Laplacian operator
In order to extend the formulation to the Navier-

Stokes equations, the gradient operator and the Lapla-
cian operator are needed. To do so, and in order to
preserve the underlying symmetries of the differential
operators, the gradient operator is defined as:

G2R = −Ω̃−1MT
2R, (15)

where Ω̃ = (4Ω2−Ω3)/3, following the suggestion of
Vertsappen and Veldman (2003), being Ω2 and Ω3 the
diagonal matrices containing the pseudo-control vol-
umes. However, more work has to be done in order to

coordinate the dimensions of M2R and G2R, to con-
struct the gradient in order to be part of Rn×n.

From this point, the construction of the Laplacian
operator would be:

L2R = G2RM2R. (16)

4 Conclusions
An energy-preserving unconditionally stable frac-

tional step method was presented in this work. From
that point, an extension to a high-order formulation has
been proposed. Even though this extension has not
been achieved for the complete Navier-Stokes equa-
tions, a fourth order divergence and convective oper-
ator has been suggested. Theoretical derivation has
been done for this operators, and numerical examples
have been provided in order to test the order of conver-
gence. Finally, an algebraic representation has been
purposed, along with a general algorithm to compute
the discrete divergence matrix for general meshes.

The extension to Navier-Stokes equations relies
on the possibility of computing a proper symmetry-
preserving gradient. More work need to be done in this
direction. Once the gradient is computed, the Lapla-
cian operator is straightforward.

Acknowledgments
This work has been supported by the Ministe-

rio de Economı̀a y competitividad, Spain, RETOtwin
project (PDC2021-547 120970-I00). D. Santos ac-
knowledges a FI AGAUR-Generalitat de Catalunya
fellowship (2022FI B 00173).

References

Santos, D., Muela J., Valle, N., Trias, F.X. (2021), On the In-
terpolation Problem for the Poisson Equation on Collocated
Meshes, 14th WCCM-ECCOMAS Congress (postponed to
January 2021 due to COVID19 pandemic).

Santos, D., Trias, F.X., Colomer, G., Pérez-Sergarra, C.D.
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