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1 Introduction
Many of the most used codes, such as OpenFOAM

or Fluent, adopt a collocated Finite Volume Method
(see Trias et al (2014) and Fig. 1) arrangement due to
its simplicity, flexibility, and ease of handling complex
geometries. The downsides of this choice over stag-
gered methods (see Verstappen and Veldman (2002))
are well-known, namely, checkerboarding problems
(see Hopman et al (2025)) and/or stability issues (see
Santos et al (2025)). A Compact Laplacian is usually
used to overcome checkerboarding problems. How-
ever, it introduces some (artificial) kinetic energy er-
rors that can lead to instabilities. For staggered con-
figurations, respecting the underlying symmetries of
the differential operators is sufficient to conserve ki-
netic energy (see Verstappen and Veldman (2025)).
However, in collocated symmetry-preserving meth-
ods, there is still an (artificial) contribution to the ki-
netic energy given by the pressure term if a Compact
Poisson is solved for the velocity.
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Figure 1: General collocated arrangement.

When overcoming stability problems, many peo-
ple try to change the interpolations or refine/improve
the mesh until the problem is solved. However, this
approach may lead to a loss of resources and time.
This work intends to study the foundations of the FVM
from a general approach, giving the direct link with
the ’classical’ vector calculus approach, identifying
the source of the (artificial) kinetic energy error, and
proposing a solution.

Many numerical methods, in particular the FVM,
rely on integrating the continuous equations (obtain-
ing integral quantities) and then approximating these
integrals in order to obtain a discrete system of equa-

tions that can be solved. Finally, once the solution is
obtained for a finite set of points, it is extended to the
whole domain by some assumption. This process can
be studied using the Reduction R and the Reconstruc-
tion I maps. The former provides the integral quan-
tities, and the latter extends the solution to the whole
domain (see Fig. 2).
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Figure 2: Diagram illustrating the Reduction and Recon-
struction maps.

The Λk(Ω) space is the space of continuous vari-
ables, Ck(D) is the space of integrated quantities,
and Λk

h(Ω;Ck) is the space of reconstructed variables.
The superindex k indicates if the quantity is related to
points (k = 0), to lines (k = 1), to surfaces (k = 2) or
to volumes (k = 3).

2 Reduction and Reconstruction maps
The Reduction and Reconstruction maps need to

satisfy the following properties:

1. RI = id (consistency property).

2. IR = id+O(hs) (approximation property).

It can happen that Λk
h(Ω;Ck) /∈ Λk(Ω). This is

the case for non-continuous Reconstructions, such as
FVM or Discontinuous Galerkin methods.

Supposing we have a quantity associated to vol-
umes, Φ(3), it can be integrated in a control volume,
defining the Reduction map, as follows.∫

Ωi

Φ(3)dV ≈ ΦiVi =⇒ RΦ(3) = ΦiVi, (1)

where the approximation of the integral has been done
by the Mid Point integral rule (such as typically done



in FVM), Φi is the value of Φ at the cell center and Vi

is the volume of the control volume i.
Similary, if we have a quantity associated to faces,

for example a flux u(2), the Reduction map for 2-
quantities can be defined as:∫

f

u(2)dS ≈ uf · nfSf =⇒

Ru(2) = uf · nfSf , (2)

where again the approximation of the integral has been
done by means of the Mid Point integral rule, uf is
the vector velocity at the face center, nf is the normal
vector to the face and Sf is the surface of the face f .

Finally, we need to define the Reconstruction I,
which needs to satisfy the consistency and the approx-
imation property. We can define, for FVM, the Recon-
struction I as:

I(ϕiVi) = ϕi1Ωi(x), (3)

where 1Ωi
is 1 if x ∈ Ωi and 0 otherwise. The exten-

sion to the whole domain is simply:

IRΦ(3) =
∑
i

ϕi1Ωi(x). (4)

This is a piecewise constant Reconstruction stating
that the value is constant inside each control volume,
with discontinuities at the faces of the cells. To extend
the values to the faces, FVM uses interpolations.

3 Discretizing operators
Note that the Reduction map is able to provide dis-

cretized versions of the continuous operators, for ex-
ample for the divergence:

R(∇ · u(2)) =

∫
Vi

∇ · u(2)dV =

∫
∂Vi

u(2)dS

=⇒
∑

f∈∂Vi

∫
f

u(2)dS =
∑

f∈∂Vi

Rfu
(2), (5)

where Rfu
(2) is the Reduction of u(2) on face f. Note

that this form of discretizing the divergence automati-
cally separates the geometrical operation, which is the
one that couples the variable to the geometry (the Re-
duction map), from the topological part of the opera-
tor, which is the summation. Note that this summation
is simply the incidence matrix from faces to cells. If
we define the incidence matrix from faces to cells as
δ, then the discretized divergence becomes

R(∇ · u(2)) = δRu(2). (6)

By defining the L2-inner product as

(Φ(k),Ψ(k))Ω :=

∫
Ω

⟨Φ(k),Ψ(k)⟩dV, (7)

where ⟨·, ·⟩ is the point-wise product, we can compute
the metric of the collocated space:∫

Ω

⟨Φ(k),Ψ(k)⟩dV =
∑
i

ΦiViΨi =⇒

(Φ(k),Ψ(k))Ω = ΦT
c ΩcΨc, (8)

where Φc and Ψc are vectors containing the collocated
components, and Ωc is a diagonal matrix containing
the collocated volumes in the diagonal. If the vec-
tors implied in the L2-inner product contain x, y and
z components, then

(Φ(k),Ψ(k))Ω = ΦT
c ΩΨc, (9)

where Ω = I3 ⊗ Ωc.
The Hilbert adjoint operator of the divergence re-

specting the L2-inner product is the gradient, so for
the Reconstructed versions:

(I(δRu(2)),Φ(3))Ω = (u(2),GΦ(3))Ωs
=⇒

G = −Ω−1
s MT , (10)

where M = δR is the reduced divergence. Finally, a
(Compact) Laplacian can be computed as

L = MG. (11)

4 Incompressible Navier-Stokes dis-
cretization in Collocated grids

Assuming there are n control volumes and m
faces, the reduced incompressible Navier-Stokes equa-
tions reads:

Ω
duc

dt
+ C (us)uc + Duc + ΩGcpc = 0c,(12a)

Mus = 0c,(12b)

where pc = (p1, p2, . . . , pn)
T ∈ Rn and uc ∈ R3n

are the cell-centered pressure and collocated velocity
fields, respectively. The subindices c and s indicate
if the variables are cell-centered or staggered at the
faces. To verify mass conservation within each control
volume, a velocity field is defined at the faces us =(
(us)1, (us)2, (us)3, . . . , (us)m

)T

∈ Rm. Quanti-
ties defined at cells and at faces are related using the
3−dimensional interpolator from cells to faces Γc→s,
constructed as follows:

Γc→s = N(I3 ⊗Πc→s), (13)

where Πc→s ∈ Rm×n is the scalar cell-to-face inter-
polator, and N = (Ns,xNs,yNs,z) ∈ R3m×m, where
Ns,i ∈ Rm×m is a diagonal matrix containing the xi

spatial components of the face normal vectors.
The matrices Ω ∈ R3n×3n, C (us) ∈ R3n×3n and

D ∈ R3n×3n are block diagonal matrices given by

Ω = I3⊗Ωc, C (us) = I3⊗Cc (us) , D = I3⊗Dc,



where I3 ∈ R3×3 is the identity matrix and Ωc ∈
Rn×n is a diagonal matrix containing the cell-centered
control volumes. Cc (us) ∈ Rn×n and Dc ∈ Rn×n

are the cell-centered convective and diffusive opera-
tors for a discrete scalar field, respectively. Finally,
Gc ∈ R3n×n is the discrete gradient operator, and the
matrix M ∈ Rn×m is the face-to-center discrete diver-
gence operator.

These discretized equations, when using a pro-
jection method such as PISO or the Fractional Step
Method (FSM) to decouple the pressure from the ve-
locity, along with a Compact Poisson, are not al-
ways stable. The (artificial) kinetic energy term added
by the pressure gradient in explicit time integration
schemes will be proved to be:

pT
c (L− Lc)pc (14)

The requirements for the discretization in order to
produce stable simulations were identified in the next
theorem:

Theorem Assumptions:

• Our projection method adds a kinetic energy error
of the form pT

c (L − Lc)p
T
c (such as the FSM or

PISO).

• The method preserves the symmetries of the dif-
ferential operators.

Then, pT
c (L− Lc)p

T
c ≤ 0 at each time step ⇐⇒

1. The volume-weighted interpolator is used for the
pressure gradient.

2.

Vk =
∑

f∈F (k)

Ṽk,fn
2
i,f , ∀k ∈ {1, ..., n},

∑
f∈F (k)

Ṽk,fni,fnj,f = 0, ∀k ∈ {1, ..., n},

where Ṽk,f = δk,fSf , where δk,f is the projected
distance between the cell center and the face. The
volume-weighted interpolator is an interpolation that
conserves integrated quantities when interpolating
from cells to faces and can be constructed in any mesh
as follows:

Πc→s = ∆−1
s ∆T

sc, (15)

where ∆s ∈ Rm×m is a diagonal matrix containing
the projected distances between two adjacent control
volumes, and ∆sc ∈ Rm×n is a matrix containing the
projected distances between an adjacent cell node and
its corresponding face. Fig.3 (right) shows a represen-
tation of these distances.

A numerical test in a Turbulent Channel Flow at
Reτ = 395 will be provided to show the stability of
the method. To do so, a high distorted mesh will be
used (see Fig. 4)

Figure 3: δi are the components of ∆s, while the compo-
nents of ∆sc would be calculated in the same way
but taking the distance between a control volume
and their corresponding face centers.

Figure 4: Mesh with a maximum volume ratio between ad-
jacent cells of 250.
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