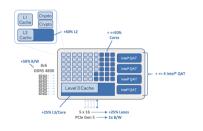
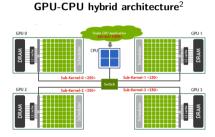
A portable algebraic implementation for reliable industrial LES

M. Mosqueda-Otero¹, À. Alsalti-Baldellou^{1,2}, J. Plana-Riu¹, X. Álvarez-Farré³, G. Colomer¹, F.X. Trias¹, A. Gorobets⁴, A. Oliva¹

¹ Heat and Mass Transfer Technological Center, Universitat Politècnica de Catalunya, Spain ² Department of Information Engineering, University of Padova, Italy ³ High-Performance Computing Team, SURF, The Netherlands ⁴ Keldysh Institute of Applied Mathematics, Russia



IntroductionScalability AnalysisPerformance AnalysisConclusion●00000000000

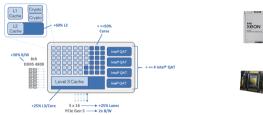

Motivation

The continuous evolution of hardware, coupled with the widespread adoption of accelerators across various tech domains, has driven the development of modern hybrid HPC architectures.

Intel Xeon 4th gen CPU architecture1

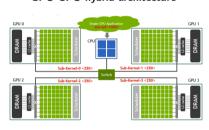
žeon

¹D. Coyle et al. Maximizing vCMTS Data Plane Performance with 4th Gen Intel® Xeon® Scalable Processor Architecture. July 2023


²U. Milic et al. "Beyond the socket: NUMA-aware GPUs". In: *Proceedings of the 50th Annual IEEE/ACM International Symposium on Microarchitecture.* 2017. DOI: 10.1145/3123939.3124534

Motivation

Introduction


The continuous evolution of hardware, coupled with the widespread adoption of accelerators across various tech domains, has driven the development of modern hybrid HPC architectures.

Intel Xeon 4th gen CPU architecture1

GPU-CPU hybrid architecture²

Conclusion

• How can we achieve portable CFD codes for different architectures and hardware vendors?

Mosqueda-Otero, M ETMM-15 2 / 13

 $^{^1}$ Coyle et al., Maximizing vCMTS Data Plane Performance with 4th Gen Intel $^{\otimes}$ Xeon $^{\otimes}$ Scalable Processor Architecture

²Milic et al., "Beyond the socket: NUMA-aware GPUs"

TFA+HPC²

Introduction

 $\mathsf{TFA} + \mathsf{HPC}^2$ presents thoroughly conservative discretization methods³ on unstructured grids, build on a set of algebra-dominant kernels⁴, easily portable to modern HPC architectures

Main HPC² kernels

Operation
Linear combination of vectors
Element-wise product of vectors
dot product of vectors
Sparse matrix-vector product

Mosqueda-Otero, M ETMM-15

³F. X. Trias et al. "Symmetry-preserving discretization of Navier-Stokes equations on collocated unstructured meshes". In: *Journal of Computational Physics* 258 (2014), pp. 246–267

⁴X. Álvarez-Farré et al. "HPC² – A fully portable algebra-dominant framework for heterogeneous computing. Application to CFD". In: *Computers & Fluids* 173 (2018), pp. 285–292

Introduction

 $\mathsf{TFA} + \mathsf{HPC}^2$ presents thoroughly conservative discretization methods³ on unstructured grids, build on a set of algebra-dominant kernels⁴, easily portable to modern HPC architectures

Main HPC² kernels

Kernels	Operation
axpy	Linear combination of vectors
axty	Element-wise product of vectors
dot	dot product of vectors
SpMV	Sparse matrix-vector product

• How do they handle demands for larger-scale problems?

Mosqueda-Otero, M ETMM-15 3 / 13

³F. X. Trias et al., "Symmetry-preserving discretization of Navier-Stokes equations on collocated unstructured meshes"

 $^{^4}$ X. Álvarez-Farré et al., "HPC 2 – A fully portable algebra-dominant framework for heterogeneous computing. Application to CFD"

TFA+HPC²

 $\mathsf{TFA} + \mathsf{HPC}^2$ presents thoroughly conservative discretization methods³ on unstructured grids, build on a set of algebra-dominant kernels⁴, easily portable to modern HPC architectures

Main HPC² kernels

Kernels	Operation
axpy	Linear combination of vectors
axty	Element-wise product of vectors
dot	dot product of vectors
SpMV	Sparse matrix-vector product

- How do they handle demands for larger-scale problems?
- Do they provide efficient, portable solutions?

Mosqueda-Otero, M ETMM-15 3 / 13

³F. X. Trias et al., "Symmetry-preserving discretization of Navier-Stokes equations on collocated unstructured meshes"

 $^{^4}$ X. Álvarez-Farré et al., "HPC 2 – A fully portable algebra-dominant framework for heterogeneous computing. Application to CFD"

Numerical test

Base case

- Turbulent channel flow
- Conjugate Gradient with a Jacobi preconditioner
- Explicit time integration scheme
- Solving 10 time steps with 800 iterations per step

CPU system

- Strong and Weak scalability
- Performed in Marenostrum 5 GPP at BSC
 - CPU: Intel Xeon Platinum 8480+ $(2\times)$

Conclusion

• Focus on MPI-Only vs. MPI+OpenMP

GPU system

- Strong and Weak scalability
- Performed in Marenostrum 5 ACC at BSC
 - CPU: Intel Xeon Platinum 8460Y (2×)
 - GPU: NVIDIA H100-64 GiB HBM3 (4×)
- Focus on OpenCL

[CPU] Strong Scalability

Considerations

- 1-node baseline
- Node configuration:
 - MPI-Only: 112 MPI processes
- Base workload of 525k CVs per CPU-core Mesh size:
 - 350 × 480 × 350 58.8M CVs

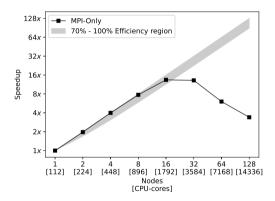


Figure: MPI-Only strong scalability on Marenostrum 5 GPP

Mosqueda-Otero, M ETMM-15 5 / 13

[CPU] Strong Scalability

Considerations

- 1-node baseline
- Node configuration:
 - MPI-Only: 112 MPI processes
 - MPI+OpenMP: 2 MPI processes with 56 computational threads per process
- Base workload of 525k CVs per CPU-core Mesh size:
 - $350 \times 480 \times 350 58.8 M CVs$

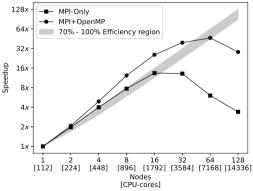


Figure: MPI-Only vs. MPI+OpenMP strong scalability on

Mosqueda-Otero, M ETMM-15 5 / 13

[CPU] Weak Scalability

Considerations

- Node configuration:
 - MPI+OpenMP: 2 MPI processes with 56 computational threads per process
- Starting with 1 node (112 CPU-cores) up to 128 nodes (14336 CPU-cores)
- Base workload of 525k CVs per CPU-core
 Mesh sizes:
 - 1 node: 350 × 480 × 350 58.8M
 16 nodes: 800 × 1470 × 800 940.8M
 128 nodes: 2000 × 2352 × 1600 7.52B

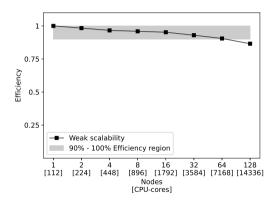


Figure: MPI+OpenMP weak scalability on Marenostrum 5 GPP

Mosqueda-Otero, M ETMM-15 6 / 13

[GPU] Strong Scalability

Considerations

- 1-node baseline (4 GPUs)
- Node configuration:
 - 4 MPI processes 1 MPI per GPU card
 - 54 computational threads
 - 2 communication threads
- Base workload of 42.5M CVs per GPU
 - Mesh size:
 - 1-node: $500 \times 1000 \times 340 170M$ CVs

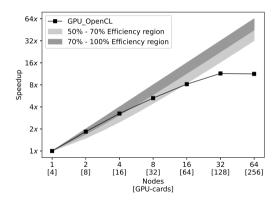


Figure: GPU strong scalability analysis on Marenostrum 5 ACC

Mosqueda-Otero, M ETMM-15 7 / 1

[GPU] Weak Scalability

Considerations

- Node configuration:
 - 4 MPI processes 1 MPI per GPU card
 - 54 computational threads
 - 2 communication threads
- Starting with 1 node (4 GPUs) up to 64 nodes (256 GPUs)
- Base workload of 42.5M CVs per GPU Mesh sizes:
 - 1 node: $500 \times 1000 \times 340 170M$
 - 8 nodes: $1000 \times 1360 \times 1000 1.36B$
 - 64 nodes: 2000 × 2720 × 2000 10.88B

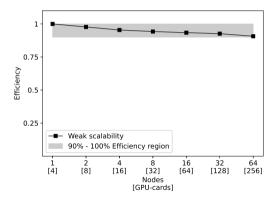


Figure: GPU weak scalability analysis on Marenostrum 5 ACC

Mosqueda-Otero, M ETMM-15 8 / 13

Equivalent Arithmetic Intensity (Al_{eq})

$$\mathsf{AI}_{eq} = \frac{\sum_{k \in K} \alpha_k \mathsf{FLOPS}_k}{\sum_{k \in K} \alpha_k \mathsf{BYTES}_k}$$

Equivalent Performance (Peg)

$$\mathsf{P}_{\mathsf{eq}} = \sum_{k \in K} \alpha_k \mathsf{P}_k$$

Data Throughput (DT_{eq})

$$\mathsf{DT}_{eq} = \sum_{k} \alpha_k \mathsf{DT}_k$$

Where K refers to a set of HPC² kernels

Kernels	Operation
axpy	Linear combination of vectors
axty	Element-wise product of vectors
dot	dot product of vectors
SpMV	Sparse matrix-vector product

and

$$\alpha_k = \sum_{k \in K} \frac{\mathsf{N}_k}{\mathsf{N}_{total}}$$

CPU Performance

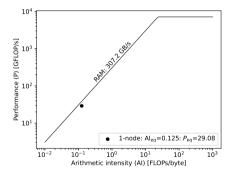
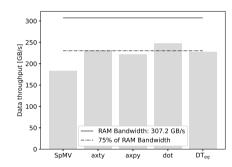
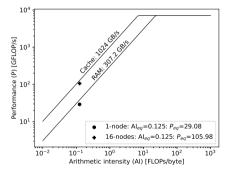




Figure: Roofline analysis on Marenostrum 5 GPP; showing 1 node (112 CPU-cores) with 58.8M CVs grid

Figure: Data Throughput analysis on Marenostrum 5 GPP; showing 1 node (112 CPU-cores) with 58.8M CVs grid

CPU Performance

Figure: Hierarchical roofline analysis on Marenostrum 5 GPP; showing 1 node (112 CPU-cores) with 58.8M CVs grid, and 16 nodes (1792 CPU-cores) for MPI+openMP strong scalability results

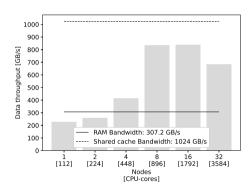


Figure: Equivalent Data Throughput results for strong scalability data on Marenostrum 5 GPP

GPU Performance

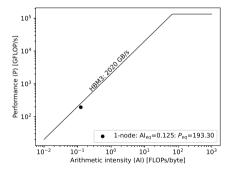


Figure: Roofline analysis on Marenostrum 5 ACC; showing 1 node (4 GPU-cards) with 170M CVs grid

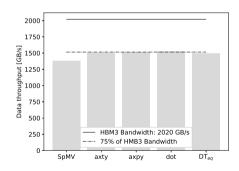


Figure: Data Throughput analysis on Marenostrum 5 ACC; kernels and equivalent data transfer for 1-node case

Conclusion

Conclusions

- TFA+HPC² design improves portability into different HPC architectures.
- Efforts to increase the arithmetic intensity are required to improve its memory-bound behavior.

Conclusions

- TFA+HPC² design improves portability into different HPC architectures.
- Efforts to increase the arithmetic intensity are required to improve its memory-bound behavior.
- CPU systems exhibit superior strong scalability, with the hybrid paradigm (MPI+OpenMP)
 delivering higher performance than MPI-only, primarily due to the benefits of cache utilization and reduced communication overhead.

Conclusions

- TFA+HPC² design improves portability into different HPC architectures.
- Efforts to increase the arithmetic intensity are required to improve its memory-bound behavior.
- CPU systems exhibit superior strong scalability, with the hybrid paradigm (MPI+OpenMP) delivering higher performance than MPI-only, primarily due to the benefits of cache utilization and reduced communication overhead.
- Finally, weak scaling analysis delivers great efficiency, showing the capability of this implementation to scale to demanding Industrial applications.

12 / 13 Mosqueda-Otero, M ETMM-15

Future work

- To perform large-scale urban simulations leveraging spatial regularities⁵
- Continue exploring strategies to increase GPU computation.

Mosqueda-Otero, M ETMM-15 13 / 13

⁵À. Alsalti-Baldellou et al. "Lighter and faster simulations on domains with symmetries". In: Computers & Fluids 275 (2024), p. 106247. ISSN: 0045-7930. DOI: https://doi.org/10.1016/j.compfluid.2024.106247