On self-adaptive Runge-Kutta Schemes with Improved Energy-Conservation Properties

J. Plana-Riu, F.X. Trias, C.D. Pérez-Segarra, A. Oliva

Heat and Mass Transfer Technological Centre Technical University of Catalonia

14th ERCOFTAC Symposium on Engineering, Turbulence Modeling and Measurements

September 6th-8th, 2023 Barcelona

Introduction

- 2 Runge-Kutta applied to Navier-Stokes
- Self-adaptive time integration

4 Energy budget

5 Numerical experiments

6 Conclusion

Introduction	Runge-Kutta applied to Navier-Stokes	Self-adaptive time integration	Energy budget	Numerical experiments	Conclusion
•0		000	00	0000	
Introduct	ion				

\mathbf{CFL}^1

First used method to ensure the stability of an explicit integration

$$\frac{du}{dt} + u\frac{du}{dx} = 0$$

$$\downarrow$$

$$\left(\frac{u\Delta t}{\Delta x}\right)_{max} \le 1$$

¹Courant, R, Friedrichs, K, and Lewy, H. (1927), "Über die partiellen Differenzengleichungen der matematischen Physik". Mathematische Annalen 100 (1), pp. 32-74

Introduction	Runge-Kutta applied to Navier-Stokes	Self-adaptive time integration	Energy budget	Numerical experiments	Conclusion
•0		000	00	0000	
Introduc	stion				

CFL^1

First used method to ensure the stability of an explicit integration

$$\frac{du}{dt} + u\frac{du}{dx} = 0$$

$$\downarrow$$

$$\left(\frac{u\Delta t}{\Delta x}\right)_{max} \le 1$$

\mathbf{SAT}^2

Computation of the eigenbounds in the predictor velocity step to set the maximum stable Δt

¹Courant, R, Friedrichs, K, and Lewy, H. (1927), "Über die partiellen Differenzengleichungen der matematischen Physik". Mathematische Annalen 100 (1), pp. 32-74

Introduction	Runge-Kutta applied to Navier-Stokes	Self-adaptive time integration	Energy budget	Numerical experiments	Conclusion
•0		000	00	0000	
Introduc	stion				

CFL^1

First used method to ensure the stability of an explicit integration

$$\frac{du}{dt} + u\frac{du}{dx} = 0$$

$$\downarrow$$

$$\left(\frac{u\Delta t}{\Delta x}\right)_{max} \le 1$$

\mathbf{SAT}^2

Computation of the eigenbounds in the predictor velocity step to set the maximum stable Δt

¹Courant, R, Friedrichs, K, and Lewy, H. (1927), "Über die partiellen Differenzengleichungen der matematischen Physik". Mathematische Annalen 100 (1), pp. 32-74

Introduction	Runge-Kutta applied to Navier-Stokes	Self-adaptive time integration	Energy budget	Numerical experiments	Conclusion
00		000	00	0000	
Introdu	ction				

Energy-preserving simulations

- Conservation in space has been widely studied, by Verstappen and Veldman³ and Trias et al.⁴.
 - Sets how operators have to be constructed.
- But... conservation in time?
 - $\bullet\,$ Sanderse^5 applied symplectic Runge-Kutta schemes $\rightarrow\,$ implicit integrators
 - Capuano et al.⁶ used pseudo-symplectic schemes: explcit, conservation of energy up until a certain order q

³Verstappen, R.W.C.P, Veldman, A.E.P. (2003), "Symmetry-preserving discretization of turbulent flow". Journal of Computational Physics 187 (1), pp. 343-368

⁴Trias, F.X. et al. (2014), "Symmetry-preserving discretization of Navier-Stokes equations on collocated unstructured grids". Journal of Computational Physics 258, pp. 24-267

⁵Sanderse, B. (2013), "Energy-conserving Runge-Kutta methods for the incompressible Navier-Stokes equations". Journal of Computational Physics 233 (1), pp. 100-131

⁶Capuano, F. et al. (2016), "Explicit Runge-Kutta schemes for incompressible flow with improved energy-conservation properties". Journal of Computational Physics 328, pp. 86-94

Introduction	Runge-Kutta applied to N	avier-Stokes	Self-adaptive time i	integration Energy bud	get Numerical experime	nts Conclusion
00	•		000	00	0000	
_						

Runge-Kutta applied to Navier-Stokes

Starting point...

$$Mu_s = 0_c$$

$$\Omega \frac{du_c}{dt} + C(u_s)u_c - Du_c + \Omega G_c p_c = 0_c$$

• Putting together both expressions...

$$\frac{du_c}{dt} = \underbrace{(I_n - GL^{-1}M)}_{\text{Projection operator},P} F(u_s)u_c$$

$$u_i^* = u_n + \Delta t \sum_{j=1}^{i-1} a_{ij} F_j \qquad u_{n+1}^* = u_n + \Delta t \sum_{i=1}^s b_i F_i$$
$$L\Psi_i = \frac{1}{\Delta t} Du_i^* \qquad L\Psi_{n+1} = \frac{1}{\Delta t} Du_{n+1}^*$$
$$u_i = u_i^* - \Delta t G\Psi_i \qquad u_{n+1} = u_{n+1}^* - \Delta t G\Psi_{n+1}$$

According to Sanderse and Koren ⁵,

⁵Sanderse, B., Koren, B. (2012), "Accuracy analysis of explicit Runge-Kutta methods applied to the incompressible Navier-Stokes equations", Journal of Computational Physics 231 (8), pp. 3041-3063

	Runge-Kutta applied to Navier-Stokes	Self-adaptive time integration	Energy budget		Conclusion
00		000	00	0000	
Stability	region of Runge-K	utta			

- Coefficients a_{ij} , b_i from the method: Butcher tableau, $A = [a_{ij}]_{i=1,...,s;j=1,...,s}$, $b = (b_1 \ b_2 \ \dots \ b_s)$
- In general, $R(z) = 1 + zb^T (I_s zA)^{-1} 1_s$, yet for p = s, $R(z) = 1 + \sum_{p=1}^s \frac{1}{p!} z^p$

	Runge-Kutta applied to Navier-Stokes	Self-adaptive time integration	Energy budget	Numerical experiments	Conclusion
00		000	00	0000	
Computa	ation of eigenbound	S			

- Need to compute the eigenbounds of $F(u_s) = D C(u_s)$
- If *D* and *C*(u_s) are discretized with a symmetry-preserving scheme²,

²Trias, F.X, Lehmkuhl, O. (2011), "A self-adaptive strategy for the time integration of Navier-Stokes equations". Numerical Heat Transfer, Part B: Fundamentals 60 (2), pp. 116-134

	Runge-Kutta applied to Navier-Stokes	Self-adaptive time integration	Energy budget	Numerical experiments	Conclusion
00		000	00	0000	
Comput	ation of eigenbound	ls			

- Need to compute the eigenbounds of $F(u_s) = D C(u_s)$
- If *D* and *C*(u_s) are discretized with a symmetry-preserving scheme²,

²Trias, F.X, Lehmkuhl, O. (2011), "A self-adaptive strategy for the time integration of Navier-Stokes equations". Numerical Heat Transfer, Part B: Fundamentals 60 (2), pp. 116-134

	Runge-Kutta applied to Navier-Stokes	Self-adaptive time integration	Energy budget	Numerical experiments	Conclusion
00		000	00	0000	
Comput	ation of eigenbound	ls			

- Need to compute the eigenbounds of $F(u_s) = D C(u_s)$
- If *D* and *C*(u_s) are discretized with a symmetry-preserving scheme²,

²Trias, F.X, Lehmkuhl, O. (2011), "A self-adaptive strategy for the time integration of Navier-Stokes equations". Numerical Heat Transfer, Part B: Fundamentals 60 (2), pp. 116-134

	Runge-Kutta applied to Navier-Stokes	Self-adaptive time integration	Energy budget	Numerical experiments	Conclusion
00		000	00	0000	
Comput	ation of eigenbound	ls			

- Need to compute the eigenbounds of $F(u_s) = D C(u_s)$
- If *D* and *C*(u_s) are discretized with a symmetry-preserving scheme²,

• $\rho(D)$ and $\rho(C)$ can be computed independently with Gershgorin circle theorem

	Runge-Kutta applied to Navier-Stokes	Self-adaptive time integration	Energy budget	Numerical experiments	Conclusion
00		000	00	0000	
Computa	ation of eigenbound	S			

- Need to compute the eigenbounds of $F(u_s) = D C(u_s)$
- If *D* and *C*(u_s) are discretized with a symmetry-preserving scheme²,

• $\rho(D)$ and $\rho(C)$ can be computed independently with Gershgorin circle theorem

	Runge-Kutta applied to Navier-Stokes	Self-adaptive time integration	Energy budget	Numerical experiments	Conclusion
00		000	00	0000	
Comput	ation of eigenbound	ls			

- Need to compute the eigenbounds of $F(u_s) = D C(u_s)$
- If *D* and *C*(u_s) are discretized with a symmetry-preserving scheme²,

²Trias, F.X, Lehmkuhl, O. (2011), "A self-adaptive strategy for the time integration of Navier-Stokes equations". Numerical Heat Transfer, Part B: Fundamentals 60 (2), pp. 116-134

	Runge-Kutta applied to Navier-Stokes	Self-adaptive time integration	Energy budget	Numerical experiments	Conclusion
00		000	00	0000	
Comput	ation of eigenbound	le			

Computation of eigenbounds

Construction of operators

$$D_{c}(\alpha_{s}) = -T_{sc}A_{s}\Lambda_{s}\Delta_{s}^{-1}T_{cs} = -T_{sc}\tilde{\Lambda}_{s}T_{cs}$$
$$C_{c}(u_{s}) = T_{sc}A_{s}U_{s}\Pi_{c\to s}\underbrace{=}_{SP}\frac{1}{2}A_{s}U_{s}|T_{cs}|$$

By knowing $\rho(AB) = \rho(A^T B^T)$

$$\rho(D_c) = \rho(-\tilde{\Lambda}^{\alpha} T_{cs} T_{cs}^{T} \tilde{\Lambda}^{1-\alpha})$$

$$4\rho(C_c(\mathsf{u}_s)) \le \rho(|F_s|^{\alpha} | T_{cs} T_{cs}^{T} ||F_s|^{1-\alpha})$$

• Allows recomputing the eigenbounds without the reconstruction of D_c, C_c

Introduction	Runge-Kutta applied to Navier-Stokes	Self-adaptive time integration	Energy budget	Numerical experiments	Conclusion
00		000	•0	0000	
Kinetic e	nergy budget for th	e Navier-Stokes	s equations		

Semi-discrete Kinetic energy equation

$$\mathbf{u}_{c}^{\mathsf{T}}\Omega\frac{d\mathbf{u}_{c}}{dt} = -\mathbf{u}_{c}^{\mathsf{T}}C(\mathbf{u}_{s})\mathbf{u}_{c} - \mathbf{u}_{c}^{\mathsf{T}}G_{c}\mathbf{p}_{c} + \mathbf{u}_{c}^{\mathsf{T}}D\mathbf{u}_{c}$$

Introduction	Runge-Kutta applied to Navier-Stokes	Self-adaptive time integration	Energy budget	Numerical experiments	Conclusion
00	0	000	00	0000	0
Kinetic e	nergy budget for th	ne Navier-Stokes	s equations		

Semi-discrete Kinetic energy equation

$$\mathbf{u}_{c}^{\mathsf{T}}\Omega\frac{d\mathbf{u}_{c}}{dt} = -\mathbf{u}_{c}^{\mathsf{T}}C(\mathbf{u}_{s})\mathbf{u}_{c} - \mathbf{u}_{c}^{\mathsf{T}}G_{c}\mathbf{p}_{c} + \mathbf{u}_{c}^{\mathsf{T}}D\mathbf{u}_{c}$$

So... integrated in time with Runge-Kutta...

$$\frac{\Delta E}{\Delta t} = -\sum_{i=1}^{s} b_i \mathbf{u}_i^T C_i \mathbf{u}_i - \sum_{i=1}^{s} b_i \mathbf{u}_i^T G_c \mathbf{p}_i + \sum_{i=1}^{s} b_i \mathbf{u}_i^T D \mathbf{u}_i + \varepsilon_{RK}$$

Introduction	Runge-Kutta applied to Navier-Stokes	Self-adaptive time integration	Energy budget	Numerical experiments	Conclusion
00	0	000	00	0000	0
Kinetic e	nergy budget for th	ne Navier-Stokes	s equations		

Semi-discrete Kinetic energy equation

$$\mathbf{u}_{c}^{\mathsf{T}}\Omega\frac{d\mathbf{u}_{c}}{dt} = -\mathbf{u}_{c}^{\mathsf{T}}C(\mathbf{u}_{s})\mathbf{u}_{c} - \mathbf{u}_{c}^{\mathsf{T}}G_{c}\mathbf{p}_{c} + \mathbf{u}_{c}^{\mathsf{T}}D\mathbf{u}_{c}$$

So... integrated in time with Runge-Kutta...

$$\frac{\Delta E}{\Delta t} = -\sum_{i=1}^{s} b_i \mathbf{u}_i^T C_i \mathbf{u}_i - \sum_{i=1}^{s} b_i \mathbf{u}_i^T G_c \mathbf{p}_i + \sum_{i=1}^{s} b_i \mathbf{u}_i^T D \mathbf{u}_i + \varepsilon_{RK}$$

• $\sum_{i=1}^{s} b_i \mathbf{u}_i^T C_i \mathbf{u}_i = 0$ if C is skew-symmetric

Introduction	Runge-Kutta applied to Navier-Stokes	Self-adaptive time integration	Energy budget	Numerical experiments	Conclusion
00	0	000	00	0000	0
Kinetic e	nergy budget for th	ne Navier-Stokes	s equations		

Semi-discrete Kinetic energy equation

$$\mathbf{u}_{c}^{T}\Omega\frac{d\mathbf{u}_{c}}{dt} = -\mathbf{u}_{c}^{T}C(\mathbf{u}_{s})\mathbf{u}_{c} - \mathbf{u}_{c}^{T}G_{c}\mathbf{p}_{c} + \mathbf{u}_{c}^{T}D\mathbf{u}_{c}$$

So... integrated in time with Runge-Kutta...

$$\frac{\Delta E}{\Delta t} = -\sum_{i=1}^{s} b_{i} \mathbf{u}_{i}^{T} C_{i} \mathbf{u}_{i} - \sum_{i=1}^{s} b_{i} \mathbf{u}_{i}^{T} G_{c} \mathbf{p}_{i} + \sum_{i=1}^{s} b_{i} \mathbf{u}_{i}^{T} D \mathbf{u}_{i} + \varepsilon_{RK}$$

• $\sum_{i=1}^{s} b_i u_i^T C_i u_i = 0$ if C is skew-symmetric

• $\sum_{i=1}^{s} b_i \mathbf{u}_i^T G_c \mathbf{p}_i = 0$ if $M \mathbf{u}_i = 0$ and mesh is staggered

	Runge-Kutta applied to Navier-Stokes	Self-adaptive time integration	Energy budget	Numerical experiments	Conclusion
00		000	00	0000	
Effectiv	e Revnolds number				

Definition

First introduced by Capuano et al.⁶,

$$\mathsf{Re}_{eff} = \frac{\sum_{i=1}^{s} b_i \mathsf{u}_i^T L \mathsf{u}_i}{\Delta E / \Delta t}$$

•
$$D = \frac{1}{\text{Re}}L$$

⁶Capuano, F. et al. (2016), "Explicit Runge-Kutta schemes for incompressible flow with improved energy-conservation properties". Journal of Computational Physics 328, pp. 86-94

	Runge-Kutta applied to Navier-Stokes	Self-adaptive time integration	Energy budget	Numerical experiments	Conclusion
00		000	00	0000	
Numoria	al ava arimanta				

Numerical experiments

Three-dimensional Taylor-Green vortex

- $2\pi \times 2\pi \times 2\pi$ domain, 32^3 grid
- $f_{\Delta t} = [0.15, 0.25, 0.35, 0.45, 0.5]$
- Re=1500
- TermoFluids Algebraic

Scheme	р	q	5
Euler		1	
Heun RK2		2	
Heun RK3		3	
Standard RK4		4	
4p7q(6) ⁶	4	7	6

⁶Capuano, F. et al. (2016), "Explicit Runge-Kutta schemes for incompressible flow with improved energy-conservation properties". Journal of Computational Physics 328, pp. 86-94

	Runge-Kutta applied to Navier-Stokes	Self-adaptive time integration	Energy budget	Numerical experiments	Conclusion
				0000	
N I	 International Activity of the second sec second second sec				

Numerical experiments Symmetry-preserving discretization

(a) $f_{\Delta t} = 0.15$ (b) $f_{\Delta t} = 0.25$

Standard RK4

	Runge-Kutta applied to Navier-Stokes	Self-adaptive time integration	Energy budget	Numerical experiments	Conclusion
				0000	
NI T	 International statements 				

Numerical experiments Energy budgets

(a) $f_{\Delta t} = 0.15$

(c) $f_{\Delta t} = 0.45$

Standard RK4

	Runge-Kutta applied to Navier-Stokes	Self-adaptive time integration	Energy budget	Numerical experiments	Conclusion
00		000	00	0000	
Numeric	al avaarimaata				

Numerical experiments Effective Reynolds number

	Runge-Kutta applied to Navier-Stokes	Self-adaptive time integration	Energy budget	Numerical experiments	Conclusion
00		000	00	0000	•
Concludi	ng remarks				

- Computation of eigenbounds has been revisited
 - No need to recostruct the matrices to compute them

	Runge-Kutta applied to Navier-Stokes	Self-adaptive time integration	Energy budget	Numerical experiments	Conclusion		
					•		
Concluding remarks							

- Computation of eigenbounds has been revisited
 - No need to recostruct the matrices to compute them
- Evaluation of the different terms for the Kinetic energy budget
 - Only physical contribution has to be the diffusive

	Runge-Kutta applied to Navier-Stokes	Self-adaptive time integration	Energy budget		Conclusion	
					•	
Concluding remarks						

- Computation of eigenbounds has been revisited
 - No need to recostruct the matrices to compute them
- Evaluation of the different terms for the Kinetic energy budget
 - Only physical contribution has to be the diffusive
 - Which is the weight of the RK scheme?
 - For Re=1500, variation of ${\approx}8\%$ between RK2 and pseudo-symplectic (4p7q(6)), and ${\approx}3\%$ between RK4 and 4p7q(6)
 - Implementation shows negligible contributions of both pressure and convective terms
 - Re_{eff} should be maintained throughout the simulation, but it is not. Some implementation error? Notable variation of Δt throughout the simulation?

	Runge-Kutta applied to Navier-Stokes	Self-adaptive time integration	Energy budget		Conclusion	
					•	
Concluding remarks						

- Computation of eigenbounds has been revisited
 - No need to recostruct the matrices to compute them
- Evaluation of the different terms for the Kinetic energy budget
 - Only physical contribution has to be the diffusive
 - Which is the weight of the RK scheme?
 - For Re=1500, variation of ${\approx}8\%$ between RK2 and pseudo-symplectic (4p7q(6)), and ${\approx}3\%$ between RK4 and 4p7q(6)
 - Implementation shows negligible contributions of both pressure and convective terms
 - Re_{eff} should be maintained throughout the simulation, but it is not. Some implementation error? Notable variation of Δt throughout the simulation?
 - Extra computational cost due to added stages in integration.