Reliable overnight industrial LES: challenges and limitations. Application to CSP technologies

Àdel Alsalti-Baldellou^{1,2} Guillem Colomer² Johannes A. Hopman² Xavier Álvarez-Farré³ Andrey Gorobets F. Xavier Trias² Carles-David Pérez-Segarra² Assensi Oliva²

¹Heat and Mass Transfer Technological Center, Polytechnic University of Catalonia

²Termo Fluids SL, http://www.termofluids.com/

³High-Performance Computing Team, SURF

14th International ERCOFTAC Symposium on Engineering, Turbulence Modelling and Measurements (ETMM14) September 6-8 2023 – Barcelona, Spain

Algebra-based design

Addressing the challenges 0000000000 Concluding remarks 000

Index

Context of the work

- Heat and Mass Transfer Technological Centre
- Performance portability
- 2 Algebra-based design
 - HPC²
 - TFA
- 3 Addressing the challenges
 - Numerical challenges
 - Computational challenges
- 4 Numerical results
 - Exploiting symmetries
 - TFA vs OpenFOAM
 - Towards overnight LES
- 6 Concluding remarks

Algebra-based design

Addressing the challenges

Numerical results

Concluding remarks

Context of the work

Algebra-based design

Addressing the challenges

Numerical results

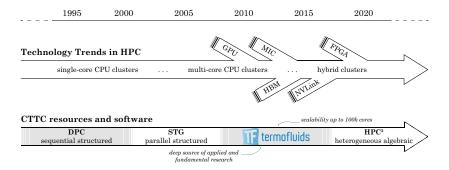
Concluding remarks

Heat and Mass Transfer Technological Centre (CTTC)

- Lines of research:
 - Simulation of (in)compressible flows, aeroacoustic, radiation, renewable energies, HVAC...
 - Experimental development of various industrial prototypes such as an absorption chiller or a thermal solar plate collector.
 - Development and implementation of numerical methods according to current HPC systems

Figure: ESEIAAT campus in Terrassa

Figure: JFF cluster at the CTTC


Algebra-based design

Addressing the challenges 0000000000 Numerical results

Concluding remarks

Heat and Mass Transfer Technological Centre (CTTC)

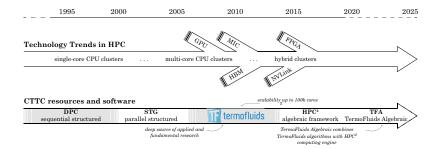
- Lines of research:
 - Simulation of (in)compressible flows, aeroacoustic, radiation, renewable energies, HVAC...
 - Experimental development of various industrial prototypes such as an absorption chiller or a thermal solar plate collector.
 - Development and implementation of numerical methods according to current HPC systems

Context of the work ○O●O○	Algebra-based design 000	Addressing the challenges	Numerical results 00000000000000	Concluding remarks

Changing landscape...

Rank	System	Cores	Rmax (PFlop/s)	Rpeak (PFlop/s)	Power (kW)
1	Frontier - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE D0E/SC/Oak Ridge National Laboratory United States	8,699,904	1,194.00	1,679.82	22,703
2	Supercomputer Fugaku - Supercomputer Fugaku, A64FX 48C 2.26Hz, Tofu interconnect D, Fujitsu RIKEN Center for Computational Science Japan	7,630,848	442.01	537.21	29,899
3	LUMI - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE EuroHPC/CSC Finland	2,220,288	309.10	428.70	6,016
4	Leonardo - BullSequana XH2000, Xeon Platinum 8358 32C 2.66Hz, NVIDIA A100 SXM4 64 GB, Quad-rail NVIDIA HDR100 Infiniband, Atos EuroHPC/CINECA Italy	1,824,768	238.70	304.47	7,404

Context of	the	work	
00000			


Algebra-based design

Addressing the challenges

Numerical results

Concluding remarks

Changing landscape, changing codes

Algebra-based design

Addressing the challenges 0000000000

Numerical results

Concluding remarks

Towards performance portability

Stencil-based design

Looping across the mesh performing local operations

Algebra-based design

Addressing the challenges

Numerical results

Concluding remarks 000

Towards performance portability

Stencil-based design

Looping across the mesh performing local operations

• Pros: More flexible and compute-intensive, lower memory requirements

Algebra-based design

Addressing the challenges

Numerical results 000000000000000 Concluding remarks 000

Towards performance portability

Stencil-based design

Looping across the mesh performing local operations

- Pros: More flexible and compute-intensive, lower memory requirements
- **Cons:** More challenging portability probably relying on "hardware-agnostic" APIs (eg, OpenMP and OpenACC) or libraries (eg, Kokkos and RAJA)

Algebra-based design

Addressing the challenges

Numerical results

Concluding remarks 000

Towards performance portability

Stencil-based design

Looping across the mesh performing local operations

- Pros: More flexible and compute-intensive, lower memory requirements
- **Cons:** More challenging portability probably relying on "hardware-agnostic" APIs (eg, OpenMP and OpenACC) or libraries (eg, Kokkos and RAJA)

Algebra-based design

Express discrete operators as sparse matrices and fields as vectors

Algebra-based design

Addressing the challenges 0000000000 Numerical results

Concluding remarks 000

Towards performance portability

Stencil-based design

Looping across the mesh performing local operations

- Pros: More flexible and compute-intensive, lower memory requirements
- **Cons:** More challenging portability probably relying on "hardware-agnostic" APIs (eg, OpenMP and OpenACC) or libraries (eg, Kokkos and RAJA)

Algebra-based design

Express discrete operators as sparse matrices and fields as vectors

• **Pros:** All operations reduce to 3 linear algebra kernels generally available in standard libraries (eg, Intel MKL, cuSPARSE, clSPARSE)

Algebra-based design

Addressing the challenges 0000000000 Numerical results

Concluding remarks 000

Towards performance portability

Stencil-based design

Looping across the mesh performing local operations

- Pros: More flexible and compute-intensive, lower memory requirements
- **Cons:** More challenging portability probably relying on "hardware-agnostic" APIs (eg, OpenMP and OpenACC) or libraries (eg, Kokkos and RAJA)

Algebra-based design

Express discrete operators as sparse matrices and fields as vectors

- **Pros:** All operations reduce to 3 linear algebra kernels generally available in standard libraries (eg, Intel MKL, cuSPARSE, clSPARSE)
- **Cons:** Less compute-intensive, higher memory requirements, requires algorithmic reformulation

Algebra-based design ●○○ Addressing the challenges

Numerical results

Concluding remarks

Algebra-based design

Algebra-based design

Addressing the challenges 0000000000 Numerical results 00000000000000 Concluding remarks

HPC² library

HPC² library

- Sparse linear algebra code
- Modular design ensuring natural portability

X. Álvarez-Farré et al. (2018). "HPC² – A fully-portable, algebra-based framework for heterogeneous computing. Application to CFD" in *Computers & Fluids*.

A. Alsalti-Baldellou et al. (2023). "Exploiting spatial symmetries for solving Poisson's equation" in *Journal of Computational Physics*.

Algebra-based design

Addressing the challenges 0000000000 Numerical results 00000000000000 Concluding remarks 000

HPC² library

HPC² library

- Sparse linear algebra code
- Modular design ensuring natural portability
- In C++ and currently supporting MPI+OpenMP, CUDA and OpenCL
- Implements a few highly optimized kernels. Namely:
 - Matrix-vector product
 - Linear combination of vectors
 - Dot product of vectors

X. Álvarez-Farré et al. (2018). "HPC² – A fully-portable, algebra-based framework for heterogeneous computing. Application to CFD" in *Computers & Fluids*.

A. Alsalti-Baldellou et al. (2023). "Exploiting spatial symmetries for solving Poisson's equation" in *Journal of Computational Physics*.

Algebra-based design

Addressing the challenges

Numerical results 00000000000000 Concluding remarks 000

HPC² library

HPC² library

- Sparse linear algebra code
- Modular design ensuring natural portability
- In C++ and currently supporting MPI+OpenMP, CUDA and OpenCL
- Implements a few highly optimized kernels. Namely:
 - Matrix-vector product
 - Linear combination of vectors
 - Dot product of vectors
- Als includes specialized kernels and Poisson solvers

X. Álvarez-Farré et al. (2018). "HPC² – A fully-portable, algebra-based framework for heterogeneous computing. Application to CFD" in *Computers & Fluids*.

A. Alsalti-Baldellou et al. (2023). "Exploiting spatial symmetries for solving Poisson's equation" in *Journal of Computational Physics*.

Algebra-based design

Addressing the challenges 0000000000 Numerical results 00000000000000 Concluding remarks 000

TFA library

TFA library

- Incompressible CFD simulation code
- Fully-conservative discretisation for collocated unstructured grids

F.X. Trias et al. (2014). "Symmetry-preserving discretization of Navier-Stokes equations on collocated unstructured meshes" in *Journal of Computational Physics*.

X. Álvarez-Farré et al. (2021). "A hierarchical parallel implementation for heterogeneous computing. Application to algebra-based CFD simulations on hybrid supercomputers" in *Computers & Fluids*.

Algebra-based design

Addressing the challenges 0000000000 Numerical results 00000000000000 Concluding remarks 000

TFA library

TFA library

- Incompressible CFD simulation code
- Fully-conservative discretisation for collocated unstructured grids
- Algebra-based, formulated in terms of:
 - Sparse matrix-vector product
 - Linear combination of vectors
 - Dot product of vectors

F.X. Trias et al. (2014). "Symmetry-preserving discretization of Navier-Stokes equations on collocated unstructured meshes" in *Journal of Computational Physics*.

X. Álvarez-Farré et al. (2021). "A hierarchical parallel implementation for heterogeneous computing. Application to algebra-based CFD simulations on hybrid supercomputers" in *Computers & Fluids*.

Algebra-based design

Addressing the challenges

Numerical results

Concluding remarks

Addressing the challenges

Algebra-based design

Addressing the challenges

Numerical results 00000000000000 Concluding remarks 000

Algorithmic reformulation

Some extra effort is required to reformulate algebraically certain operations applying "locally".

Recently, it was shown how to effectively implement flux limiters and CFL-like time-steps.

N. Valle et al. (2022). "On the implementation of flux limiters in algebraic frameworks" in *Computer Physics Communications*.

F.X. Trias et al. (2023). "An Efficient Eigenvalue Bounding Method: CFL Condition Revisited" in SSRN.

Algebra-based design

Addressing the challenges

Numerical results 000000000000000 Concluding remarks 000

Algorithmic reformulation

Some extra effort is required to reformulate algebraically certain operations applying "locally".

Recently, it was shown how to effectively implement flux limiters and CFL-like time-steps.

Algebra-based boundary conditions

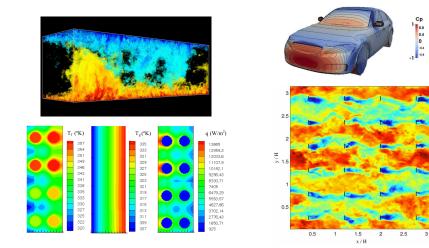
Virtually all boundary conditions can be expressed as an affine transformation:

 $\psi_h \to A\psi_h + b_h,$

where fluxes are imposed through A and values through b_h

N. Valle et al. (2022). "On the implementation of flux limiters in algebraic frameworks" in *Computer Physics Communications*.

F.X. Trias et al. (2023). "An Efficient Eigenvalue Bounding Method: CFL Condition Revisited" in SSRN.


Algebra-based design

Addressing the challenges

Numerical results

Concluding remarks

New opportunities: exploiting regular geometries - 1

F. Dabbagh et al. (2017) in Physics of Fluids

D.E. Aljure et al. (2018) in Journal of Wind Engineering and Industrial Aerodynamics

L. Paniagua et al. (2014) in Numerical Heat Transfer, Part B: Fundamentals

M. Calaf et al. (2010) in Physics of Fluids

Context	of	the	work	
00000)			

Algebra-based design

Addressing the challenges

Numerical results 00000000000000 Concluding remarks

New opportunities: exploiting regular geometries - 2

	₩₽₹₽З₽₹28328 ₽ 32832₹28 ₽ ₩921
(a) 1 symmetry	(b) 2 symmetries

Figure: 2D meshes with varying number of symmetries.

Context	of	the	work	
00000)			

Algebra-based design

Addressing the challenges

Numerical results 00000000000000 Concluding remarks

New opportunities: exploiting regular geometries - 3

	₩₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽ ₩₽₽₽₽₽₽₽
	III 1/01 III 1/01 IIII 1/01 III
	arx X × × × · · · · · · · · · · · · · · · ·
(a) 1 symmetry	(b) 2 symmetries

Figure: "Mirrored" ordering on 2D meshes with a varying no. of symmetries.

Algebra-based design

Addressing the challenges

Numerical results

Concluding remarks

New opportunities: exploiting regular geometries - 4

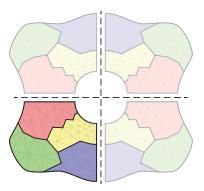


Figure: "Mirrored" partitioning on an unstructured 2D meshes with 2 symmetries.

Algebra-based design

Addressing the challenges

Numerical results

Concluding remarks

Computational advantages

On a domain with n_b repeated/mirrored subdomains, virtually all operators satisfy (or a compatible expression):

$$\bar{H} = \mathbb{I}_{n_b} \otimes H,\tag{1}$$

where $\bar{H} \in \mathbb{R}^{n \times n}$ stands for the operator itself and $H \in \mathbb{R}^{n/n_b \times n/n_b}$ for its restriction to the base mesh.

A. Alsalti-Baldellou et al. (2023). "Lighter and faster simulations on domains with symmetries", submitted.

Algebra-based design

Addressing the challenges

Numerical results

Concluding remarks

Computational advantages

On a domain with n_b repeated/mirrored subdomains, virtually all operators satisfy (or a compatible expression):

$$\bar{H} = \mathbb{I}_{n_b} \otimes H,\tag{1}$$

where $\bar{H} \in \mathbb{R}^{n \times n}$ stands for the operator itself and $H \in \mathbb{R}^{n/n_b \times n/n_b}$ for its restriction to the base mesh. Then, the standard SpMV on \bar{H} :

$$y = \begin{pmatrix} H & & \\ & \ddots & \\ & & H \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_{n_b} \end{pmatrix} \in \mathbb{R}^n,$$
(2)

A. Alsalti-Baldellou et al. (2023). "Lighter and faster simulations on domains with symmetries", submitted.

Algebra-based design

Addressing the challenges

Numerical results

Concluding remarks

Computational advantages

On a domain with n_b repeated/mirrored subdomains, virtually all operators satisfy (or a compatible expression):

$$\bar{H} = \mathbb{I}_{n_b} \otimes H,\tag{1}$$

where $\bar{H} \in \mathbb{R}^{n \times n}$ stands for the operator itself and $H \in \mathbb{R}^{n/n_b \times n/n_b}$ for its restriction to the base mesh. Then, the standard SpMV on \bar{H} :

$$y = \begin{pmatrix} H & & \\ & \ddots & \\ & & H \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_{n_b} \end{pmatrix} \in \mathbb{R}^n,$$
(2)

can be replaced with an SpMM on H:

$$(y_1 \dots y_{n_b}) = H(x_1 \dots x_{n_b}) \in \mathbb{R}^{n/n_b \times n_b}.$$
(3)

A. Alsalti-Baldellou et al. (2023). "Lighter and faster simulations on domains with symmetries", submitted.

Algebra-based design

Addressing the challenges

Numerical results

Concluding remarks 000

Computational advantages

On a domain with n_b repeated/mirrored subdomains, virtually all operators satisfy (or a compatible expression):

$$\bar{H} = \mathbb{I}_{n_b} \otimes H,\tag{1}$$

where $\bar{H} \in \mathbb{R}^{n \times n}$ stands for the operator itself and $H \in \mathbb{R}^{n/n_b \times n/n_b}$ for its restriction to the base mesh. Then, the standard SpMV on \bar{H} :

$$y = \begin{pmatrix} H & & \\ & \ddots & \\ & & H \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_{n_b} \end{pmatrix} \in \mathbb{R}^n,$$
(2)

can be replaced with an SpMM on H:

$$(y_1 \dots y_{n_b}) = H(x_1 \dots x_{n_b}) \in \mathbb{R}^{n/n_b \times n_b}.$$
(3)

SpMV vs SpMM

- SpMM reads $H n_b$ less times
- \bar{H} takes n_b times more memory than H

A. Alsalti-Baldellou et al. (2023). "Lighter and faster simulations on domains with symmetries", submitted.

Context	of	the	work	
00000)			

Algebra-based design

Addressing the challenges

Numerical results

Concluding remarks

Numerical advantages

Similarly, s symmetries decomposing Lx = b into 2^s decoupled subsystems:

$$\begin{pmatrix} \mathsf{L}_{\mathsf{inn}} + \mathsf{L}_{\mathsf{out}}^{(1)} & 0 \\ & \ddots & \\ 0 & \mathsf{L}_{\mathsf{inn}} + \mathsf{L}_{\mathsf{out}}^{(2^s)} \end{pmatrix} \begin{pmatrix} \hat{\mathbf{x}}_1 \\ \vdots \\ \hat{\mathbf{x}}_{2^s} \end{pmatrix} = \begin{pmatrix} \hat{\mathbf{b}}_1 \\ \vdots \\ \hat{\mathbf{b}}_{2^s} \end{pmatrix},$$

and such that:

$$\mathrm{rank}(\mathsf{L}_{\mathsf{out}}^{(i)}) = n_{\mathsf{ifc}} \ll \mathrm{rank}(\mathsf{L}_{\mathsf{inn}}) = n$$

A. Alsalti-Baldellou et al. (2023). "Exploiting spatial symmetries for solving Poisson's equation" in *Journal of Computational Physics*.

C. Janna and M. Ferronato (2011). "Adaptive pattern research for block FSAI preconditioning" in *SIAM Journal on Scientific Computing*.

A. Alsalti-Baldellou et al. (2023). "Exploiting symmetries for preconditioning Poisson's equation in CFD simulations" in *PASC23*.

Algebra-based design

Addressing the challenges

Numerical results 000000000000000 Concluding remarks 000

Numerical advantages

Similarly, s symmetries decomposing Lx = b into 2^s decoupled subsystems:

$$\begin{pmatrix} \mathsf{L}_{\mathsf{inn}} + \mathsf{L}_{\mathsf{out}}^{(1)} & 0 \\ & \ddots & \\ 0 & \mathsf{L}_{\mathsf{inn}} + \mathsf{L}_{\mathsf{out}}^{(2^s)} \end{pmatrix} \begin{pmatrix} \hat{\mathbf{x}}_1 \\ \vdots \\ \hat{\mathbf{x}}_{2^s} \end{pmatrix} = \begin{pmatrix} \hat{\mathbf{b}}_1 \\ \vdots \\ \hat{\mathbf{b}}_{2^s} \end{pmatrix},$$

Eureka!

Let M_{inn} be a preconditioner for L_{inn} , *i.e.*, $M_{\text{inn}}^{-1} \simeq L_{\text{inn}}^{-1}$. Then, we can seek low-rank corrections for M_{inn} such that:

$$\hat{\mathsf{L}}^{-1} \simeq \mathbb{I}_{2^{s}} \otimes M_{\mathsf{inn}} + \begin{pmatrix} W_{k}^{(1)} \Theta_{k}^{(1)} W_{k}^{(1)^{t}} & 0 \\ & \ddots & \\ 0 & & W_{k}^{(2^{s})} \Theta_{k}^{(2^{s})} W_{k}^{(2^{s})^{t}} \end{pmatrix}.$$

A. Alsalti-Baldellou et al. (2023). "Exploiting spatial symmetries for solving Poisson's equation" in *Journal of Computational Physics*.

C. Janna and M. Ferronato (2011). "Adaptive pattern research for block FSAI preconditioning" in *SIAM Journal on Scientific Computing*.

A. Alsalti-Baldellou et al. (2023). "Exploiting symmetries for preconditioning Poisson's equation in CFD simulations" in *PASC23*.

Algebra-based design

Addressing the challenges

Numerical results 000000000000000 Concluding remarks 000

Numerical advantages

Similarly, s symmetries decomposing Lx = b into 2^s decoupled subsystems:

$$\begin{pmatrix} \mathsf{L}_{\mathsf{inn}} + \mathsf{L}_{\mathsf{out}}^{(1)} & 0 \\ & \ddots & \\ 0 & \mathsf{L}_{\mathsf{inn}} + \mathsf{L}_{\mathsf{out}}^{(2^s)} \end{pmatrix} \begin{pmatrix} \hat{\mathbf{x}}_1 \\ \vdots \\ \hat{\mathbf{x}}_{2^s} \end{pmatrix} = \begin{pmatrix} \hat{\mathbf{b}}_1 \\ \vdots \\ \hat{\mathbf{b}}_{2^s} \end{pmatrix},$$

Eureka!

Let M_{inn} be a preconditioner for L_{inn}, *i.e.*, $M_{\text{inn}}^{-1} \simeq L_{\text{inn}}^{-1}$. Then, we can seek low-rank corrections for M_{inn} such that:

$$\hat{\mathsf{L}}^{-1} \simeq \mathbb{I}_{2^{s}} \otimes M_{\mathrm{inn}} + \begin{pmatrix} W_{k}^{(1)} \Theta_{k}^{(1)} W_{k}^{(1)^{t}} & 0 \\ & \ddots & \\ 0 & & W_{k}^{(2^{s})} \Theta_{k}^{(2^{s})} W_{k}^{(2^{s})^{t}} \end{pmatrix}$$

As a result: lower setup costs, decoupled corrections and SpMM!

A. Alsalti-Baldellou et al. (2023). "Exploiting spatial symmetries for solving Poisson's equation" in *Journal of Computational Physics*.

C. Janna and M. Ferronato (2011). "Adaptive pattern research for block FSAI preconditioning" in *SIAM Journal on Scientific Computing*.

A. Alsalti-Baldellou et al. (2023). "Exploiting symmetries for preconditioning Poisson's equation in CFD simulations" in *PASC23*.

Algebra-based design

Addressing the challenges

Numerical results

Concluding remarks 000

Numerical advantages

Similarly, s symmetries decomposing Lx = b into 2^s decoupled subsystems:

$$\begin{pmatrix} \mathsf{L}_{\mathsf{inn}} + \mathsf{L}_{\mathsf{out}}^{(1)} & 0 \\ & \ddots & \\ 0 & \mathsf{L}_{\mathsf{inn}} + \mathsf{L}_{\mathsf{out}}^{(2^S)} \end{pmatrix} \begin{pmatrix} \hat{\mathbf{x}}_1 \\ \vdots \\ \hat{\mathbf{x}}_{2^S} \end{pmatrix} = \begin{pmatrix} \hat{\mathbf{b}}_1 \\ \vdots \\ \hat{\mathbf{b}}_{2^S} \end{pmatrix},$$

LRCFSAI(k): Low-rank corrected FSAI

Let the aFSAI of L_{inn} be $G_{inn}^t G_{inn} \simeq L_{inn}^{-1}$. For each subsystem $\hat{L}_i = L_{inn} + L_{out}^{(i)}$, let $Y := (\mathbb{I} - G_{inn}\hat{L}_i G_{inn}^t)$. Then:

$$\hat{\mathsf{L}}_i^{-1} \simeq G_{\mathsf{inn}}^t G_{\mathsf{inn}} + W_k \Theta_k W_k^t,$$

where $Y \simeq U_k \Sigma_k U_k^t$ and $\Theta_k \coloneqq \Sigma_k (\mathbb{I} - \Sigma_k)^{-1}$ and $W_k \coloneqq L^{-t} U_k$.

A. Alsalti-Baldellou et al. (2023). "Exploiting spatial symmetries for solving Poisson's equation" in *Journal of Computational Physics*.

C. Janna and M. Ferronato (2011). "Adaptive pattern research for block FSAI preconditioning" in *SIAM Journal on Scientific Computing*.

A. Alsalti-Baldellou et al. (2023). "Exploiting symmetries for preconditioning Poisson's equation in CFD simulations" in *PASC23*.

Algebra-based design

Addressing the challenges

Numerical results

Concluding remarks

Low-rank corrected FSAI: residual convergence

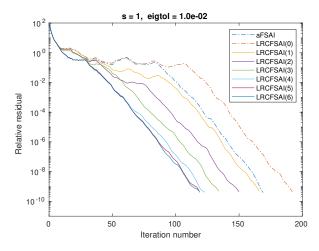


Figure: Convergence of PCG+LRCFSAI(k) on a 32^3 mesh with s = 1 symmetries.

Algebra-based design

Addressing the challenges ○○○○○○○○○●○ Numerical results

Concluding remarks

Low-rank corrected FSAI: residual convergence

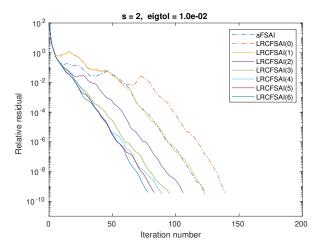


Figure: Convergence of PCG+LRCFSAI(k) on a 32^3 mesh with s = 2 symmetries.

Algebra-based design

Addressing the challenges ○○○○○○○○○○ Numerical results

Concluding remarks

Low-rank corrected FSAI: residual convergence

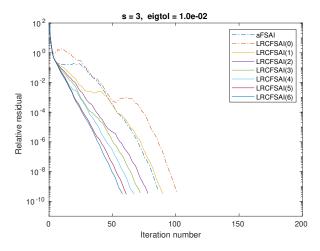


Figure: Convergence of PCG+LRCFSAI(k) on a 32^3 mesh with s = 3 symmetries.

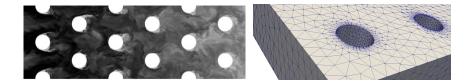
Algebra-based design

Addressing the challenges

Numerical results

Concluding remarks

Numerical results


Algebra-based design

Addressing the challenges

Numerical results

Concluding remarks

Exploiting symmetries – 1

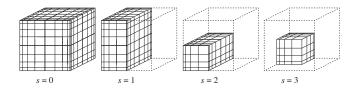


Figure: Top: 17.7M wall-bounded pin matrix heat exchanger. Bottom: 15.5M cubic mesh.

Algebra-based design

Addressing the challenges

Numerical results

Concluding remarks

Exploiting symmetries - 2

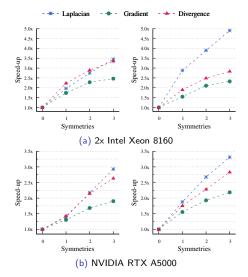


Figure: SpMM speedups on a fixed problem size. Left: structured. Right: unstructured.

Algebra-based design

Addressing the challenges

Numerical results

Concluding remarks

Exploiting symmetries - 3

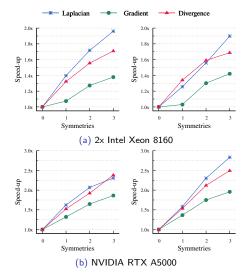


Figure: SpMM speedups on a fixed base mesh. Left: structured. Right: unstructured.

Algebra-based design

Addressing the challenges

Numerical results

Concluding remarks

Exploiting symmetries - 4

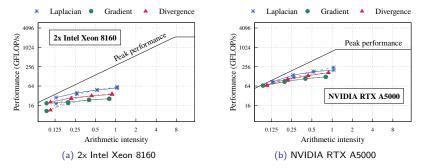


Figure: SpMM's roofline analysis. Dashed: fixed problem size. Solid: fixed base mesh.

Algebra-based design

Addressing the challenges

Numerical results

Concluding remarks

Exploiting symmetries - 5

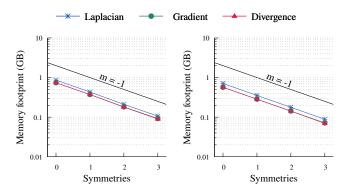


Figure: Operators' memory footprint. Left: structured. Right: unstructured.

Algebra-based design

Addressing the challenges

Numerical results

Concluding remarks

Exploiting symmetries - 5

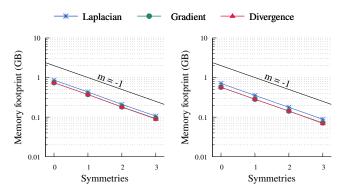
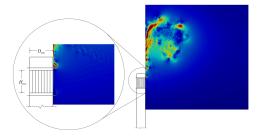


Figure: Operators' memory footprint. Left: structured. Right: unstructured.

More generally: repeated geometries lead to n_b times smaller footprints!


Algebra-based design

Addressing the challenges

Numerical results

Concluding remarks

Test-case: CSP central tower receiver

Assumptions for industrial LES

LES limitation to be routinely applied in the industry: to be completed overnight.

- Mesh resolution: 300M-500M grid
- Simulated time period: 150 time units
- Wall-clock time limit: 16 hours

R. Löhner et al. (2011). "Overnight industrial LES for external aerodynamics" in *Computers & Fluids*.

Algebra-based design

Addressing the challenges

Numerical results

Concluding remarks

TFA vs OpenFOAM: strong scalability

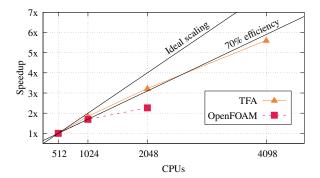


Figure: Scalability of TFA (MPI+OpenMP) vs OpenFOAM (MPI-only) down to 70% efficiency on a 500M CSP structured grid. Ran on AMD EPYC Rome nodes.

Algebra-based design

Addressing the challenges 0000000000

Numerical results

Concluding remarks

Towards overnight LES

Assuming constant Δt , to simulate τ time units, the required time-steps are:

$$n_{\Delta t} = \frac{\tau}{\Delta t}.$$

F.X. Trias et al. (2010). "Direct numerical simulation of a differentially heated cavity of aspect ratio 4 with Rayleigh numbers up to 10^{11} – Part I: Numerical methods and time-averaged flow" in *International Journal of Heat and Mass Transfer*.

Algebra-based design

Addressing the challenges

Numerical results

Concluding remarks

Towards overnight LES

Assuming constant Δt , to simulate τ time units, the required time-steps are:

$$n_{\Delta t} = \frac{\tau}{\Delta t}.$$

Recalling that LES are generally convection-dominated, for some correction constant c:

$$\Delta t = \min\left\{\frac{\Delta x_i}{|u_i|}\right\} \simeq \frac{c}{\sqrt[3]{N}},$$

where Δx , u and N stand for the cell length, local velocity and mesh size.

F.X. Trias et al. (2010). "Direct numerical simulation of a differentially heated cavity of aspect ratio 4 with Rayleigh numbers up to 10^{11} – Part I: Numerical methods and time-averaged flow" in *International Journal of Heat and Mass Transfer*.

Algebra-based design

Addressing the challenges

Numerical results

Concluding remarks

Towards overnight LES

Assuming constant Δt , to simulate τ time units, the required time-steps are:

$$n_{\Delta t} = \frac{\tau}{\Delta t}.$$

Recalling that LES are generally convection-dominated, for some correction constant c:

$$\Delta t = \min\left\{\frac{\Delta x_i}{|u_i|}\right\} \simeq \frac{c}{\sqrt[3]{N}},$$

where Δx , u and N stand for the cell length, local velocity and mesh size. Let $T_{\Delta t}^{\text{eff}}$ be the wall-clock time per time-step at a given parallel efficiency and on a mesh of size N_{ref} . Then, the wall-clock time of an LES of size N can be approximated as:

$$T_{\text{LES}}(N) \simeq n_{\Delta t} \frac{T_{\Delta t}^{\text{eff}} N}{N_{\text{ref}}} = \frac{\tau T_{\Delta t}^{\text{eff}}}{c N_{\text{ref}}} \sqrt[3]{N^4}.$$

F.X. Trias et al. (2010). "Direct numerical simulation of a differentially heated cavity of aspect ratio 4 with Rayleigh numbers up to 10^{11} – Part I: Numerical methods and time-averaged flow" in *International Journal of Heat and Mass Transfer*.

Algebra-based design

Addressing the challenges

Numerical results

Concluding remarks

Towards overnight LES

Assuming constant Δt , to simulate τ time units, the required time-steps are:

$$n_{\Delta t} = \frac{\tau}{\Delta t}.$$

Recalling that LES are generally convection-dominated, for some correction constant c:

$$\Delta t = \min\left\{\frac{\Delta x_i}{|u_i|}\right\} \simeq \frac{c}{\sqrt[3]{N}},$$

where Δx , u and N stand for the cell length, local velocity and mesh size. Let $T_{\Delta t}^{\text{off}}$ be the wall-clock time per time-step at a given parallel efficiency and on a mesh of size N_{ref} . Then, the wall-clock time of an LES of size N can be approximated as:

$$T_{\text{LES}}(N) \simeq n_{\Delta t} \frac{T_{\Delta t}^{\text{eff}} N}{N_{\text{ref}}} = \frac{\tau T_{\Delta t}^{\text{eff}}}{c N_{\text{ref}}} \sqrt[3]{N^4}.$$

According to Trias et al. (2010), $c \simeq 0.3$ and after 100 time units the flow starts becoming statistically stationary, so we take $\tau = 150$.

F.X. Trias et al. (2010). "Direct numerical simulation of a differentially heated cavity of aspect ratio 4 with Rayleigh numbers up to 10^{11} – Part I: Numerical methods and time-averaged flow" in *International Journal of Heat and Mass Transfer*.

Algebra-based design

Addressing the challenges

Numerical results

Concluding remarks

TFA vs OpenFOAM: strong scalability

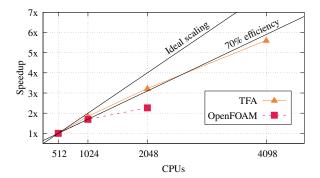


Figure: Scalability of TFA (MPI+OpenMP) vs OpenFOAM (MPI-only) down to 70% efficiency on a 500M CSP structured grid. Ran on AMD EPYC Rome nodes.

Algebra-based design

Addressing the challenges

Numerical results

Concluding remarks

Towards overnight LES – 95% parallel efficiency

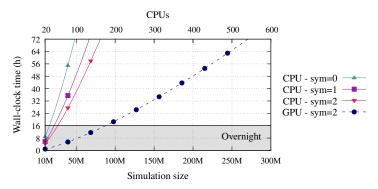


Figure: Estimated largest affordable overnight simulations on a 500M CSP structured grid. Ran on AMD EPYC Rome nodes and assuming a conservative 5x GPU speedup.

Algebra-based design

Addressing the challenges

Numerical results

Concluding remarks

Towards overnight LES – 75% parallel efficiency

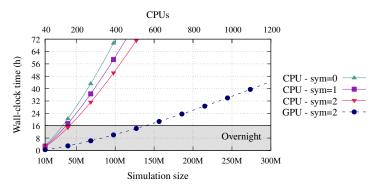


Figure: Estimated largest affordable overnight simulations on a 500M CSP structured grid. Ran on AMD EPYC Rome nodes and assuming a conservative 5x GPU speedup.

Algebra-based design

Addressing the challenges

Numerical results

Concluding remarks

Towards overnight LES – 65% parallel efficiency

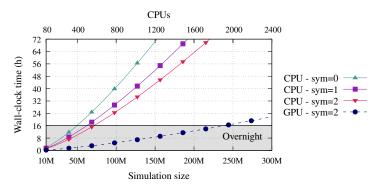


Figure: Estimated largest affordable overnight simulations on a 500M CSP structured grid. Ran on AMD EPYC Rome nodes and assuming a conservative 5x GPU speedup.

Algebra-based design

Addressing the challenges

Numerical results

Concluding remarks ●○○

Concluding remarks

Algebra-based design

Addressing the challenges

Numerical results

Concluding remarks ○●○

Conclusions

Summary:

• The algebra-based design allows for easy performance portability

Algebra-based design

Addressing the challenges 00000000000 Numerical results 00000000000000 Concluding remarks O●○

Conclusions

Summary:

- The algebra-based design allows for easy performance portability
- Despite the challenges it poses, it opens the door to new opportunities:
 - Specialised kernels such as SpMM
 - Specialised sparse matrix formats
 - Specialised solvers and preconditioners

Algebra-based design

Addressing the challenges 00000000000 Numerical results 00000000000000 Concluding remarks O●○

Conclusions

Summary:

- The algebra-based design allows for easy performance portability
- Despite the challenges it poses, it opens the door to new opportunities:
 - Specialised kernels such as SpMM
 - Specialised sparse matrix formats
 - Specialised solvers and preconditioners
- Massively parallel accelerators open the door to overnight industrial LES

Algebra-based design

Addressing the challenges 00000000000 Numerical results 00000000000000 Concluding remarks O●○

Conclusions

Summary:

- The algebra-based design allows for easy performance portability
- Despite the challenges it poses, it opens the door to new opportunities:
 - Specialised kernels such as SpMM
 - Specialised sparse matrix formats
 - Specialised solvers and preconditioners
- Massively parallel accelerators open the door to overnight industrial LES

Ongoing work:

Extend TFA vs OpenFOAM comparison

Algebra-based design

Addressing the challenges 00000000000 Numerical results 00000000000000 Concluding remarks ○●○

Conclusions

Summary:

- The algebra-based design allows for easy performance portability
- Despite the challenges it poses, it opens the door to new opportunities:
 - Specialised kernels such as SpMM
 - Specialised sparse matrix formats
 - Specialised solvers and preconditioners
- Massively parallel accelerators open the door to overnight industrial LES

Ongoing work:

- Extend TFA vs OpenFOAM comparison
- Evaluate the gains with GPUs

Algebra-based design

Addressing the challenges 00000000000 Numerical results 00000000000000 Concluding remarks O●○

Conclusions

Summary:

- The algebra-based design allows for easy performance portability
- Despite the challenges it poses, it opens the door to new opportunities:
 - Specialised kernels such as SpMM
 - Specialised sparse matrix formats
 - Specialised solvers and preconditioners
- Massively parallel accelerators open the door to overnight industrial LES

Ongoing work:

- Extend TFA vs OpenFOAM comparison
- Evaluate the gains with GPUs
- Evaluate the gains on regular domains like wind-farms and heat exchangers

Algebra-based design

Addressing the challenges 00000000000 Numerical results 00000000000000 Concluding remarks O●○

Conclusions

Summary:

- The algebra-based design allows for easy performance portability
- Despite the challenges it poses, it opens the door to new opportunities:
 - Specialised kernels such as SpMM
 - Specialised sparse matrix formats
 - Specialised solvers and preconditioners
- Massively parallel accelerators open the door to overnight industrial LES

Ongoing work:

- Extend TFA vs OpenFOAM comparison
- Evaluate the gains with GPUs
- Evaluate the gains on regular domains like wind-farms and heat exchangers
- Evaluate the gains with a novel multigrid reduction framework

Algebra-based design

Addressing the challenges

Numerical results

Concluding remarks

Thanks for your attention!