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Heat and Mass Transfer Technological Centre (CTTC)

o Lines of research:
e Simulation of (in)compressible flows, aeroacoustic, radiation, renewable
energies, HVAC...
o Experimental development of various industrial prototypes such as an
absorption chiller or a thermal solar plate collector.

o Development and implementation of numerical methods according to
current HPC systems

Figure: ESEIAAT campus in Terrassa Figure: JFF cluster at the CTTC
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Heat and Mass Transfer Technological Centre (CTTC)

@ Lines of research:
e Simulation of (in)compressible flows, aeroacoustic, radiation, renewable
energies, HVAC...
o Experimental development of various industrial prototypes such as an
absorption chiller or a thermal solar plate collector.

o Development and implementation of numerical methods according to
current HPC systems
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System Cores

Frontier - HPE Cray EX235a, AMD Optimized 3rd
Generation EPYC 64C 2GHz, AMD Instinct MI250X,
Slingshot-11, HPE

DOE/SC/0ak Ridge National Laboratory

United States

Supercomputer Fugaku - Supercomputer Fugaku,
Ab4FX 48C 2.2GHz, Tofu interconnect D, Fujitsu
RIKEN Center for Computational Science

Japan

LUMI - HPE Cray EX235a, AMD Optimized 3rd
Generation EPYC 64C 2GHz, AMD Instinct MI250X,
Slingshot-11, HPE

EuroHPC/CSC

Finland

Leonardo - BullSequana XH2000, Xeon Platinum 8358
32C 2.6GHz, NVIDIA A100 SXMé4 64 GB, Quad-rail
NVIDIA HDR100 Infiniband, Atos

EuroHPC/CINECA

Italy

8,699,904

7,630,848

2,220,288

1,824,768

Numerical results

0000000000000
Rmax Rpeak
(PFlop/s) (PFlop/s)

1,194.00 1,679.82
442.01 537.21
309.10 428.70
238.70 304.47

Concluding remarks
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Power
(kW)

22,703

29.899

6,016

7,404
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Towards performance portability

Stencil-based design

Looping across the mesh performing local operations
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Towards performance portability

Stencil-based design

Looping across the mesh performing local operations

@ Pros: More flexible and compute-intensive, lower memory requirements
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Towards performance portability

Stencil-based design

Looping across the mesh performing local operations
@ Pros: More flexible and compute-intensive, lower memory requirements

@ Cons: More challenging portability probably relying on
" hardware-agnostic” APIs (eg, OpenMP and OpenACC) or libraries (eg,
Kokkos and RAJA)
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Towards performance portability

Stencil-based design

Looping across the mesh performing local operations
@ Pros: More flexible and compute-intensive, lower memory requirements

@ Cons: More challenging portability probably relying on
" hardware-agnostic” APIs (eg, OpenMP and OpenACC) or libraries (eg,
Kokkos and RAJA)

Algebra-based design

Express discrete operators as sparse matrices and fields as vectors
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Towards performance portability

Stencil-based design

Looping across the mesh performing local operations
@ Pros: More flexible and compute-intensive, lower memory requirements

@ Cons: More challenging portability probably relying on
" hardware-agnostic” APIs (eg, OpenMP and OpenACC) or libraries (eg,
Kokkos and RAJA)

Algebra-based design

Express discrete operators as sparse matrices and fields as vectors

@ Pros: All operations reduce to 3 linear algebra kernels generally available
in standard libraries (eg, Intel MKL, cuSPARSE, cISPARSE)
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Towards performance portability

Stencil-based design

Looping across the mesh performing local operations
@ Pros: More flexible and compute-intensive, lower memory requirements

@ Cons: More challenging portability probably relying on
" hardware-agnostic” APIs (eg, OpenMP and OpenACC) or libraries (eg,
Kokkos and RAJA)

Algebra-based design

Express discrete operators as sparse matrices and fields as vectors

@ Pros: All operations reduce to 3 linear algebra kernels generally available
in standard libraries (eg, Intel MKL, cuSPARSE, cISPARSE)

o Cons: Less compute-intensive, higher memory requirements, requires
algorithmic reformulation
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HPC? library

HPC?2 libra

@ Sparse linear algebra code

@ Modular design ensuring natural portability

X. Alvarez-Farré et al. (2018). “HPC2 — A fully-portable, algebra-based framework for
heterogeneous computing. Application to CFD" in Computers & Fluids.

A. Alsalti-Baldellou et al. (2023). “Exploiting spatial symmetries for solving Poisson’s
equation” in Journal of Computational Physics.
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HPC? library

HPC?2 libra

@ Sparse linear algebra code
@ Modular design ensuring natural portability
In C++ and currently supporting MPI+OpenMP, CUDA and OpenCL

Implements a few highly optimized kernels. Namely:

o Matrix-vector product
o Linear combination of vectors
e Dot product of vectors

X. Alvarez-Farré et al. (2018). “HPC2 — A fully-portable, algebra-based framework for
heterogeneous computing. Application to CFD" in Computers & Fluids.

A. Alsalti-Baldellou et al. (2023). “Exploiting spatial symmetries for solving Poisson’s
equation” in Journal of Computational Physics.
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HPC? library

HPC?2 libra

@ Sparse linear algebra code

@ Modular design ensuring natural portability

@ In C++ and currently supporting MPI+OpenMP, CUDA and OpenCL
@ Implements a few highly optimized kernels. Namely:

o Matrix-vector product

o Linear combination of vectors

e Dot product of vectors
@ Als includes specialized kernels and Poisson solvers

X. Alvarez-Farré et al. (2018). “HPC2 — A fully-portable, algebra-based framework for
heterogeneous computing. Application to CFD" in Computers & Fluids.

A. Alsalti-Baldellou et al. (2023). “Exploiting spatial symmetries for solving Poisson’s
equation” in Journal of Computational Physics.
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TFA library

TFA library

@ Incompressible CFD simulation code

o Fully-conservative discretisation for collocated unstructured grids

F.X. Trias et al. (2014). “Symmetry-preserving discretization of Navier-Stokes equations on
collocated unstructured meshes” in Journal of Computational Physics.

X. Alvarez-Farré et al. (2021). “A hierarchical parallel implementation for heterogeneous
computing. Application to algebra-based CFD simulations on hybrid supercomputers” in
Computers & Fluids.
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TFA library

TFA library

@ Incompressible CFD simulation code

o Fully-conservative discretisation for collocated unstructured grids
@ Algebra-based, formulated in terms of:

e Sparse matrix-vector product
o Linear combination of vectors
e Dot product of vectors

F.X. Trias et al. (2014). “Symmetry-preserving discretization of Navier-Stokes equations on
collocated unstructured meshes” in Journal of Computational Physics.

X. Alvarez-Farré et al. (2021). “A hierarchical parallel implementation for heterogeneous
computing. Application to algebra-based CFD simulations on hybrid supercomputers” in
Computers & Fluids.
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Algorithmic reformulation

Some extra effort is required to reformulate algebraically certain operations

applying “locally"”.
Recently, it was shown how to effectively implement flux limiters and CFL-like

time-steps.

N. Valle et al. (2022). “On the implementation of flux limiters in algebraic frameworks” in

Computer Physics Communications.
F.X. Trias et al. (2023). “An Efficient Eigenvalue Bounding Method: CFL Condition

Revisited” in SSRN.
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Algorithmic reformulation

Some extra effort is required to reformulate algebraically certain operations
applying “locally"”.

Recently, it was shown how to effectively implement flux limiters and CFL-like
time-steps.

Algebra-based boundary conditions

Virtually all boundary conditions can be expressed as an affine transformation:
Un — AYn + by,

where fluxes are imposed through A and values through by,

N. Valle et al. (2022). “On the implementation of flux limiters in algebraic frameworks” in
Computer Physics Communications.

F.X. Trias et al. (2023). “An Efficient Eigenvalue Bounding Method: CFL Condition
Revisited” in SSRN.
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New opportunities: exploiting regular geometries — 1

q (Wim?)
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111079 ERE

10182.1
9256.43
833071
7405
6479.29
5553.57
4627.86
3702.14
277843
1850.71
az5

F. Dabbagh et al. (2017) in Physics of Fluids

D.E. Aljure et al. (2018) in Journal of Wind Engineering and Industrial Aerodynamics

L. Paniagua et al. (2014) in Numerical Heat Transfer, Part B: Fundamentals
M. Calaf et al. (2010) in Physics of Fluids

Concluding remarks
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New opportunities: exploiting regular geometries — 3
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Figure: "Mirrored” ordering on 2D meshes with a varying no. of symmetries.
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New opportunities: exploiting regular geometries — 4

Figure: “Mirrored” partitioning on an unstructured 2D meshes with 2 symmetries.
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Computational advantages

On a domain with ns repeated/mirrored subdomains, virtually all operators
satisfy (or a compatible expression):

H=1,, ®H, (1)

where H € R™*" stands for the operator itself and H € R™/™*"/™ for its
restriction to the base mesh.

A. Alsalti-Baldellou et al. (2023). “Lighter and faster simulations on domains with
symmetries”, submitted.
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Computational advantages

On a domain with ns repeated/mirrored subdomains, virtually all operators
satisfy (or a compatible expression):

H=1,, ®H, (1)

where H € R™*" stands for the operator itself and H € R™/™*"/™ for its
restriction to the base mesh. Then, the standard SpMV on H:
H T
H Tn,

A. Alsalti-Baldellou et al. (2023). “Lighter and faster simulations on domains with
symmetries”, submitted.
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Computational advantages

On a domain with ns repeated/mirrored subdomains, virtually all operators
satisfy (or a compatible expression):

H=1,, ®H, (1)

where H € R™*" stands for the operator itself and H € R™/™*"/™ for its
restriction to the base mesh. Then, the standard SpMV on H:

H T
y= . € Rn? (2)
H Tn,
can be replaced with an SpMM on H:
(yl...ynb):H(a:l..‘xnb)ER"/an"”. 3

A. Alsalti-Baldellou et al. (2023). “Lighter and faster simulations on domains with
symmetries”, submitted.
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Computational advantages

On a domain with ns repeated/mirrored subdomains, virtually all operators
satisfy (or a compatible expression):

H=1,, ®H, (1)

where H € R™*" stands for the operator itself and H € R™/™*"/™ for its
restriction to the base mesh. Then, the standard SpMV on H:

H T
Y= . € Rn? (2)
H Tn,
can be replaced with an SpMM on H:
(yl...ynb):H(a:l..‘xnb)ER"/an"”. 3

SpMV vs SpMM
@ SpMM reads H ny less times

o H takes n; times more memory than H

A. Alsalti-Baldellou et al. (2023). “Lighter and faster simulations on domains with
symmetries”, submitted.
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Numerical advantages
Similarly, s symmetries decomposing Lx = b into 2° decoupled subsystems:

Linn + LS 0 X1 b:

0 Lim & L3 | \%as bas

out

and such that:

rank(Lg?t) = niee < rank(Linn) =n

A. Alsalti-Baldellou et al. (2023). “Exploiting spatial symmetries for solving Poisson’s
equation” in Journal of Computational Physics.

C. Janna and M. Ferronato (2011). “Adaptive pattern research for block FSAI
preconditioning” in SIAM Journal on Scientific Computing.

A. Alsalti-Baldellou et al. (2023). “Exploiting symmetries for preconditioning Poisson’s
equation in CFD simulations” in PASC23.
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Numerical advantages
Similarly, s symmetries decomposing Lx = b into 2° decoupled subsystems:

Linn + LS 0 X1 b:

0 Lim & L3 | \%as bas

out

Let Minn be a preconditioner for Linn, i.e., M;-' =~ L.-'. Then, we can seek
low-rank corrections for Min, such that:

wHeMw ' 0
L™ ~ Ips @ Minn + :
28 28 28 t
0 we W)

A. Alsalti-Baldellou et al. (2023). “Exploiting spatial symmetries for solving Poisson’s
equation” in Journal of Computational Physics.

C. Janna and M. Ferronato (2011). “Adaptive pattern research for block FSAI
preconditioning” in SIAM Journal on Scientific Computing.

A. Alsalti-Baldellou et al. (2023). “Exploiting symmetries for preconditioning Poisson’s
equation in CFD simulations” in PASC23.
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Numerical advantages
Similarly, s symmetries decomposing Lx = b into 2° decoupled subsystems:

Linn + LS 0 X1 b:

0 Lim & L3 | \%as bas

out

Let Minn be a preconditioner for Linn, i.e., M;-' =~ L.-'. Then, we can seek
low-rank corrections for Min, such that:

wHeMw ' 0
L™ ~ Ips @ Minn + :
28 28 28 t
0 we W)

As a result: lower setup costs, decoupled corrections and SpMM!

A. Alsalti-Baldellou et al. (2023). “Exploiting spatial symmetries for solving Poisson’s
equation” in Journal of Computational Physics.

C. Janna and M. Ferronato (2011). “Adaptive pattern research for block FSAI
preconditioning” in SIAM Journal on Scientific Computing.

A. Alsalti-Baldellou et al. (2023). “Exploiting symmetries for preconditioning Poisson’s
equation in CFD simulations” in PASC23.
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Numerical advantages
Similarly, s symmetries decomposing Lx = b into 2° decoupled subsystems:

I—inn + Lg},z 0 5{1 f)l
0 Linn + L) ) \%os bas

LRCFSAI(k): Low-rank corrected FSAI
Let the aFSAI of Lin, be Gy Ginn ~ L1

inn

For each subsystem L; = Linn + Lgf,)t let Y = (I— GinnI:iGitnn).
Then:

|A_;1 ~ GitnnGinn + WkaW,ﬁ,
where Y ~ UkEkU;z and @k = Ek (H = Ek)_l and Wk = L_tUk.

A. Alsalti-Baldellou et al. (2023). “Exploiting spatial symmetries for solving Poisson’s
equation” in Journal of Computational Physics.

C. Janna and M. Ferronato (2011). “Adaptive pattern research for block FSAI
preconditioning” in SIAM Journal on Scientific Computing.

A. Alsalti-Baldellou et al. (2023). “Exploiting symmetries for preconditioning Poisson’s
equation in CFD simulations” in PASC23.
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Low-rank corrected FSAI: residual convergence
s =1, eigtol = 1.0e-02
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Figure: Convergence of PCG+LRCFSAI(k) on a 323

Iteration number

mesh with s = 1 symmetries.
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Low-rank corrected FSAI: residual convergence

s =2, eigtol = 1.0e-02
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Figure: Convergence of PCG+LRCFSAI(k) on a 323 mesh with s = 2 symmetries.
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Low-rank corrected FSAI: residual convergence
s =3, eigtol = 1.0e-02
102 , eigtol =
————— aFSAl
————— LRCFSAI(0)
100 B LRCFSAI(1) | 4
- LRCFSAI(2)
LRCFSAI(3)
102k LRCFSAI(4) | ]
LRCFSAI(5)
© - LRCFSAI(6)
=) N
2 4 \
g 10F N 3
g WL
2 \‘\ N\
S 08¢ N E
o N \ \
\
-8 [ \ \ 4
10 \ .
\ Y
10'10 L 4
0 50 100 150 200

Iteration number

Figure: Convergence of PCG+LRCFSAI(k) on a 323

mesh with s = 3 symmetries.
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Exploiting symmetries — 1

Figure: Top: 17.7M wall-bounded pin matrix heat exchanger. Bottom: 15.5M cubic
mesh.
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Exploiting symmetries — 2
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Figure: SpMM speedups on a fixed problem size. Left: structured. Right:
unstructured.
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Exploiting symmetries — 3
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Figure: SpMM speedups on a fixed base mesh. Left: structured. Right: unstructured.
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Exploiting symmetries — 4
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Figure: SpMM's roofline analysis. Dashed: fixed problem size. Solid: fixed base mesh.
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Exploiting symmetries — 5

—*— Laplacian —®— Gradient —*— Divergence

10 ¢

~ ~

/Mm as)

&) &)

= =

= =

] 2 1

= =

a &

£ =

5] 5]

< ]

= =

= b

9] 9]

& £

= | = |

0.01 1 1 1 1 0.01 1 1 1 1

0 1 2 3 0 1 2 3
Symmetries Symmetries

Figure: Operators’ memory footprint. Left: structured. Right: unstructured.
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Exploiting symmetries — 5
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Figure: Operators’ memory footprint. Left: structured. Right: unstructured.

More generally: repeated geometries lead to n; times smaller footprints!
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Test-case: CSP central tower receiver

Assumptions for industrial LES

LES limitation to be routinely applied in the industry: to be completed
overnight.

@ Mesh resolution: 300M-500M grid
o Simulated time period: 150 time units

o Wall-clock time limit: 16 hours

R. Lohner et al. (2011). “Overnight industrial LES for external aerodynamics” in Computers
& Fluids.
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TFA vs OpenFOAM: strong scalability
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Figure: Scalability of TFA (MPI+OpenMP) vs OpenFOAM (MPI-only) down to 70%

efficiency on a 500M CSP structured grid. Ran on AMD EPYC Rome nodes.
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Towards overnight LES

Assuming constant At, to simulate 7 time units, the required time-steps are:

Ay = ——
ATAL

F.X. Trias et al. (2010). “Direct numerical simulation of a differentially heated cavity of
aspect ratio 4 with Rayleigh numbers up to 10'! — Part I: Numerical methods and time-averaged
flow” in International Journal of Heat and Mass Transfer.
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Towards overnight LES

Assuming constant At, to simulate 7 time units, the required time-steps are:

T

nat = ——.

YA

Recalling that LES are generally convection-dominated, for some correction

constant c:
At . { Ax; } c
= min ~—
|uil VN

where Ax, u and N stand for the cell length, local velocity and mesh size.

F.X. Trias et al. (2010). “Direct numerical simulation of a differentially heated cavity of
aspect ratio 4 with Rayleigh numbers up to 10'! — Part I: Numerical methods and time-averaged
flow” in International Journal of Heat and Mass Transfer.
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Towards overnight LES

Assuming constant At, to simulate 7 time units, the required time-steps are:

Ay = ——
ATAL

Recalling that LES are generally convection-dominated, for some correction

constant c: A
X; C
At = min ~—
{ |uil } VN

where Ax, u and N stand for the cell length, local velocity and mesh size.
Let T be the wall-clock time per time-step at a given parallel efficiency and
on a mesh of size Nyf. Then, the wall-clock time of an LES of size IV can be
approximated as:

TN _ T o
TLES(N) = nat Nref N c]\fref N

F.X. Trias et al. (2010). “Direct numerical simulation of a differentially heated cavity of
aspect ratio 4 with Rayleigh numbers up to 10'! — Part I: Numerical methods and time-averaged
flow” in International Journal of Heat and Mass Transfer.
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Towards overnight LES

Assuming constant At, to simulate 7 time units, the required time-steps are:

Ay = ——
ATAL

Recalling that LES are generally convection-dominated, for some correction

constant c: A
X; C
At = min ~—
{ |uil } VN

where Ax, u and N stand for the cell length, local velocity and mesh size.
Let T be the wall-clock time per time-step at a given parallel efficiency and
on a mesh of size Nyf. Then, the wall-clock time of an LES of size IV can be
approximated as:

TN _ T o
TLES(N) = nat Nref N c]\fref N

According to Trias et al. (2010), ¢ ~ 0.3 and after 100 time units the flow
starts becoming statistically stationary, so we take 7 = 150.

F.X. Trias et al. (2010). “Direct numerical simulation of a differentially heated cavity of
aspect ratio 4 with Rayleigh numbers up to 10'! — Part I: Numerical methods and time-averaged
flow” in International Journal of Heat and Mass Transfer.
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Figure: Scalability of TFA (MPI+OpenMP) vs OpenFOAM (MPI-only) down to 70%

efficiency on a 500M CSP structured grid. Ran on AMD EPYC Rome nodes.
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Towards overnight LES — 95% parallel efficiency
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Figure: Estimated largest affordable overnight simulations on a 500M CSP structured
grid. Ran on AMD EPYC Rome nodes and assuming a conservative 5x GPU speedup.
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Towards overnight LES — 75% parallel efficiency
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Figure: Estimated largest affordable overnight simulations on a 500M CSP structured
grid. Ran on AMD EPYC Rome nodes and assuming a conservative 5x GPU speedup.
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Towards overnight LES — 65% parallel efficiency
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Figure: Estimated largest affordable overnight simulations on a 500M CSP structured
grid. Ran on AMD EPYC Rome nodes and assuming a conservative 5x GPU speedup.
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Conclusions

Summary:

@ The algebra-based design allows for easy performance portability
@ Despite the challenges it poses, it opens the door to new opportunities:

e Specialised kernels such as SpMM
o Specialised sparse matrix formats
e Specialised solvers and preconditioners

@ Massively parallel accelerators open the door to overnight industrial LES

Ongoing work:
o Extend TFA vs OpenFOAM comparison
o Evaluate the gains with GPUs
o Evaluate the gains on regular domains like wind-farms and heat exchangers

o Evaluate the gains with a novel multigrid reduction framework
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Thanks for your attention!
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