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Introduction
e0

Motivation

The continuous evolution of hardware, coupled with the widespread adoption of accelerators
across various tech domains, has driven the development of modern hybrid HPC architectures.

Intel Xeon 4" gen CPU architecture!
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ID. Coyle et al. Maximizing vCMTS Data Plane Performance with 4th Gen Intel® Xeon® Scalable Processor
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2U. Milic et al. “Beyond the socket: NUMA-aware GPUs". In: Proceedings of the 50th Annual IEEE/ACM
International Symposium on Microarchitecture. 2017. DOI: 10.1145/3123939.3124534
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@ How can we achieve portable CFD codes for different architectures and hardware vendors?

ICoyle et al., Maximizing vCMTS Data Plane Performance with 4th Gen Intel® Xeon® Scalable Processor
Architecture

2Milic et al., “Beyond the socket: NUMA-aware GPUs"
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TFA+HPC?

TFA+HPC? presents thoroughly conservative discretization methods® on unstructured grids,
build on a set of algebra-dominant kernels*, easily portable to modern HPC architectures

Main HPC? kernels

Kernels Operation
axpy Linear combination of vectors
axty Element-wise product of vectors
dot dot product of vectors
SpMV Sparse matrix-vector product

3F. X. Trias et al. “Symmetry-preserving discretization of Navier-Stokes equations on collocated unstructured
meshes”. In: Journal of Computational Physics 258 (2014), pp. 246—267

4X. Alvarez-Farré et al. “HPC2 — A fully portable algebra-dominant framework for heterogeneous computing.
Application to CFD". In: Computers & Fluids 173 (2018), pp. 285-292
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@ How do they handle demands for larger-scale problems?
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Main HPC? kernels

Kernels Operation
axpy Linear combination of vectors
axty Element-wise product of vectors
dot dot product of vectors
SpMV Sparse matrix-vector product

@ How do they handle demands for larger-scale problems?

@ Do they provide efficient, portable solutions?

3F. X. Trias et al., “Symmetry-preserving discretization of Navier-Stokes equations on collocated
unstructured meshes”

4X. Alvarez-Farré et al., “HPC2 — A fully portable algebra-dominant framework for heterogeneous
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Numerical test

@ Strong and Weak scalability
@ Performed in Marenostrum 5 GPP at BSC

" CPU: lnte Xeon Platinum 84301 (2
@ Focus on MPI-Only vs. MPI+OpenMP

@ Turbulent channel flow

@ Conjugate Gradient with a Jacobi preconditioner

@ Explicit time integration scheme
@ Strong and Weak scalability

@ Performed in Marenostrum 5 ACC at BSC

e CPU: Intel Xeon Platinum 8460Y (2x)
o GPU: NVIDIA H100-64 GiB HBM3 (4x)

@ Focus on OpenCL

@ Solving 10 time steps with 800 iterations per step

Mosqueda-Otero, M
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Figure: MPI-Only strong scalability on Marenostrum 5 GPP
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Figure: MPI-Only vs. MPI4+-OpenMP strong scalability on
Marenostrum 5 GPP
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Figure: MPI+OpenMP weak scalability on Marenostrum 5 GPP
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[GPU] Weak Scalability

] P

@ Node configuration:

@ 4 MPI processes - 1 MPI per GPU card
@ 54 computational threads
@ 2 communication threads

@ Starting with 1 node (4 GPUs) up to 64 nodes
(256 GPUs)
0.251

@ Base workload of 42.5M CVs per GPU —m— Weak scalability
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@ 8 nodes: 1000 x 1360 x 1000 - 1.36B Nodes
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Figure: GPU weak scalability analysis on Marenostrum 5 ACC
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Equivalent Arithmetic Intensity (Aleg)
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Data Throughput (DTeq)

DTeq = Z DT
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Where K refers to a set of HPC2 kernels

Kernels Operation
axpy Linear combination of vectors
axty Element-wise product of vectors
dot dot product of vectors
SpMV Sparse matrix-vector product

and
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Conclusions

e TFA+HPC? design improves portability into different HPC architectures.

o Efforts to increase the arithmetic intensity are required to improve its memory-bound be-
havior.
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Conclusions

e TFA+HPC? design improves portability into different HPC architectures.
o Efforts to increase the arithmetic intensity are required to improve its memory-bound be-
havior.

o CPU systems exhibit superior strong scalability, with the hybrid paradigm (MPIl+OpenMP)
delivering higher performance than MPI-only, primarily due to the benefits of cache utiliza-
tion and reduced communication overhead.

o Finally, weak scaling analysis delivers great efficiency, showing the capability of this imple-
mentation to scale to demanding Industrial applications.
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Future work

@ To perform large-scale urban simulations leveraging spatial regularities®

@ Continue exploring strategies to increase GPU computation.

5A. Alsalti-Baldellou et al. “Lighter and faster simulations on domains with symmetries”. In: Computers &
Fluids 275 (2024), p. 106247. 1SsN: 0045-7930. DOI: https://doi.org/10.1016/j.compfluid.2024.106247

Mosqueda-Otero, M 3


https://doi.org/https://doi.org/10.1016/j.compfluid.2024.106247

	Introduction
	Scalability Analysis
	Performance Analysis
	Conclusion

