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1Heat and Mass Transfer Technological Center,
Technical University of Catalonia, C/Colom 11, 08222 Terrassa (Barcelona)

2Bernoulli Institute for Mathematics, Computer Science and Artificial Intelligence,
University of Groningen, Nijenborgh 9, 9747 AG, Groningen (Netherlands)

06-08 September 2023, ETMM 2023, Barcelona, Spain

Daniel Santos
06-08 September 2023, ETMM 2023, Barcelona, Spain
1 / 24



Index

1 Symmetry-Preserving unconditionally stable discretization of NS equations on
collocated unstructured grids.

2 Towards a high order formulation

3 Questions and future work

4 Conclusions.

Daniel Santos
06-08 September 2023, ETMM 2023, Barcelona, Spain
2 / 24



1. Definition of basic collocated operators

Let us suppose we have n control volumes and m faces.

Finite volume discretization of incompressible NS equations on an
arbitrary collocated mesh

Ωduc
dt + C(us)uc = −Duc − ΩGcpc , (1)

Mus = 0c . (2)

pc = (p1, ..., pn)T ∈ Rn is the cell-centered pressure.
uc = (u1, u2, u3)T ∈ R3n , where ui = ((ui)1, ..., (ui)n)T are the vectors
containing the velocity components corresponding to the xi−spatial direction.
us = ((us)1, ..., (us)m)T ∈ Rm is the staggered velocity.
The velocities are related via the interpolator from cells to faces
Γc→s ∈ Rm×3n =⇒ us = Γc→suc .
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Definition of basic collocated operators

The (3D) interpolator from cells to faces can be constructed as follows:

Γc→s = NΠ, (3)

where
N = (Ns,x Ns,y Ns,z) ∈ Rm×3m where Ns,x , Ns,y , Ns,z ∈ Rm×m are diagonal
matrices containing the xi spatial component of the face normal vectors.
Π = I3 ⊗ Πc→s ∈ R3m×3n .
Πc→s ∈ Rm×n is the scalar cell-to-face interpolator.
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Definition of basic collocated operators

Ωc ∈ Rn×n is a diagonal matrix with the cell-centered volumes
=⇒ Ω = I3 ⊗ Ωc .
Cc(us) ∈ Rn×n is the cell-centered convective operator for a discrete scalar

field =⇒ C(us) = I3 ⊗ Cc(us).
Dc ∈ Rn×n is the cell-centered diffusive operator for a discrete scalar field

=⇒ D = I3 ⊗ Dc .
Finally,

Gc ∈ R3n×n represents the discrete collocated gradient.
M ∈ Rn×m is the face-to-cell discrete divergence operator.
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Other useful operators

G = −Ω−1
s MT ,

L = MG = −MΩ−1
s MT ,

Lc = McGc = −MΓc→sΩ−1ΓT
c→sMT ,

Γs→c = Ω−1ΓT
c→sΩs . (4)

where G is the center-to-face staggered gradient, L is the Laplacian operator, Lc is
the collocated-Laplacian operator and Γs→c is the face-to-cell interpolator.

For more information about Symmetry-Preserving discretization consult: F.X. Trias, O.
Lehmkuhl, A. Oliva, C.D. Perez-Segarra, and R.W.C.P. Verstappen. Symmetry-preserving
discretization of Navier-Stokes equations on collocated unstructured meshes. Journal of
Computational Physics, 258:246–267, 2014.
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Conservation of global kinetic energy

Global kinetic energy equation

d ||uc ||2

dt = −uT
c (C(us) + CT (us))uc − uT

c (D + DT )uc

−uT
c ΩGcpc − pT

c GT
c ΩT uc . (5)

In absence of diffusion, that is D = 0, the global kinetic energy is conserved if:
C(us) = −CT (us), i.e, the convective operator should be skew-symmetric.
(−ΩGc)T = MΓc→s , because Mus = 0c .
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Mimicking continuos properties
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A stable pressure gradient interpolation for the velocity
correction.

Global kinetic energy equation with skew-symmetric convective
operator

d ||uc ||2

dt = −uT
c (D + DT )uc − uT

c ΩGcpc − pT
c GT

c ΩT uc .

In absence of diffusion, that is D = 0, the global kinetic energy is conserved if:
(−ΩGc)T = MΓc→s , because Mus = 0c (But this relation is exact ONLY in
staggered configurations!).

In collocated framework, we either solve:

Mus = 0 → Lpc = MΓc→sup
c → Kinetic Energy Error (6)

Mcuc = 0 → Lcpc = MΓc→sup
c → Checkerboard (7)
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A stable pressure gradient interpolation for the velocity
correction.

Global kinetic energy equation with skew-symmetric convective
operator

d ||uc ||2

dt = −uT
c (D + DT )uc − uT

c ΩGcpc − pT
c GT

c ΩT uc .

In absence of diffusion, that is D = 0, the global kinetic energy is conserved if:
(−ΩGc)T = MΓc→s , because Mus = 0c (But this relation is exact ONLY in
staggered configurations!).

In the first option, the (artificial) kinetic energy added is given by (explicit time
integration):

−pT
c GT

c ΩT uc = pT
c (L − Lc)pc∆t (8)
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A stable pressure gradient interpolation
Stable solutions → Eigenvalues of L − Lc negative.
This can be achieved by using the volume weighted scheme:

Πc→s = ∆−1
s ∆T

sc , (9)
where ∆s ∈ Rm×m is a diagonal matrix containing the projected distances
between two adjacent control volumes, and ∆sc ∈ Rm×n contains the
projected distances between an adjacent cell node and its corresponding face.

Volume weighted interpolation: ϕf = Vs1
Vs1+Vs2

ϕc1 + Vs2
Vs1+Vs2

ϕc2.

Figure 1: Volume weighted volumes
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Summary

We can construct all the previous operators with only five discrete operators:

Ωc : collocated volumes
Ωs : staggered volumes

N : face − normal vectors
Πc→s : Scalar cell to face interpolation (”Free”)

M : Divergence matrix

The divergence operator is usually constructed as follows (discretization of the
divergence theorem using the midpoint approximation of the integral):

M = TscS, (10)

where Tsc is the incidence matrix from faces to cells and S is a diagonal matrix
containing face surfaces.
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2. Towards a high order formulation

Control volume:[xi − h/2, xi + h/2] × [yi − h/2, yi + h/2]
Pseudo-control volume:[xi − h, xi + h] × [yi − h, yi + h]

Figure 2: Collocated mesh scheme. Black dashed line shows a typical control volume.
Red dashed line shows a pseudo-control volume.
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Richardson Extrapolation
Divergence computed at the control volume and pseudo-control volume respectively:

∇· = Ω−1M + O(h2), (11)
∇· = Ω̃−1M̃ + 4O(h2). (12)

This notation means Ω−1||Mus −
∫

Ω ∇ · u||∞ ∼ O(h2) and allows to do linear
combinations easily:

∇· = 4Ω−1M − Ω̃−1M̃
3 + O(h4), (13)

Richardson Extrapolation: R(h, t) = tnA(h/t)−A(h)
tn−1 = A + O(hn+1)

Daniel Santos
06-08 September 2023, ETMM 2023, Barcelona, Spain
14 / 24



Richardson Extrapolation
The divergence of a test function (u = (Acos(ax + 1)sin(by + 2), Bsin(ax +
3)cos(by + 4)) was computed for a Cartesian grid of constant mesh size h:
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Figure 3: Local truncation error of the discrete divergence M operator. Order 2 is found
for the discrete divergence and order 4 is found for the Richardson Extrapolation.
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Richardson Extrapolation in collocated arrangements

Order 2 is also found for the Richardson Extrapolation. This feature comes from
the fact that the interpolation used for computing the velocity at the faces is second
order:
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Figure 4: Local truncation error of the discrete divergence M operator with collocated
variables. Order 2 is found for the discrete divergence and order 2 is found for the
Richardson Extrapolation.
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Richardson Extrapolation in collocated arrangements

Possible solutions:
Fourth order interpolation from cells to faces → Possible but it can break the
symmetries of the operators if it is not done carefully.
Taking into account that for the first pseudo-control volume, we also know
the velocities at the vertex, so we can apply Trapezoidal’s rule instead of the
mid-point rule → it cancels out the divergence operator, so no linear
combination is possible.
Using a second pseudo-control volume of mesh size 4h and combining the
solutions to eliminate the leading term error.
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Double Richardson Extrapolation
Let us assume the divergence of a collocated quantity wants to be calculated at a
control volume located at [xi − h/2, xi + h/2] × [yi − h/2, yi + h/2]. Consider:

Pseudo-control volume 1:[xi − h, xi + h] × [yi − h, yi + h]
Pseudo-control volume 2: [xi − 2h, xi + 2h] × [yi − 2h, yi + 2h]

i,j i+1,j i+2,j

i,j+1

i,j+2

i+1/2,j

i,j+1/2

Figure 5: Collocated mesh scheme. Red dashed line shows the first pseudo-control
volume and blue dashed line shows the second pseudo-control volume.
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Double Richardson Extrapolation
For the same test function as before:
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Figure 6: Local truncation error of the discrete divergence M operator. Order 2 is found
for the discrete divergence and order 4 is found for the double Richardson Extrapolation.

Advantage: Even though same stencil as a high order interpolation is used, no
interpolation has to be chosen! → The Richardson Extrapolation eliminates directly
the low order error.
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Algebraic representation of the double Richardson
Extrapolation

Generalizing the divergence operator:

M = Ts→cAf → M2R = Tc̄→cAc . (14)

where Ts→c ∈ Rm×n is the incidence matrix from faces to cells, Tc̄→c ∈ Rn×m·n

is an incidence matrix from cells to cells and Ac ∈ Rm·n×m·n is a diagonal matrix
containing weighted-face areas.
The convective operator can also be rewritten as:

Cc(us)fc = MUf Πc→s fc → C̃c(us)fc = M2RUf ff (15)

Using the pseudo-control volumes, all the quantities are located at the (pseudo)faces!
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Algebraic representation of the double Richardson
Extrapolation
For the same test function as before and the new convective operator:
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Figure 7: Local truncation error of the discrete collocated convective operator Cc(us).
Order 2 is found for the typical discretization and order 4 is found for the double
Richardson Extrapolation.
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Possible extension to non-structured meshes

The extension to unstructured meshes can be done by means of the following algo-
rithm:

Select a control volume i and one of its faces f .
Select the corresponding neighbour of i regarding f , neigh(i , f ) as first
pseudo-volume quantity.
For the second pseudo-volume quantity, compute the maximum of
nf · nneigh(i,f ), where nf is the normal face vector of f and nneigh(i,f ). Select
the neighbour of this face as the second pseudo-volume quantity.

Doing that, the formulation collapses to the proposed one for the regular Cartesian
grid, which is fourth order. No work has been done in this direction, so nothing can
be say about the order of convergence for non-regular structured and unstructured
grids.
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3. Questions and future work

Is the convective term skew-symmetric? The diagonal term contains the
divergence of collocated velocities, but not in the common way.
If the symmetry-preserving gradient is constructed:

G2R = −Ω̃−1MT
2R , (16)

which matrix Ω̃ of control volumes shall be used?
How does the coefficients of the Richardson Extrapolation change for
non-uniform Cartesian meshes?
May this collocated high order extension be seen as the linear combination of
two (staggered) Navier-Stokes discretizations at the pseudo-control volumes?
This will allow to reinterpret the operators easily.
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4. Conclusions

General conclusions
An energy-preserving unconditionally stable fractional step method on collo-
cated grids has been presented.
A double Richardson Extrapolation allows to eliminate the leading term error
for the divergence and the convective operators in collocated arrangements.
The symmetry-preserving gradient construction is not straightforward, how-
ever, reinterpreting the double Richardson Extrapolation as the solution of two
NS equation systems at the pseudo-control volumes may be useful.
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