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1 Introduction
The numerical simulation of any transport phenomenon within the Finite Volume Method (FVM)
framework requires both space and time discretization of the governing equations. The incom-
pressible Navier-Stokes equations, which models the transport of mass, momentum and energy in a
fluid, are no exception. In order to deal with this, the usual methodology starts by discretizing the
equations in space, yielding the semi-discrete set of equations, using the notation from [1],

𝑀u𝑠 = 0𝑐, (1) Ω𝑑u𝑐
𝑑𝑡 +𝐶(u𝑠)u𝑐 −𝐷u𝑐 +Ω𝐺𝑐p𝑐 = 0𝑐, (2)

where 𝑀 is the face-to-cell divergence operator, Ω𝑐 is a diagonal matrix containing the cell volumes
so that Ω = 𝐼3 ⊗Ω𝑐, 𝐶𝑐 is the cell-to-cell convective operator so that 𝐶 = 𝐼3 ⊗𝐶𝑐, 𝐷𝑐 is the cell-to-cell
diffusive operator so that 𝐷 = 𝐼3 ⊗𝐷𝑐, 𝐺𝑐 is the cell-to-cell gradient operator, u𝑠 is the velocity field
defined at the faces, and 𝐼3 is the unit matrix of size 3.
In order to integrate in time these equations, however, multiple techniques have been used during the
development of the Computational Fluid Dynamics (CFD) theory. Pioneer studies from Moin and
Kim [2, 3] used different integrating schemes for both convective, a second order Adams-Bashforth
(AB2); and diffusive, an implicit Crank-Nicholson; terms, while the studies that followed generally
used a projection method [4] integrated completely in time using an AB2. Later studies incorporated
the use of second- and third-order Runge-Kutta schemes (RK2,RK3) due to larger stability regions
that provide larger time-steps [5]. More recently, Sanderse [6] explored conserving energy in time
using symplectic RK schemes, yet given its implicit nature makes them unsuitable for large-scale
simulations. In order to deal with that, Capuano et al. [7] developed and tested different pseudo-
symplectic RK schemes in flow simulations, which are more suitable given their explicit construction.
Originally, most of the publications set time-steps according to the classical Courant-Friedrichs-
Lewy (CFL) condition [8], which provides a simpler approximation to the stability region of the
simulation. Nonetheless, later on Trias and Lehmkuhl [9] considered a free-parameter multi-step
time integrator 𝜅1L2 with an adaptable stability region with the free parameter and computed the
time-step of the integration by enforcing the method to be in the boundary of the region, optimizing
thus the time-step while keeping a stable integration.

2 Methodology and preliminary results
The methodology for self-adaptive time-step strategies was first proposed by Trias and Lehmkuhl [9]
consisting on the computation of the eigenbounds by direct application of the Gershgorin circle the-
orem in both convection and diffusion matrices in every time-step of the computation. Nonetheless,
this process required an explicit reconstruction in every time-step of both matrices and thus more
efficient methodologies are seeked. In this novel approach, the construction of both diffusion and
convection matrices is revisited so that eventually the computation of the eigenbounds is simplified.
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For a general scalar transport equation,
𝑑𝝓𝑐
𝑑𝑡 +𝐶𝑐(u𝑠)𝝓𝑐 −𝐷𝑐(𝜶𝑠)𝝓𝑐 = 0𝑐, (3)

where 𝝓𝑐 is the transported scalar in the cells and 𝜶𝑠 is the diffusivity at the faces; this revision of
the construction of the matrices has the following outcome after assuming a symmetry-preserving
(SP) discretization [1, 10].

𝐷𝑐(𝜶𝑠) ≡ −𝑇𝑠𝑐𝐴𝑠Λ𝑠Δ−1
𝑠 𝑇𝑐𝑠 ≡ −𝑇𝑠𝑐Λ̃𝑠𝑇𝑐𝑠, (4a)

𝐶𝑐(u𝑠) ≡ 𝑇𝑠𝑐𝐴𝑠𝑈𝑠Π𝑐→𝑠 ≡⏟
SP

1
2𝑇𝑠𝑐𝐴𝑠𝑈𝑠|𝑇𝑐𝑠| = 1

2𝑇𝑠𝑐𝐹𝑠|𝑇𝑐𝑠|, (4b)

where 𝑇𝑠𝑐 is the face-to-cell incidence matrix, 𝐴𝑠 is the face-to-face diagonal matrix containing the
face surfaces, Λ𝑠 = 𝑑𝑖𝑎𝑔(𝜶𝑠) is the face-to-face diagonal matrix containing the face diffusivities,
Δ𝑠 = Ω𝑠𝐴−1

𝑠 is the diagonal matrix containing the projected distances 𝛿𝑛𝑓 = |n𝑓 ⋅ c1c2| between
the centers c1,c2 of the two cells adjacent to face f, 𝑇𝑐𝑠 = 𝑇 𝑇

𝑐𝑠 is the cell-to-face incidence matrix,
Π𝑐→𝑠 is the interpolator from cells to faces, and 𝑈𝑠 = 𝑑𝑖𝑎𝑔(u𝑠) is the diagonal matrix containing
the vector field at the faces. This construction will hence allow computing the bounds on the
eigenvalues without the need of an explicit construction of the matrices. By doing so, a family of
methods to compute the eigenvalues for both matrices arise, with the parameter 𝛼 arising from the
theorem that states that, for a matrix 𝐴 ∈ ℝ𝑛×𝑚 and a matrix 𝐵 ∈ ℝ𝑚×𝑛, the matrices 𝐴𝐵 ∈ ℝ𝑛×𝑛

and 𝐴𝑇 𝐵𝑇 ∈ ℝ𝑚×𝑚 will have the same eigenvalues except for the zero-valued ones and thus, the
following identity holds

𝜌(−𝑇𝑠𝑐Λ̃𝑇𝑐𝑠) = 𝜌(−Λ̃𝛼𝑇𝑐𝑠𝑇 𝑇
𝑐𝑠Λ̃1−𝛼), (5)

where 𝜌(𝜉) is the spectral radius of the matrix 𝜉. Moreover, its application to the convection operator
is straightforward.
Given that the method entirely depends on the space discretization, but not on the time discretiza-
tion, given a time-integrating scheme with known stability region (e.g. AB2, 𝜅1L2, RK3) this
method can be applied to obtain the optimal time-step more efficiently, compared to using the Ger-
shgorin circle theorem, providing much more efficient time-integrations when compared to using a
CFL condition.
This method has already been implemented and tested in a Rayleigh-Bénard configuration (RBC)
for two Rayleigh numbers (Ra), 108 and 1010 for two time-step computation and time integration
combinations (Fig. 1a). First of all, used as a benchmark, AB2+CFL setup, with Courant number
0.35 and von Neumann number 0.2 was run (Δ𝑡CFL+AB2). Moreover, the same tests have been run
for a 𝜅1L2+AlgEigCD (Δ𝑡AlgEigCD+𝜅1L2).
It has been observed that for an increasing number of grid points the influence of the diffusive term
in the magnitude of the eigenbounds has been increased, with a reduction of the average 𝜙 as shown
in Fig. 1b. Regarding the average time-step, it has been observed that by making use of an adaptive
time-step, with the improved method presented here, its ratio ranges between 1.5 and 2.2 amongst
all numerical grids used for the tests.
The obtained results for the RBC in this reduced set of time-integrating schemes and time-step cal-
culation show promising expectations for its application to Runge-Kutta schemes, given their bigger
stability region when compared to standard multi-step integrators (AB2, AB3), even compared to
the 𝜅1L2 scheme, which stability region is notably larger than the standard schemes. Hence, its
use for energy-conserving pseudo-symplectic explicit Runge-Kutta schemes [7] will be explored and
compared to classical Runge-Kutta schemes, and the effect on the energy-preserving properties of
this method, as well as the effect of skipping inter-stage pressure projections [13] in both stability
and energy-conserving properties.
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(a) Schema of the RBC configuration studied with
an instantaneous temperature field of a Ra = 1010,
Pr = 0.71 DNS [11].
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(b) Average 𝜑 (left axis) and average time-step ratio be-
tween both methods (right axis) for the RBC from Fig. 1a
for both Ra = 108 and Ra = 1010. Circled dots: Previous
DNS results [11, 12].

Figure 1: Schema of the test case (a) and current results obtained for a 𝜅1L2 scheme with the
AlgEigCD time-step setup, compared to the classical framework (b).
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