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Heat and Mass Transfer Technological Centre (CTTC)

Lines of research:
Simulation of (in)compressible flows, aeroacoustic, radiation, renewable
energies, HVAC...
Experimental development of various industrial prototypes such as an
absorption chiller or a thermal solar plate collector.
Development and implementation of numerical methods according to
current HPC systems

Figure: ESEIAAT campus in Terrassa Figure: JFF cluster at the CTTC
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Changing landscape...
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Changing landscape, changing codes
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Towards performance portability

Stencil-based design

Looping across the mesh performing local operations

Pros: More flexible and compute-intensive, lower memory requirements

Cons: More challenging portability probably relying on
”hardware-agnostic” APIs (eg, OpenMP and OpenACC) or libraries (eg,
Kokkos and RAJA)

Algebra-based design

Express discrete operators as sparse matrices and fields as vectors

Pros: All operations reduce to 3 linear algebra kernels generally available
in standard libraries (eg, Intel MKL, cuSPARSE, clSPARSE)

Cons: Less compute-intensive, higher memory requirements, requires
algorithmic reformulation
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HPC² library

HPC² library

Sparse linear algebra code

Modular design ensuring natural portability

In C++ and currently supporting MPI+OpenMP, CUDA and OpenCL

Implements a few highly optimized kernels. Namely:
Matrix-vector product
Linear combination of vectors
Dot product of vectors

Als includes specialized kernels and Poisson solvers

X. Álvarez-Farré et al. (2018). “HPC² – A fully-portable, algebra-based framework for
heterogeneous computing. Application to CFD” in Computers & Fluids.

A. Alsalti-Baldellou et al. (2023). “Exploiting spatial symmetries for solving Poisson’s
equation” in Journal of Computational Physics.
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TFA library

TFA library

Incompressible CFD simulation code

Fully-conservative discretisation for collocated unstructured grids

Algebra-based, formulated in terms of:
Sparse matrix-vector product
Linear combination of vectors
Dot product of vectors

F.X. Trias et al. (2014). “Symmetry-preserving discretization of Navier-Stokes equations on
collocated unstructured meshes” in Journal of Computational Physics.

X. Álvarez-Farré et al. (2021). “A hierarchical parallel implementation for heterogeneous
computing. Application to algebra-based CFD simulations on hybrid supercomputers” in
Computers & Fluids.
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Addressing the challenges
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Algorithmic reformulation

Some extra effort is required to reformulate algebraically certain operations
applying “locally”.
Recently, it was shown how to effectively implement flux limiters and CFL-like
time-steps.

Algebra-based boundary conditions

Virtually all boundary conditions can be expressed as an affine transformation:

ψh → Aψh + bh,

where fluxes are imposed through A and values through bh

N. Valle et al. (2022). “On the implementation of flux limiters in algebraic frameworks” in
Computer Physics Communications.

F.X. Trias et al. (2023). “An Efficient Eigenvalue Bounding Method: CFL Condition
Revisited” in SSRN.
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New opportunities: exploiting regular geometries – 1

F. Dabbagh et al. (2017) in Physics of Fluids
D.E. Aljure et al. (2018) in Journal of Wind Engineering and Industrial Aerodynamics
L. Paniagua et al. (2014) in Numerical Heat Transfer, Part B: Fundamentals
M. Calaf et al. (2010) in Physics of Fluids
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New opportunities: exploiting regular geometries – 2

(a) 1 symmetry (b) 2 symmetries

Figure: 2D meshes with varying number of symmetries.
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New opportunities: exploiting regular geometries – 3

(a) 1 symmetry (b) 2 symmetries

Figure: “Mirrored” ordering on 2D meshes with a varying no. of symmetries.
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New opportunities: exploiting regular geometries – 4

Figure: “Mirrored” partitioning on an unstructured 2D meshes with 2 symmetries.
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Computational advantages

On a domain with nb repeated/mirrored subdomains, virtually all operators
satisfy (or a compatible expression):

H̄ = Inb ⊗H, (1)

where H̄ ∈ Rn×n stands for the operator itself and H ∈ Rn/nb×n/nb for its
restriction to the base mesh.

Then, the standard SpMV on H̄:

y =

H . . .

H


 x1

...
xnb

 ∈ Rn, (2)

can be replaced with an SpMM on H:

(y1 . . . ynb) = H(x1 . . . xnb) ∈ Rn/nb×nb . (3)

SpMV vs SpMM

SpMM reads H nb less times

H̄ takes nb times more memory than H

A. Alsalti-Baldellou et al. (2023). “Lighter and faster simulations on domains with
symmetries”, submitted.
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Numerical advantages
Similarly, s symmetries decomposing Lx = b into 2s decoupled subsystems:

Linn + L
(1)
out 0

. . .

0 Linn + L
(2s)
out


 x̂1

...
x̂2s

 =

 b̂1

...

b̂2s

 ,

and such that:

rank(L
(i)
out) = nifc ≪ rank(Linn) = n

A. Alsalti-Baldellou et al. (2023). “Exploiting spatial symmetries for solving Poisson’s
equation” in Journal of Computational Physics.

C. Janna and M. Ferronato (2011). “Adaptive pattern research for block FSAI
preconditioning” in SIAM Journal on Scientific Computing.

A. Alsalti-Baldellou et al. (2023). “Exploiting symmetries for preconditioning Poisson’s
equation in CFD simulations” in PASC23.
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...
x̂2s

 =

 b̂1

...

b̂2s

 ,

Eureka!

Let Minn be a preconditioner for Linn, i.e., M
−1
inn ≃ L−1

inn . Then, we can seek
low-rank corrections for Minn such that:

L̂−1 ≃ I2s ⊗Minn +


W

(1)
k Θ

(1)
k W

(1)
k

t
0

. . .

0 W
(2s)
k Θ

(2s)
k W

(2s)
k

t

 ,

As a result: lower setup costs, decoupled corrections and SpMM!

A. Alsalti-Baldellou et al. (2023). “Exploiting spatial symmetries for solving Poisson’s
equation” in Journal of Computational Physics.

C. Janna and M. Ferronato (2011). “Adaptive pattern research for block FSAI
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LRCFSAI(k): Low-rank corrected FSAI

Let the aFSAI of Linn be Gt
innGinn ≃ L−1

inn .

For each subsystem L̂i = Linn + L
(i)
out, let Y := (I−GinnL̂iG

t
inn).

Then:
L̂−1
i ≃ Gt

innGinn +WkΘkW
t
k,

where Y ≃ UkΣkU
t
k and Θk := Σk (I− Σk)

−1 and Wk := L−tUk.
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Low-rank corrected FSAI: residual convergence
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Figure: Convergence of PCG+LRCFSAI(k) on a 323 mesh with s = 1 symmetries.
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Figure: Convergence of PCG+LRCFSAI(k) on a 323 mesh with s = 2 symmetries.
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Low-rank corrected FSAI: residual convergence
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Figure: Convergence of PCG+LRCFSAI(k) on a 323 mesh with s = 3 symmetries.
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Numerical results
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Exploiting symmetries – 1

s = 0 s = 1 s = 2 s = 3

Figure: Top: 17.7M wall-bounded pin matrix heat exchanger. Bottom: 15.5M cubic
mesh.
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Exploiting symmetries – 2
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Figure: SpMM speedups on a fixed problem size. Left: structured. Right:
unstructured.
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Exploiting symmetries – 3
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Figure: SpMM speedups on a fixed base mesh. Left: structured. Right: unstructured.
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Exploiting symmetries – 4
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Figure: SpMM’s roofline analysis. Dashed: fixed problem size. Solid: fixed base mesh.
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Exploiting symmetries – 5
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Figure: Operators’ memory footprint. Left: structured. Right: unstructured.

More generally: repeated geometries lead to nb times smaller footprints!
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Test-case: CSP central tower receiver

Assumptions for industrial LES

LES limitation to be routinely applied in the industry: to be completed
overnight.

Mesh resolution: 300M-500M grid

Simulated time period: 150 time units

Wall-clock time limit: 16 hours

R. Löhner et al. (2011). “Overnight industrial LES for external aerodynamics” in Computers
& Fluids.
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TFA vs OpenFOAM: strong scalability
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Figure: Scalability of TFA (MPI+OpenMP) vs OpenFOAM (MPI-only) down to 70%
efficiency on a 500M CSP structured grid. Ran on AMD EPYC Rome nodes.
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Towards overnight LES

Assuming constant ∆t, to simulate τ time units, the required time-steps are:

n∆t =
τ

∆t
.

Recalling that LES are generally convection-dominated, for some correction
constant c:

∆t = min

{
∆xi
|ui|

}
≃ c

3
√
N
,

where ∆x, u and N stand for the cell length, local velocity and mesh size.
Let T eff

∆t be the wall-clock time per time-step at a given parallel efficiency and
on a mesh of size Nref. Then, the wall-clock time of an LES of size N can be
approximated as:

TLES(N) ≃ n∆t
T eff
∆tN

Nref
=
τT eff

∆t

cNref

3
√
N4.

According to Trias et al. (2010), c ≃ 0.3 and after 100 time units the flow
starts becoming statistically stationary, so we take τ = 150.

F.X. Trias et al. (2010). “Direct numerical simulation of a differentially heated cavity of
aspect ratio 4 with Rayleigh numbers up to 1011 – Part I: Numerical methods and time-averaged
flow” in International Journal of Heat and Mass Transfer.
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TFA vs OpenFOAM: strong scalability
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Figure: Scalability of TFA (MPI+OpenMP) vs OpenFOAM (MPI-only) down to 70%
efficiency on a 500M CSP structured grid. Ran on AMD EPYC Rome nodes.
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Towards overnight LES – 95% parallel efficiency
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Figure: Estimated largest affordable overnight simulations on a 500M CSP structured
grid. Ran on AMD EPYC Rome nodes and assuming a conservative 5x GPU speedup.
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Towards overnight LES – 75% parallel efficiency
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Figure: Estimated largest affordable overnight simulations on a 500M CSP structured
grid. Ran on AMD EPYC Rome nodes and assuming a conservative 5x GPU speedup.
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Towards overnight LES – 65% parallel efficiency
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Concluding remarks
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Conclusions

Summary:

The algebra-based design allows for easy performance portability

Despite the challenges it poses, it opens the door to new opportunities:
Specialised kernels such as SpMM
Specialised sparse matrix formats
Specialised solvers and preconditioners

Massively parallel accelerators open the door to overnight industrial LES

Ongoing work:

Extend TFA vs OpenFOAM comparison

Evaluate the gains with GPUs

Evaluate the gains on regular domains like wind-farms and heat exchangers

Evaluate the gains with a novel multigrid reduction framework
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Thanks for your attention!
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