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Abstract
In this paper a novel approach to the computation

of the eigenbounds of the system of ordinary differen-
tial equations is presented. Afterwards, this approach
is applied for different Runge-Kutta methods with var-
ious properties among which the energy conservation
in time is considered. By doing so, the energy budgets
of these schemes applied to an inviscid flow as well as
a three-dimensional Taylor-Green vortex.

1 Introduction
The numerical solution of any transport phe-

nomenon within the Finite Volume Method (FVM)
framework requires both space and time discretiza-
tion of the governing equations. The incompressible
Navier-Stokes equations (NS), which model the trans-
port of mass, momentum and energy in a fluid, are no
exception. In order to deal with this, the usual method-
ology starts by discretizing the equations in space,
yielding the semi-discrete set of equations, using the
notation from Trias, Lehmkuhl, et al. (2014),

Mus = 0c, (1a)

Ω
duc
dt

+ C(us)uc −Duc + ΩGcpc = 0c, (1b)

where M is the face-to-cell divergence operator,
Ωc is a diagonal matrix containing the cell volumes so
that Ω = I3 ⊗ Ωc, Cc is the cell-to-cell convective
operator so that C = I3 ⊗ Cc, Dc is the cell-to-cell
diffusive operator so that D = I3 ⊗ Dc, Gc is the
cell-to-cell gradient operator, us is the velocity field
defined at the faces, and I3 is the identity matrix of
size 3.

In order to integrate in time these equations, how-
ever, multiple techniques have been used during the
development of the Computational Fluid Dynamics
(CFD) theory. Pioneer studies from Parviz Moin
and Kim (1982) used different integrating schemes
for both convective, a second-order Adams-Bashforth
(AB2) scheme; and diffusive, an implicit Crank-
Nicholson; terms, while the sutides that followed gen-
erally used the projection method from Chorin (1968),
integrating completely in time using an AB2.

Later studies from Kravchenko and Moin (1997)
incorporated the use of second- ad third-order Runge-
Kutta schemes (RK2, RK3) due to larger stability re-
gions that provide larger timesteps. However, a gen-
eral derivation for the use of these schemes was not
published until Sanderse and Koren (2012).

Originally, most of the publications set time-
steps according to the classical CFL condition from
Courant, Friedrichs, and Lewy (1927), which pro-
vides a simpler approximation to the stability region
of the simulation. Nonetheless, later on Trias and
Lehmkuhl (2011) considered a free-parameter multi-
step time integrator κ1L2 with an adaptable stability
region, with an adaptive stability region due to the free
parameter κ. This allowed an optimization of the sim-
ulation performance due to an increase on the time-
step while keeping the simulation stable.

With regards to energy conservation, the influence
of the space discretization has been widely studied in
both structured (Verstappen and Veldman (2003)) and
unstructured (Trias, Lehmkuhl, et al. (2014)) meshes,
and it has been considered to be the most relevant, yet
the influece of the time discretization in the kinetic
energy budget of the simulation is much less stud-
ied. Originally, Sanderse (2013) proposed a set of
symplectic RK schemes, yet its implicit nature leads
to an additional computational cost that may preclude
its application for large-scale simulations. In order to
deal with that, Capuano, Coppola, and Luca (2015)
developed and tested different pseudo-symplectic RK
schemes in flow simulations, which are more efficient
given their explicit construction.

2 Self-adaptive Runge-Kutta integration
of the Navier-Stokes equations

Starting from the semi-discrete Navier-Stokes
equations, Sanderse and Koren (2012) proposed the
method for the integration with RK. Following its no-
tation, an s-stage explicit RK can be applied to the in-
tegration of the NS equations as follows, note that the
c subscripts have been dropped for simplicity reasons.

Rearranging the semi-discrete equations and defin-
ing

F (us)uc = Ω−1(Duc − C(us)uc), and applying



the continuity equation, it can be derived that

duc
dt

= (In −GL−1M)F (us)uc, (2)

where In−GL−1M is the so-called projection op-
erator P , which leads to

duc
dt

= F̃ (us)uc, (3)

being F̃ (us) = PF (us). In this system of
ODE, however, the direct application of a Runge-Kutta
scheme would be rather difficult since the construction
of P would be complex. Hence, the projection method
from Chorin (1968) can be applied, dividing this pro-
jection process in two different steps and thus not hav-
ing to construct the operator.

Hence, with this splitting, for the inner stages, the
method reads as follows,

u∗i = un + ∆t

i−1∑
j=1

aijFj , (4a)

LΨi =
1

ci∆t
Mu∗i , (4b)

ui = u∗i −∆tGΨi, i = 1, . . . , s (4c)

while for the last stage, it is slightly changed to

u∗ = un + ∆t

s∑
i=1

biFi, (5a)

LΨn+1 =
1

∆t
Mu∗, (5b)

un+1 = u∗ −∆tGΨn+1, (5c)

where bi and aij are the scheme coefficients
usually arranged in the so-called Butcher tableau
(Butcher (2016)), u∗ are the predictor velocities from
Chorin’s projection method, and Ψ are the first-order
approximations to the pressure field. The time-step ∆t
will be set by making use of a self-adaptive algorithm.

Note that, in general, the initial velocity field might
be incompressible analytically yet numerically those
vectors do not fulfill Mus = 0c. Hence, the field
should be projected to the incompressible set of solu-
tions. Let u0,a be the initial field consisiting of the
analytical function now discretized, hence, this would
generate an initial pressure field p0 such that

Lp0 =
1

∆t
Mu0,a, (6)

leading to the projection stage,

u0 = u0,a −∆tGp0 (7)

In order to do so, the original method developed
by Trias and Lehmkuhl (2011) will be replaced by a

novel method since the original requires an explicit re-
construction in every iteration of both convective and
diffusive matrices and thus more efficient methodolo-
gies are seeked.

Starting from a general semi-discretized scalar
transport equation,

dφc
dt

+ Cc(us)φc −Dc(αs)φc = 0c, (8)

where φc is the transported scalar in the cells and
αs is the diffusivity at the faces; this revision the con-
struction of the matrces has the following outcome, if
a symmetr-preserving (SP) discretization is applied.

Dc(αs) = −TscAsΛs∆−1
s Tcs = −TscΛ̃sTcs, (9a)

Cc(us) = TscAsUsΠc→s =︸︷︷︸
SP

1

2
AsUs|Tcs|, (9b)

where Tsc is the face-to-cell incidence matrix, As
is the face-to-face diagonal matrix containing the face
diffusivities, ∆s = ΩsA

−1
s is the diagonal matrix con-

taining the projected distances between the centers of
the cells adjacent to a given face f , Tcs = TTcs is the
cell-to-face incidenxe matrix, Πc→s is the intepolator
from cells to faces, and Us = diag(us) is the diagonal
matrix containing the vector field at the faces. This
construction will hence allow computing the eigen-
bounds without the need of an explicit construction
of the matrices. By doing so, a family of methods to
compute the eigenvalues arise, with the parameter α
arising from the theorem that states that, given a ma-
trix A ∈ Rn×m and a matrix B ∈ Rm×n, the matrices
AB and ATBT will have the same eigenvalues except
for the zero-values ones and thus, the following iden-
tity holds

ρ(Dc) = ρ(−TscΛ̃sTcs) = ρ(−Λ̃αTcsT
T
csΛ̃

1−α),
(10)

where ρ(ξ) is the spectral radius of the matrix ξ.
For the convection matrix, in order to avoid recon-
structing the matrix every iteration, it can be proven
that

4ρ(Cc(us)) ≤ ρ(|Fs|α|TcsTTcs||Fs|1−α). (11)

Given that if the convective operator is skew-
symmetric will have its eigenvalues located in the
imaginary axis, and a symmetric diffusive operator
will have them located in the real axis, it can be stated
that the eigenvalues of the operator Fj will be bounded
by

λF ≤ −|ρ(Dc)|+ iρ(Cc(us)). (12)

For any given explicit Runge-Kutta scheme, its sta-
bility region (Fig. 1) can be determined by the general
formulation from Butcher (2016)
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Figure 1: Stability region of different Runge-Kutta schemes.

R(z) = 1 + zbT (Is − zA)−11, (13)

where A is the matrix containing the aij co-
efficients of the Butcher tableau, as well as b =
(b1 b2 . . . bs)

T and 1 = (1 1 . . . 1)T ∈ Rs, with
z ∈ C. Nonetheless, if the order of accuracy of the
method coincides with the number of stages from the
method (i.e. Euler, RK2, RK3, RK4), Eq. (13) can be
rewritten as

R(z) = 1 +

s∑
p=1

1

p!
zp, (14)

which simplifies notably the computation of the
stability region for the method.

Hence, given the eigenbounds for the method
as well as the stability region of the Runge-Kutta
scheme, the maximum stable time-step ∆tstab will be
computed following the methodology from Trias and
Lehmkuhl (2011) by adding a scaling factor f∆t so
that

∆t = f∆t∆tstab, (15)

This allows checking the effect of f∆t on the
energy budget of a simulation, as it is expected to
lower the dissipation caused by the time integrating
schemes-

3 Kinetic energy budget for the Navier-
Stokes equations

In order to obtain a physics-compatible solver, the
conservation of energy should be aimed. As it has
been widely studied previously, the contributions in
the energy conservation of the space discretization are
strictly dependant on the construction of both convec-
tive and diffusive operators. By defining a global ki-
netic energy as E = uTc uc/2 ∈ R, the semi-discrete
kinetic energy equation reads as follows,

uTc Ω
duc
dt

= −uTc C(us)uc − uTc Gcpc + uTc Duc.

(16)
Note that if the operators preserve their symme-

tries, i.e. D is symmetric, C(us) is skew-symmetric,
and GTc = −M , the convective term contribution
should vanish in every geometry (Trias, Lehmkuhl, et
al. (2014)), while the pressure contribution will vanish
in staggered configurations, so that the only contribu-
tion in energy variation, in the semi-discrete formula-
tion, would be due to the diffusive term. Nonetheless,
their contribution in the kinetic energy budget will be
considered to verify the expected results.

When Eq. (16) is integrated in time, an additional
term due to the energy imbalances from the time-
integration appears,

∆E

∆t
= Et,C + Et,D + Et,p + εRK , (17)

where Et,C = −∑s
i=1 biu

T
c,iCuc,i is the

contribution from the convective term, Et,D =∑s
i=1 biu

T
c,iDuc,i from the diffusive term, Et,p =

−∑s
i=1 biu

T
c,iGcpc,i from the pressure gradient,

∆E

∆t
=

uT,nc Ωcu
n
c − uT,n−1

c Ωcu
n−1
c

∆t
,

and εRK is the contribution from the Runge-Kutta
scheme. As previously stated, it is expected that
Et,C = Et,p = 0 in a staggered formulation, while
a mathematical expression for εRK was proposed by
Capuano, Coppola, and Luca (2015).

Nonetheless, this expression would be rather diffi-
cult to evaluate since it requires the use of the projec-
tion operator P and thus it is easier to evaluate it by
difference with the other terms, which can be easily
computed from the simulation results.

4 Numerical experiments
The numerical experiments carried out to vali-

date the method will be split into two different cat-
egories. First of all, for a given time-step, an in-
viscid flow simulation has been performed in order
to check that there was no energy dissipation due
to the convective term as well as the pressure term,
since their symmetry-preserving construction should
lead to conservation with the same accuracy as the
pressure solver. This problem will be solved mak-
ing use of five different schemes (Tab. 1) so that
their properties can be compared. These schemes
will be the classical one-, two-, three- and four-stages
Runge-Kutta schemes, as well as a six-stages pseudo-
symplectic Runge-Kutta scheme first presented by Ca-
puano, Coppola, and Luca (2015), named in their pa-
per 4p7q(6), having fourth-order in accuracy and sev-
enth in pseudo-symplecticity.



Table 1: List of the Runge-Kutta schemes used.

Method Num. stages, s Ord. accuracy, p

Euler 1 1
Heun RK2 2 2
Heun RK3 3 3

Standard RK4 4 4
4p7q(6) 6 4

Afterwards, the same Runge-Kutta schemes have
been tested in a three-dimensional Taylor-Green vor-
tex problem which will ensure that all components are
well resolved.

This inviscid flow will be computed up to t = 3
s, in a cubic domain with side length 1.0 and will be
started with a random distribution of values centered
around 1.0 with a maximum value of 2.0 and a mini-
mum value of 0.0, and then this field is turned incom-
pressible by computing a pressure field and then pro-
jecting the velocity field to the incompressible space.
Having a random flow will ensure that no error cancel-
lation is observed. In order to test the method, it will
be tested with a 643 mesh, with ∆t ∈ [10−4, 5×10−3].

Note that, since the space discretization used in all
the listed schemes in Tab. 1 is the same, the yield for
the tests for the operators,

uTc Dvc − vTc Duc = 0, (18a)

uTc Cvc + vTc Cuc = 0, (18b)
max(Mus) = 0, (18c)

where uc,vc are vectors satisfying the incompress-
ibility condition so that the skew-symmetry condition
can be fulfilled, should be rather similar for all of them
with any scheme (Fig. 2). Even though the figure just
shows two different schemes, the similarity trend has
been observed for every method used.

With regards to the energy budgets, it is expected
that given the spectroconsistent discretization, both
pressure and convective contributions to the energy
variation should be zero (Fig. 3) in a structured and
staggered setup as used. This has been observed in all
the values of ∆t used as well as for all the solvers from
Tab. 1, yet for the sake of readibility, only three have
been shown.

In regards to the three-dimensional Taylor-Green
vortex, it has been initialized in a 2π×2π×2π domain,
with the velocity field

ux,0 = U0
2√
3

sinx cos y cos y (19a)

uy,0 = U0
2√
3

cosx sin y cos y (19b)

uz,0 = U0
2√
3

cosx cos y sin y (19c)
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Figure 2: Yield of the symmetry-preserving spatial dis-
cretization tests for two of the solvers used for a
given ∆t. (Top) Heun RK2, ∆t = 10−4. (Bot-
tom) 4p7q(6), ∆t = 10−4.

and run up until t̃ = 20, being t̃ = t/(2π/U0),
as Capuano, Coppola, and Luca (2015). This has
been run for two different Reynolds numbers, Re =
[300, 3000], so that the effect of the Reynolds num-
ber can also be analyzed, with a mesh of 323 control
volumes, and f∆t = {0.1, 0.2}. Note that the differ-
ent cases that are presented will have different time-
steps, as their stability regions grow with the number
of stages. With regards to the energy budgets, a no-
table change is obtained with the increase of ∆t for all
the used schemes (i.e. 4p7q(6) in Fig. 4) and thus the
preservation of the energy (apart from the dissipation
due to the time integrating scheme) will be reduced
with bigger time-steps.

5 Conclusion
In this paper a novel method to compute the eigen-

bounds of the semi-discrete Navier-Stokes equations
has been presented. With this method being ap-
plied, then different Runge-Kutta schemes with dif-
ferent properties concerning their energy preservation
in time have been tested and their emergy budgets
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Figure 3: Energy budget contribution from the convective
(top) and pressure (bottom) terms in the random
inviscid flow simulations for ∆t = 5× 10−3.

for an incompressible three-dimensional Taylor-Green
vortex problem have been presented.
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