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Energy-preserving simulations

o Conservation in space has been widely studied, by Verstappen and Veldman? and Trias et
al.4.

o Sets how operators have to be constructed.
@ But... conservation in time?

o Sanderse® applied symplectic Runge-Kutta schemes — implicit integrators
o Capuano et al.® used pseudo-symplectic schemes: explcit, conservation of energy up until a
certain order q

3Verstappen, R.W.C.P, Veldman, A.E.P. (2003), " Symmetry-preserving discretization of turbulent flow”.
Journal of Computational Physics 187 (1), pp. 343-368

4Trias, F.X. et al. (2014), " Symmetry-preserving discretization of Navier-Stokes equations on collocated
unstructured grids”. Journal of Computational Physics 258, pp. 24-267

5Sanderse, B. (2013), " Energy-conserving Runge-Kutta methods for the incompressible Navier-Stokes
equations”. Journal of Computational Physics 233 (1), pp. 100-131

5Capuano, F. et al. (2016), " Explicit Runge-Kutta schemes for incompressible flow with improved

energy-conservation properties”. Journal of Computational Physics 328, pp. 86-94
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Runge-Kutta applied to Navier-Stokes

Runge-Kutta applied to Navier-Stokes

Starting point...

+ C(us)uc

Mus = 0,

— Duc + QGcpe = 0

o Putting together both expressions...

du,
dt

= (I, — GL™*M) F(us)uc
N—————

Projection operator, P

e Hard to compute PF(us), thus projection
method is used.

According to Sanderse and Koren 5,

Upit = Un+ At Y b

i—1
*
u; =u, + At E ajiF;
j=1 i=1

1, 1,
L\U,' = EDU’- L\Un+1 = EDUn+1
ui=uj — AtGV;  upp =up — AtGV,

5Sanderse, B., Koren, B. (2012), " Accuracy analysis of explicit Runge-Kutta methods applied to the
incompressible Navier-Stokes equations”, Journal of Computational Physics 231 (8), pp. 3041-3063
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Self-adaptive time integration
000

Stability region of Runge-Kutta

3.5
—— Euler
30l —— RK2
— RK3
25— RK4
o Coefficients aj;, b; from the method:
Butcher tableau, A = [aj]i=1,... s;j=1,....s/ 20
b= (by by ... by o
e In general, R(z) = 1+ zb" (Is — zA) 11, o
yetfor p=s, R(z) =1+ 7 52°
: 1.0
0.5
005530 —25 —20 =15 =10 =05 0.0 0.5

6/15



Self-adaptive time integration
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Computation of eigenbounds

@ Need to compute the eigenbounds of
F(us) = D — C(us)
o If D and C(us) are discretized with a

symmetry-preserving scheme?,

A < —[o(D)] + ip(C)

@ p(D) and p(C) can be computed
independently with Gershgorin circle
theorem

2Trias, F.X, Lehmkuhl, O. (2011), " A self-adaptive strategy for the time integration of Navier-Stokes

equations”. Numerical Heat Transfer, Part B: Fundamentals 60 (2), pp. 116-134
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Self-adaptive time integration
ooe

Computation of eigenbounds

Construction of operators

DC(O‘S) = - TscAs/\sA;1 Ve = 7Tsc7\s Tes —— Euler
30 — RK2

1
Cc(us) - TscAsUerc—>s — 5A5U5|Tcs|
SP

A

By knowing p(AB) = p(ATBT)

p(Dc) = p(*Aa 7-r:sTT/ﬂilia)
4p(Cc(us)) < p(|FS|a|TcsTT||F ‘1 “)

@ Allows recomputing the eigenbounds
without the reconstruction of D., C.

A
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Energy budget

[ 1]

Kinetic energy budget for the Navier-Stokes equations

o Conservation of energy is a requirement for a physics-compatible solver

Semi-discrete Kinetic energy equation
du.

ulQ = —u/ C(us)uc —ul Gepe +ul Du,

dt

9/15



Energy budget

[ 1]

Kinetic energy budget for the Navier-Stokes equations

o Conservation of energy is a requirement for a physics-compatible solver

Semi-discrete Kinetic energy equation
du,

uCTQ *fuCTC(us)ucfucTchchucTDuc

dt

So... integrated in time with Runge-Kutta...

AE

S S S
Ar > bl Gui = bu] Gepi+ Y b/ Dui + g
i=1 i=1 i=1

9/15



Energy budget

[ 1]

Kinetic energy budget for the Navier-Stokes equations

o Conservation of energy is a requirement for a physics-compatible solver

Semi-discrete Kinetic energy equation
du,

uCTQ *fuCTC(us)ucfucTchchucTDuc

dt

So... integrated in time with Runge-Kutta...

AE

S S S
Ar > bl Gui = bu] Gepi+ Y b/ Dui + g
i=1 i=1 i=1

e Y% biu] Gu; =0 if C is skew-symmetric

9/15



Energy budget

[ 1]

Kinetic energy budget for the Navier-Stokes equations

o Conservation of energy is a requirement for a physics-compatible solver

Semi-discrete Kinetic energy equation
du,

uCTQ *fuCTC(us)ucfucTchchucTDuc

dt

So... integrated in time with Runge-Kutta...

AE

S S S
Ar > bl Gui = bu] Gepi+ Y b/ Dui + g
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e Y% biu] Gu; =0 if C is skew-symmetric
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Energy budget
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Effective Reynolds number

First introduced by Capuano et al.?,

s ulLu:
2.1 biuj Luj

R =
Ceff AE/At

5Capuano, F. et al. (2016), " Explicit Runge-Kutta schemes for incompressible flow with improved
energy-conservation properties”. Journal of Computational Physics 328, pp. 86-94
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Numerical experiments
[ eJe]e}

Numerical experiments

Three-dimensional Taylor-Green vortex
@ 27 X 27 X 27 domain, 323 grid

o fa; =[0.15,0.25,0.35,0.45,0.5]
@ Re=1500

1.5e-02
o TermoFluids Algebraic [ 0012 §
oos §
—0.006 =
Scheme p g s - 0.004 §
Euler 1 2.4e-04
Heun RK2 2
Heun RK3 3
Standard RK4 4
4p7q(6)° 4 7 6

5Capuano, F. et al. (2016), " Explicit Runge-Kutta schemes for incompressible flow with improved
energy-conservation properties”. Journal of Computational Physics 328, pp. 86-94
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Numerical experiments

Symmetry-preserving discretization
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Numerical experiments
Energy budgets
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Numerical experiments
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Numerical experiments

Effective Reynolds number
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Conclusion
o

Concluding remarks

@ Computation of eigenbounds has been revisited
o No need to recostruct the matrices to compute them
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o Only physical contribution has to be the diffusive
o Which is the weight of the RK scheme?
o For Re=1500, variation of ~8% between RK2 and pseudo-symplectic (4p7q(6)), and ~3%
between RK4 and 4p7q(6)
o Implementation shows negligible contributions of both pressure and convective terms
@ Re.g should be maintained throughout the simulation, but it is not. Some implementation
error? Notable variation of At throughout the simulation?
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o For Re=1500, variation of ~8% between RK2 and pseudo-symplectic (4p7q(6)), and ~3%
between RK4 and 4p7q(6)
o Implementation shows negligible contributions of both pressure and convective terms
@ Re.g should be maintained throughout the simulation, but it is not. Some implementation
error? Notable variation of At throughout the simulation?

o Extra computational cost due to added stages in integration.
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