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Introduction

CFL1

First used method to
ensure the stability of an

explicit integration

du
dt + u du

dx = 0

(
u∆t
∆x

)
max
≤ 1

SAT2

Computation of the
eigenbounds in the

predictor velocity step
to set the maximum stable ∆t

<

=

ϕ

1Courant, R, Friedrichs, K, and Lewy, H. (1927), ”Über die partiellen Differenzengleichungen der
matematischen Physik”. Mathematische Annalen 100 (1), pp. 32-74

2Trias, F.X, Lehmkuhl, O. (2011), ”A self-adaptive strategy for the time integration of Navier-Stokes
equations”. Numerical Heat Transfer, Part B: Fundamentals 60 (2), pp. 116-134
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matematischen Physik”. Mathematische Annalen 100 (1), pp. 32-74

2Trias, F.X, Lehmkuhl, O. (2011), ”A self-adaptive strategy for the time integration of Navier-Stokes
equations”. Numerical Heat Transfer, Part B: Fundamentals 60 (2), pp. 116-134

3 / 15



Introduction Runge-Kutta applied to Navier-Stokes Self-adaptive time integration Energy budget Numerical experiments Conclusion

Introduction

Energy-preserving simulations

Conservation in space has been widely studied, by Verstappen and Veldman3 and Trias et
al.4.

Sets how operators have to be constructed.

But... conservation in time?

Sanderse5 applied symplectic Runge-Kutta schemes → implicit integrators
Capuano et al.6 used pseudo-symplectic schemes: explcit, conservation of energy up until a
certain order q

3Verstappen, R.W.C.P, Veldman, A.E.P. (2003), ”Symmetry-preserving discretization of turbulent flow”.
Journal of Computational Physics 187 (1), pp. 343-368

4Trias, F.X. et al. (2014), ”Symmetry-preserving discretization of Navier-Stokes equations on collocated
unstructured grids”. Journal of Computational Physics 258, pp. 24-267

5Sanderse, B. (2013), ”Energy-conserving Runge-Kutta methods for the incompressible Navier-Stokes
equations”. Journal of Computational Physics 233 (1), pp. 100-131

6Capuano, F. et al. (2016), ”Explicit Runge-Kutta schemes for incompressible flow with improved
energy-conservation properties”. Journal of Computational Physics 328, pp. 86-94
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Runge-Kutta applied to Navier-Stokes

Starting point...

Mus = 0c

Ω
duc

dt
+ C (us)uc − Duc + ΩGc pc = 0c

Putting together both expressions...

duc

dt
= (In − GL−1M)︸ ︷︷ ︸

Projection operator,P

F (us)uc

Hard to compute PF (us), thus projection
method is used.

According to Sanderse and Koren 5,

u∗i = un + ∆t
i−1∑
j=1

aij Fj u∗n+1 = un + ∆t
s∑

i=1

bi Fi

LΨi =
1

∆t
Du∗i LΨn+1 =

1

∆t
Du∗n+1

ui = u∗i −∆tGΨi un+1 = u∗n+1 −∆tGΨn+1

5Sanderse, B., Koren, B. (2012), ”Accuracy analysis of explicit Runge-Kutta methods applied to the
incompressible Navier-Stokes equations”, Journal of Computational Physics 231 (8), pp. 3041-3063
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Stability region of Runge-Kutta

Coefficients aij , bi from the method:
Butcher tableau, A = [aij ]i=1,...,s;j=1,...,s ,
b = (b1 b2 . . . bs)

In general, R(z) = 1 + zbT (Is − zA)−11s ,
yet for p = s, R(z) = 1 +

∑s
p=1

1
p!z

p

−3.5 −3.0 −2.5 −2.0 −1.5 −1.0 −0.5 0.0 0.5
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Euler
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RK3

RK4
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Computation of eigenbounds

Need to compute the eigenbounds of
F (us) = D − C (us)

If D and C (us) are discretized with a
symmetry-preserving scheme2,

λF ≤ −|ρ(D)|+ iρ(C )

ρ(D) and ρ(C ) can be computed
independently with Gershgorin circle
theorem

−3.5 −3.0 −2.5 −2.0 −1.5 −1.0 −0.5 0.0 0.5
<
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0.5
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2.5

3.0

3.5

=

Euler

RK2

RK3

RK4

λF

ρ(C )

ρ(D)

2Trias, F.X, Lehmkuhl, O. (2011), ”A self-adaptive strategy for the time integration of Navier-Stokes
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Computation of eigenbounds

Construction of operators

Dc (αs) = −TscAsΛs∆−1
s Tcs = −Tsc Λ̃sTcs

Cc (us) = TscAsUsΠc→s =︸︷︷︸
SP

1

2
AsUs |Tcs |

By knowing ρ(AB) = ρ(ATBT )

ρ(Dc ) = ρ(−Λ̃αTcsT
T
cs Λ̃1−α)

4ρ(Cc (us)) ≤ ρ(|Fs |α|TcsT
T
cs ||Fs |1−α)

Allows recomputing the eigenbounds
without the reconstruction of Dc ,Cc
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Kinetic energy budget for the Navier-Stokes equations

Conservation of energy is a requirement for a physics-compatible solver

Semi-discrete Kinetic energy equation

uT
c Ω

duc

dt
= −uT

c C (us)uc − uT
c Gc pc + uT

c Duc

So... integrated in time with Runge-Kutta...

∆E

∆t
= −

s∑
i=1

bi u
T
i Ci ui −

s∑
i=1

bi u
T
i Gc pi +

s∑
i=1

bi u
T
i Dui + εRK

∑s
i=1 bi u

T
i Ci ui = 0 if C is skew-symmetric∑s

i=1 bi u
T
i Gc pi = 0 if Mui = 0 and mesh is staggered
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Effective Reynolds number

Definition

First introduced by Capuano et al.6,

Reeff =

∑s
i=1 bi u

T
i Lui

∆E/∆t

D = 1
ReL

6Capuano, F. et al. (2016), ”Explicit Runge-Kutta schemes for incompressible flow with improved
energy-conservation properties”. Journal of Computational Physics 328, pp. 86-94
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Numerical experiments

Three-dimensional Taylor-Green vortex

2π × 2π × 2π domain, 323 grid

f∆t = [0.15, 0.25, 0.35, 0.45, 0.5]

Re=1500

TermoFluids Algebraic

Scheme p q s

Euler 1
Heun RK2 2
Heun RK3 3

Standard RK4 4
4p7q(6)6 4 7 6

6Capuano, F. et al. (2016), ”Explicit Runge-Kutta schemes for incompressible flow with improved
energy-conservation properties”. Journal of Computational Physics 328, pp. 86-94
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Numerical experiments
Symmetry-preserving discretization

Heun RK2

Standard RK4
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(a) f∆t = 0.15
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(c) f∆t = 0.45
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Numerical experiments
Energy budgets
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Numerical experiments
Effective Reynolds number

0 5 10 15
t̃

0.60

0.65

0.70

0.75

0.80

0.85

0.90

R
e e
f
f
/R

e

(a) Heun RK2

0 5 10 15
t̃

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

R
e e
f
f
/R

e

(b) Standard RK4

0 5 10 15
t̃

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

R
e e
f
f
/R

e

(c) 4p7q(6)

14 / 15



Introduction Runge-Kutta applied to Navier-Stokes Self-adaptive time integration Energy budget Numerical experiments Conclusion

Concluding remarks

Computation of eigenbounds has been revisited

No need to recostruct the matrices to compute them

Evaluation of the different terms for the Kinetic energy budget

Only physical contribution has to be the diffusive
Which is the weight of the RK scheme?

For Re=1500, variation of ≈8% between RK2 and pseudo-symplectic (4p7q(6)), and ≈3%
between RK4 and 4p7q(6)
Implementation shows negligible contributions of both pressure and convective terms
Reeff should be maintained throughout the simulation, but it is not. Some implementation
error? Notable variation of ∆t throughout the simulation?

Extra computational cost due to added stages in integration.
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