A PORTABLE ALGEBRAIC IMPLEMENTATION FOR
RELIABLE INDUSTRIAL LES

M. Mosqueda-Otero', A. Alsalti-Baldellou'?, J. Plana-Riu', X.
Alvarez-Farré®, G. Colomer, F. X. Trias', A. Gorobets* and A. Oliva®

1

Universitat Politécnica de Catalunya - BarcelonaTech, CTTC, Carrer de Colom 11, 08222 Terrassa, Spain

2 University of Padova, Department of Information Engineering, Via Giovanni Gradenigo, 6b, 35131 Padova PD, Italy
3 High-Performance Computing Team - SURF, Science Park 140, 1098 XG Amsterdam, The Netherlands
4 Keldysh Institute of Applied Mathematics, 4A, Miusskaya Sq., Moscow 125047, Russia

marcial.francisco.mosqueda@upc.edu

Abstract

This work provides a performance evaluation of
the feasibility of large-scale simulations for industrial
applications using a symmetry-preserving discretiza-
tion method for unstructured collocated grids in LES
of turbulent flows. A method that ensures stability
without artificial dissipation and maintains portabil-
ity through minimal algebraic kernels. The present
analysis evaluates its performance accross MPI-only,
MPI+OpenMP, and GPU architectures using OpenCL.
Demonstrating the method’s effectiveness in enhanc-
ing parallel execution while supporting large-scale
simulations.

1 Introduction

The continuous development of novel numerical
methods, coupled with the rapid evolution of high-
performance computing (HPC) systems, has signifi-
cantly expanded the role of computational fluid dy-
namics (CFD) in various industrial applications. De-
spite these advancements, the development of CFD
faces persistent challenges. Early implementations
were hindered by the compute-bound limitations of
processors, which led to the adoption of compute-
centric programming models. Over time, processor
designs have evolved, addressing these limitations and
resulting in a mismatch between computational power
and memory bandwidth. This, in turn, forces the cre-
ation of complex memory hierarchies, complicating
the optimization of traditional programs. At the same
time, the widespread use of accelerators in diverse
technological fields has driven the rise of hybrid ar-
chitectures, offering greater computational throughput
while improving power efficiency in large-scale appli-
cations (Witherden et al. 2014). However, this shift
introduces a new challenge: ensuring the portability
of legacy applications. This challenge requires ver-
satile software architectures and the development of
specialized APIs, such as CUDA, OpenCL, and HIP
(Edwards et al. 2014; Zhang et al. 2013).

In this context, the conservative discretization

method for unstructured grids, as proposed by Trias
et al. (2014), has been adopted and implemented
under TermoFluids Algebraic (TFA)—our in-house
code based on an innovative algebra-dominant frame-
work, HPC?(See Alvarez-Farré et al. 2018). This ro-
bust framework facilitates seamless integration into
open-source codes and hybrid supercomputing envi-
ronments, as shown by Komen et al. (2021).

While computational power has improved, the time
and resources required for detailed simulations remain
a significant bottleneck. Achieving large-scale sim-
ulations is crucial for meeting industry demands for
rapid decision-making, shorter product development
cycles, and expanding CFD’s industrial application
fields. Thus, our research seeks to ensure the inte-
gration of modern CFD methodologies into industry
practices, enabling precise and accurate simulations of
complex processes while efficiently utilizing available
resources and reducing simulation costs within limited
timeframes.

2 Portability for CFD

The construction of codes based on a minimal set
of algebraic kernels has become essential for ensuring
portability, optimization, and ease of maintenance,
particularly in light of the growing diversity of com-
putational architectures and hardware vendors. The
hybrid nature of modern high-performance computing
systems presents additional challenges, as effective
utilization of both processors and parallel accelerators
often requires heterogeneous computations and com-
plex data exchanges. Traditional CFD codes, however,
rely on intricate data structures and specialized com-
putational routines, which complicates portability. To
address this, algorithms centered on algebraic kernels,
such as the sparse matrix-vector product (SpMV),
linear combination of vectors (axpy), element-wise
product of vectors (axty), and the dot product,
emerge as promising solutions (See Alvarez-Farré
et al. 2018).



128x 1 —m— MPI-Only
—e— MPI+OpenMP
64x 1 70% - 100% Efficiency region

32x 1
16x -

8x

Speedup

4xA

2x

1x4

32 64 128
[112] [224] [448] [896] [1792] [3584] [7168] [14336]
Nodes
[CPU-cores]

64x1 —m— GPU_OpenCL
50% - 70% Efficiency region
32x 70% - 100% Efficiency region
16x -
Q
3
4 8x
Q.
wn
4x
2x 4
1x A
1 2 4 8 16 32 64
[4] [8] [16] [32] [64] [128] [256]
Nodes
[GPU-cards]

Figure 1: Strong scalability analysis; CPU-based system with 350 x 480 x 350 - 58.8M CVs - grid comparing MPI-only vs.
MPI+OpenMP paradigms (left plot) and GPU-based system with a 370 x 400 x 370 - 54.76M CVs - grid (right plot)

However, this approach introduces a computa-
tional challenge linked with the low arithmetic in-
tensity of SpMV operations. This limitation can be
mitigated using the more computationally intensive
sparse matrix-matrix product (SpMM). Substituting
SpMV with SpMM significantly reduces memory access
demands and the memory footprint by reusing matrix
coefficients (See Alsalti-Baldellou et al. 2023b).

Beyond portability, algebra-based CFD implemen-
tations offer distinct numerical benefits. For exam-
ple, they facilitate the development of efficient CFL-
like conditions, reducing computational cost by up to
4x compared to classical approaches (See Trias et al.
2023). Additionally, algebraic frameworks allow for
the streamlined incorporation of advanced techniques
such as flux limiters, yielding compact and efficient
implementations by utilizing incidence matrices and
local operations to control gradient ratios, thus reduc-
ing the number of computing kernels required for port-
ing (See Valle et al. 2022).

Building on these principles, Alsalti-Baldellou et
al. (2023a) proposed an effective approach to acceler-
ate Poisson solvers by exploiting domain symmetries.
By carefully ordering the unknowns, SpMV operations
could be replaced with SpMM, leading to a 2.5x in-
crease in the performance of compute-intensive ker-
nels while significantly reducing the solver’s memory
footprint and setup costs.

3 Algorithm scalability analysis

A numerical test evaluates the performance and
scalability of TFA’s base algorithm under different
parallel computing paradigms to ensure its capabil-
ity to address large-scale problems. Specifically, we
compare the performance of an MPI-only configu-
ration—where each CPU core is assigned a single
task—against a hybrid MPI+OpenMP configuration,
which utilizes MPI processes and multi-threaded exe-
cutions per node. Furthermore, the scalability of the
code on hybrid HPC systems is analyzed, taking ad-

vantage of TFA’s underlying structure, which is based
on minimal algebraic kernels. This architecture en-
ables broad portability across diverse GPU hardware
using OpenCL.

The numerical test case solves a turbulent channel
flow using a conjugate gradient solver with a Jacobi
preconditioner for Poisson’s equation, combined with
an explicit time integration scheme and a variable time
step. Since the primary objective is to assess the scal-
ability of TFA+HPC? kernels, each case is limited to
10 time steps, with 800 solver iterations per step. The
test problem is solved over the entire domain without
exploiting symmetries, thereby isolating the key alge-
braic kernels —SpMV, axpy, axty, and dot prod-
uct— for performance measurement and analysis.

CPU-based system tests were conducted using
MPI-only and MPI+OpenMP configurations on the
MareNostrum 5 GPP supercomputer at BSC. The ex-
periments run on nodes equipped with two Intel Xeon
Platinum 8480+ processors (56 cores, 2 GHz, 105
MB L3 cache, and 307.2 GB/s memory bandwidth)
with 256 GB of RAM, interconnected via ConnectX-7
NDR200 InfiniBand. Additionally, GPU-accelerated
tests were conducted on the MareNostrum 5 ACC
supercomputer at BSC, using nodes with two In-
tel Xeon Platinum 8460Y processors (40 cores, 2.63
GHz, 105 MB L3 cache, and 307.2 GB/s memory
bandwidth), 512 GB of RAM, four NVIDIA Hopper
H100 with 64GB HBM2, and interconnected through
four ConnectX-7 NDR200 InfiniBand cards.

Figure 1 illustrates the strong scalability results for
both HPC architectures: (i) CPU-based system (left
plot) applying a 1-node baseline with a 350 x480x 350
grid and (ii) GPU-based system (right plot) using a
1-node baseline with a 370 x 400 x 370 grid. The
results show a marked super-linear speedup for hy-
brid MPI+OpenMP processes, which can be attributed
to enhanced cache utilization; moreover, the MPI-
only solution exhibits significant communication over-



0.754

0.51

Efficiency

—=— Weak scalability
90% - 100% Efficiency region

1 2 4 8 16 32 64 128
[112] [224] [448] [896] [1792] [3584] [7168] [14336]
Nodes
[CPU-cores]

0.754

Efficiency

0.51

—&— Weak scalability
90% - 100% Efficiency region

32 64

1 2 4 8 16
[4] [8] [16] [32] [64] [128] [256]
Nodes
[GPU-cards]

Figure 2: Weak scalability analysis; MPI+OpenMP paradigm with 525k CVs per CPU-core, up to 128 nodes (left plot) and
GPU-based implementation with 13.69M CVs per GPU card, up to 64 nodes (right plot)

head, particularly when using 16 or more computa-
tional nodes. In addition, the strong scalability for
TFA+HPC? on a hybrid architecture presents a steady
speed-up as the problem scales. However, despite the
memory-bound nature of CFD applications, the effi-
ciency remains between 50% and 70% up to 16 nodes.
For a 32-node implementation, the efficiency drops to
approximately 40%, indicating the increasing impact
of communication overhead in hybrid architectures.

On regards to the weak scalability analysis', Figure
2 presents both CPU-based (focus on MPI+OpenMP
results) and GPU-based tests. The hybrid parallel
paradigm (left plot) shows a 13% drop in performance
when scaling up to 128 nodes and a 9% drop when
scaling up to 64 nodes, referenced to the 1-node base-
line. Similarly, the GPU-accelerated weak scalability
(right plot) displays a 9% drop in performance when
scaling up to 64 nodes, referenced to the 1-node base-
line.

4 Performance analysis

In order to measure the implementation perfor-
mance, an equivalent arithmetic intensity (Al,),
equivalent Performance (P.,) and equivalent data
throughput (DT.,) were defined by applying a
weighted average:

AL, — ZkeKakFLOPSk )
3 ek akBYTES,,
P N;,
p,, = Sher Pk N &)
ZkeK k
and
DTyNy,
pr,, = Zex DTN N (3)
ZkeK k

IThe main objective of this study is to assess the scalability of
TFA+HPC? kernels. Thus, the number of iterations per time step
was fixed to ensure consistent kernel calls as the problem scales.

where K is the set of kernels (K =
{SpMV, axpy, axty,dot}), Ng, P and DTy
corresponds with the number of operations, the
performance, and data throuhgput of each kernel,
respectively, while oy, FLOPS, and BYTES,, repre-
sents the operations ratio, the number of floating-point
operations, and the number of memory transfers for
each kernel, respectively.

Further, Alspyy is computed by the expression pro-
posed by Alsalti-Baldellou et al. 2023a:

2nnz(A)+1

8nnz(A)+4nnz(A)+4(n+1)+8n+8m+(§|.;
where nnz(A), n and m correspond with the number
of non-zeros, 7 in the current implementation, and the
number of rows and columns of matrix A, respectively.

Figure 3 illustrates the roofline model and data
throughput analysis of TFA+HPC? performance on
two distinct HPC architectures. On one hand, the
simulation features an equivalent arithmetic intensity
of approximately 0.125, with a noticeable gap be-
tween the theoretical peak performance (Ppcqr) of the
supercomputers and the achieved performance, high-
lithing the memory-bound behaviour of CFD simula-
tions. On the other hand, results show that TEFA+HPC?
efficiently utilizes the available resources for its given
arithmetic intensity, as performance points for both ar-
chitectures lands near the memory bandwidth limit,
showing a data throughput of the 75% of the avail-
able memory bandwidth. The latter results lies close
to memory benchmarks like STREAM (McCalpin
1995) which depicts values between 80-90% for dif-
ferent architectures (Deakin et al. 2015; gpet’ko et al.
2021). Finally, the GPU-based implementation (fig-
ure 3 lower row) exhibits higher efficiency than the
MPI+OpenMP configuration (figure 3 upper row).

Furthermore, while both architectures are con-
strained by memory bandwidth, the GPU-accelerated

AISpMV =



104 E
a
o 1034
]
w
=
£
8 102
C
©
£
£
&
101 4
e 1-node: Algg=0.125: P.;=29.08
1072 107t 10° 10! 102 103
Arithmetic intensity (Al) [FLOPs/byte]
105 4
v
o
S 1044
w
=
&
‘L;'j 103 4
©
£
£
jo)
& 102 4
o 1-node: Algg=0.125: P¢q=193.30
1072 107t 10° 10t 10? 103

Arithmetic intensity (Al) [FLOPs/byte]

300 1
250
w
o
(O]
= 200
>
o
=y
5'150
<}
s
©
£ 1001
(=)
501 —— RAM Bandwidth: 307.2 GB/s
——=- 75% of RAM Bandwidth
SinIV ax'ty ax'py dbt D‘I"Eq
2000
17501
)
& 1500
<)
5 1250 A
Q
<
210001
[
=1
5 7501
©
8 500
250 1 —— HBM3 Bandwidth: 2020 GB/s
——=- 75% of HMB3 Bandwidth

SpMV axty axpy dot DTeq

Figure 3: Roofline and data throughput models; MPI+OpenMP paradigm on 1 node (112 CPU-cores) with a 350 x 480 x 350 -
58.8M CVs - grid solution (upper row) and GPU-based implementation on 1 node (4 GPU cards) with a 370 x 400 x

370 - 54.76M CVs - grid solution (lower row)

system consistently outperforms the MPI+OpenMP
solution at lower arithmetic intensities, benefiting
from higher computational throughput and more op-
timized parallel execution routines. This highlights
the advantage of GPU architectures in achieving better
performance despite the inherent memory-bound lim-
itations.

5 Closing remarks

The TFA+HPC? framework demonstrates strong
portability across various HPC architectures, leverag-
ing its minimal algebraic kernel design to ensure broad
compatibility and efficiency. The MPI+OpenMP hy-
brid paradigm shows superior strong scalability over
MPI-only, benefiting from better cache utilization and
reduced communication overhead, making it ideal for
large-scale CPU-based simulations. While the GPU-
accelerated implementation is promising, it faces per-
formance limitations due to inter-node communication
overhead, indicating the need for increased computa-
tional load per GPU. Nonetheless, the current imple-
mentation is highly optimized, with performance pri-
marily constrained by memory bandwidth.

Future work will focus on increasing the arithmetic
intensity of TFA+HPC? to overcome its memory-
bound limitations, e.g., by exploiting domain symme-
tries in large-scale urban simulations; replacing SpMV
operations with SpMM to enhance solver performance.
The weak scaling analysis shows excellent efficiency,
confirming the framework’s robustness and scalability
for demanding industrial applications.

Acknowledgments

M.MO, A.AB, J.PR, X.AF, G.C, EX.T and A.O
are supported by the Ministerio de Economia y
Competitividad, Spain, SIMEX project (PID2022-
1421740B-100). In addition, M.MO. is supported by
the Catalan Agency for Management of University and
Research Grants (2024 FI-1 00684) and J.PR is also
supported by the Catalan Agency for Management of
University and Research Grants (2022 FI_B 00810).
Calculations were performed on the MareNostrum 5
GPP and ACC supercomputers. The authors thank-
fully acknowledge these institutions.



References

Alsalti-Baldellou, A., X. Alvarez-Farré, F. X. Trias, and A.
Oliva (2023a). “Exploiting spatial symmetries for solv-
ing Poisson’s equation”. In: Journal of Computational
Physics 486, p. 112133.

Alsalti-Baldellou, A., G. Colomer, J. A. Hopman, X.
Alvarez-Farré, A. Gorobets, F. X. Trias, C. D. Pérez-
Segarra, and A. Oliva (2023b). “Reliable overnight indus-
trial LES: challenges and limitations. Application to CSP
technologies”. In: 14th International ERCOFTAC Sympo-
sium on Engineering, Turbulence, Modelling and Mea-
surements: 6th-8th September 2023, Barcelona, Spain:
proceedings.

Alvarez-Farré, X., A. Gorobets, F. X. Trias, R. Borrell, and
G. Oyarzun (2018). “HPC? — A fully portable algebra-
dominant framework for heterogeneous computing. Ap-
plication to CFD”. In: Computers & Fluids 173, pp. 285—
292.

Deakin, Tom and Simon Mclntosh-Smith (2015). “GPU-
stream: Benchmarking the achievable memory bandwidth
of graphics processing units”. In: IEEE/ACM SuperCom-
puting, pp. 3202-3216.

Edwards, H. C., C. R. Trott, and D. Sunderland (2014).
“Kokkos: Enabling manycore performance portability
through polymorphic memory access patterns”. In: J. Par-
allel Distrib. Comput. 74.12, pp. 3202-3216.

Komen, E., J. A. Hopman, E. M. A. Frederix, F. X. Trias, and
R. W. C. P. Verstappen (2021). “A symmetry-preserving
second-order time-accurate PISO-based method”. In:
Computers & Fluids 225, p. 104979.

McCalpin, John D. (Dec. 1995). “Memory Bandwidth and
Machine Balance in Current High Performance Comput-
ers”. In: IEEE Computer Society Technical Committee on
Computer Architecture (TCCA) Newsletter, pp. 19-25.

gpet’ko, Matej, Ondiej Vysocky, Branislav Jansik, and
Lubomir Riha (2021). “Dgx-al00 face to face dgx-
2—performance, power and thermal behavior evalua-
tion”. In: Energies 14.2, p. 376.

Trias, F. X., X. Alvarez—Farré, A. Alsalti-Baldellou, A.
Gorobets, and A. Oliva (2023). “An Efficient Eigenvalue
Bounding Method: Cfl Condition Revisited”.

Trias, F. X., O. Lehmkuhl, A. Oliva, C.D. Pérez-Segarra, and
R. W. C. P. Verstappen (2014). “Symmetry-preserving
discretization of Navier-Stokes equations on collocated
unstructured meshes”. In: J. Comput. Phys. 258 (1),
pp- 246-267.

Valle, N., X. Alvarez-Farré, A. Gorobets, J. Castro, A. Oliva,
and F. X. Trias (2022). “On the implementation of flux
limiters in algebraic frameworks”. In: Computer Physics
Communications 271, p. 108230. 1SSN: 0010-4655.

Witherden, F. D., A. M. Farrington, and P. E. Vincent
(2014). “PyFR: An open source framework for solving
advection—diffusion type problems on streaming architec-
tures using the flux reconstruction approach”. In: Comput.
Phys. Commun. 185.11, pp. 3028-3040.

Zhang, Y., M. Sinclair, and A. A. Chien (2013). “Improving
Performance Portability in OpenCL Programs”. In: Su-
percomputing, pp. 136—-150. ISBN: 978-3-642-38750-0.



