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Abstract
We propose a mimetic finite volume method

(FVM) on collocated grids tailored for incompress-
ible flow simulations, with an emphasis on symmetry
preservation and numerical stability. The methodol-
ogy is grounded in a rigorous framework of Reduction
and Reconstruction operators, ensuring consistent dis-
cretization of integral quantities. By formulating dis-
crete differential operators using geometric and topo-
logical mappings, the proposed approach naturally ex-
tends to complex physical models such as magnetohy-
drodynamics (MHD). A symmetry-preserving and un-
conditionally stable projection method is derived, min-
imizing spurious kinetic energy production commonly
introduced in collocated formulations. The method
is validated through a benchmark problem involving
2D buoyant flow in the presence of a strong magnetic
field, where numerical results show excellent agree-
ment with analytical solutions while enabling efficient
resolution of thin boundary layers with high-aspect ra-
tio, non-uniform meshes. When compared with the
results reported by Elisabet et al. (2011), our method
achieves higher accuracy using a mesh that is approxi-
mately eight times smaller, underscoring the efficiency
and precision of the proposed formulation.

1 Introduction
Several widely used CFD solvers—such as Open-

FOAM and Fluent—employ a collocated FVM lay-
out due to its simplicity, adaptability to unstructured
meshes, and suitability for handling complex geome-
tries (see Trias et al., 2014; Fig. 1). Despite these
advantages, collocated arrangements come with well-
documented drawbacks when compared to staggered
grids (e.g., Verstappen and Veldman, 2003). No-
tably, issues such as checkerboarding of pressure fields
(Hopman et al., 2025) and numerical instabilities (San-
tos et al., 2025) can arise.

To address checkerboarding, a Compact Laplacian
scheme is often applied. While effective, this approach
introduces spurious contributions to the kinetic energy
balance, which may compromise simulation stability.
In contrast, staggered grid methods can preserve ki-
netic energy by construction, provided the discretiza-
tion respects the inherent symmetries of the differen-
tial operators (Verstappen and Veldman, 2003).

However, even with symmetry-preserving
schemes, collocated formulations that solve a compact
Poisson equation for pressure may still introduce arti-
ficial energy through the pressure-velocity coupling.
This remains a key challenge when designing robust
collocated solvers for high-fidelity simulations.
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Figure 1: General collocated arrangement.

In practice, stability issues in numerical simula-
tions are often addressed by modifying interpolation
schemes or refining the computational mesh until the
instabilities disappear. While sometimes effective, this
trial-and-error approach can be inefficient, leading to
unnecessary computational cost and time consump-
tion. Instead, this work aims to adopt a more prin-
cipled perspective by revisiting the foundations of the
FVM. Specifically, it seeks to bridge the gap between
discrete numerical schemes and classical vector calcu-
lus formulations, with a focus on identifying the origin
of artificial kinetic energy errors and proposing a con-
sistent remedy.

The FVM, like many numerical methods, follows
a structured process: it begins by integrating the gov-
erning differential equations to obtain conserved (in-
tegral) quantities over control volumes. These in-
tegrals are then approximated discretely, yielding a
solvable algebraic system. Finally, the discrete solu-
tion—defined at a finite number of degrees of free-
dom—is extended over the entire domain using some
form of interpolation or reconstruction.

This procedure can be systematically understood
using two conceptual mappings: the Reduction oper-
ator R which projects continuous fields onto integral
quantities (e.g., fluxes or cell averages), and the Re-
construction operator I which lifts the discrete solu-



tion back into a continuous field over the domain. Fig-
ure 2 illustrates this reduction–reconstruction frame-
work, which provides a formal structure for analyzing
and improving the consistency and stability of FVM
schemes.
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Figure 2: Diagram illustrating the Reduction R and Recon-
struction I maps.

The Λk(Ω) space is the space of continuous vari-
ables, Ck(D) is the space of integrated quantities,
and Λk

h(Ω;Ck) is the space of reconstructed variables.
The superindex k indicates if the quantity is related to
points (k = 0), to lines (k = 1), to surfaces (k = 2) or
to volumes (k = 3).

2 Reduction and Reconstruction maps
The Reduction and Reconstruction maps need to

satisfy the following properties:

1. RI = id (consistency property).

2. IR = id+O(hs) (approximation property).

It may happen that Λk
h(Ω;Ck) /∈ Λk(Ω). This is

the case for non-continuous Reconstructions, such as
FVM or Discontinuous Galerkin methods.

Consider a field Φ(3), defined over volumes. Its
integral over a control volume Ωi defines the action of
R, which yields a discrete representation of the field:∫

Ωi

Φ(3)dV ≈ ΦiVi =⇒ RΦ(3) = ΦiVi, (1)

where the integral is approximated using the Mid Point
integral rule, as is common in FVM. Here, Φi repre-
sents the value of the field at the center of control vol-
ume i, and Vi is its volume.

In a similar fashion, for quantities defined on
faces—such as a surface flux u(2)—the Reduction map
for 2-forms can be expressed as:∫

f

u(2)dS ≈ uf · nfSf =⇒

Ru(2) = uf · nfSf , (2)

where the integral is approximated using the midpoint
rule, consistent with standard FV practices.Here, uf is
the vector velocity at the face center, nf is the outward

unit normal vector to the face and Sf is the surface of
the face f .

To complete the formulation, we define the Recon-
struction operator I, which must fulfill both consis-
tency and approximation properties. In the context of
FVM, a simple and commonly used reconstruction is
the piecewise constant reconstruction:

I(ϕiVi) = ϕi1Ωi
(x), (3)

where 1Ωi
is is the indicator function for cells, equal

to 1 if x ∈ Ωi and 0 otherwise. Extending this recon-
struction to the entire computational domain yields:

IRΦ(3) =
∑
i

ϕi1Ωi
(x). (4)

This results in a discontinuous field, where the
value is uniform inside each cell but may jump
across cell interfaces. To recover values at the
cell faces—required, for instance, in flux computa-
tions—interpolation schemes are applied in FVM.

3 Discretizing operators
It is important to highlight that the Reduction map

can be used to construct discrete counterparts of con-
tinuous differential operators. Consider, for exam-
ple, the divergence of a surface-associated vector field
u(2):

R(∇ · u(2)) =

∫
Vi

∇ · u(2)dV =

∫
∂Vi

u(2)dS

=⇒
∑

f∈∂Vi

∫
f

u(2)dS =
∑

f∈∂Vi

Rfu
(2), (5)

where Rfu
(2) denotes the Reduction of u(2) over face

f . This formulation naturally decouples the geomet-
ric and topological aspects of the divergence operator:
the Reduction R encapsulates the geometric integra-
tion, while the summation over faces corresponds to
the topological structure of the mesh.

This summation can be expressed using an inci-
dence matrix δ, which encodes the connectivity be-
tween faces and control volumes. Using this matrix,
the discrete divergence operator is compactly written
as:

R(∇ · u(2)) = δRu(2). (6)

We define the L2-inner product as

(Φ(k),Ψ(k))Ω :=

∫
Ω

⟨Φ(k),Ψ(k)⟩dV, (7)

where ⟨·, ·⟩ denotes the pointwise scalar product. This
formulation enables us to define the metric of the col-
located space:∫

Ω

⟨Φ(k),Ψ(k)⟩dV =
∑
i

ΦiViΨi =⇒

(Φ(k),Ψ(k))Ω = ΦT
c ΩcΨc, (8)



where Φc and Ψc are vectors containing the discrete
values of Φ(k) and Ψ(k) at the cell centers, and Ωc is a
diagonal matrix containing the collocated volumes on
its diagonal.

If the fields are vector-valued and include compo-
nents x, y and z, then the inner product extends to:

(Φ(k),Ψ(k))Ω = ΦT
c ΩΨc, (9)

where Ω = I3⊗Ωc and I3 is the 3× 3 identity matrix.
In the context of the L2-inner, the Hilbert adjoint

of the divergence operator is the gradient. Applying
this property to the reconstructed forms yields:

(I(δRu(2)),Φ(3))Ω = (u(2),−GΦ(3))Ωs
=⇒

G = −Ω−1
s MT , (10)

where M = δR is the reduced divergence and Ωs is a
diagonal matrix containing the staggered volumes on
its diagonal.

Using this discrete gradient, the (compact) Lapla-
cian operator can then be defined as:

L = MG. (11)

providing a symmetric and structure-preserving
formulation suitable for collocated finite volume
schemes.

4 Discretization of the Incompressible
Navier–Stokes Equations on Collocated
Grids

Consider a computational domain composed of n
control volumes and m faces. The discretized incom-
pressible Navier–Stokes equations in collocated form
can be written as:

Ω
duc

dt
+ C (us)uc + Duc + ΩGcpc

= 0c, (12a)
Mus = 0c, (12b)

where pc = (p1, p2, . . . , pn)
T ∈ Rn and uc ∈ R3n

are the cell-centered pressure and collocated velocity
fields, respectively. The subindices c and s indicate if
the variables are cell-centered or staggered at the faces.

To ensure mass conservation in each control vol-
ume, the velocity field at faces is introduced as us =(
(us)1, (us)2, (us)3, . . . , (us)m

)T

∈ Rm, and linked
to cell-centered quantities via a cell-to-face interpola-
tion operator:

Γc→s = N(I3 ⊗Πc→s), (13)

where Πc→s ∈ Rm×n is the scalar cell-to-face inter-
polator, and N = (Ns,xNs,yNs,z) ∈ R3m×m, where
Ns,i ∈ Rm×m is a diagonal matrix containing the xi

spatial components of the face normal vectors.
The matrices Ω ∈ R3n×3n, C (us) ∈ R3n×3n and

D ∈ R3n×3n are block diagonal matrices given by

Ω = I3⊗Ωc, C (us) = I3⊗Cc (us) , D = I3⊗Dc,

where I3 ∈ R3×3 is the identity matrix and Ωc ∈
Rn×n is a diagonal matrix containing the cell-centered
control volumes. Cc (us) ∈ Rn×n and Dc ∈ Rn×n

are the cell-centered convective and diffusive opera-
tors for a discrete scalar field, respectively. Finally,
Gc ∈ R3n×n is the discrete gradient operator, and the
matrix M ∈ Rn×m is the face-to-center discrete diver-
gence operator.

When applying projection-based methods—such
as PISO or the Fractional Step Method (FSM)—to
decouple pressure and velocity in the discretized
Navier–Stokes equations, stability is not always guar-
anteed, especially when a Compact Poisson operator is
employed. In explicit time integration schemes, an ad-
ditional (artificial) kinetic energy contribution is intro-
duced by the pressure gradient. This spurious energy
term can be expressed as (Santos et al., 2025):

pT
c (L− Lc)pc, (14)

where L denotes the Compact Laplacian and Lc de-
notes the Wide-Stencil Laplacian.

The conditions that the discretization must satisfy
to ensure numerical stability are stated in the following
theorem (Santos et al., 2025):

Theorem Assumptions:

• Our projection method adds a kinetic energy error
of the form pT

c (L − Lc)p
T
c (such as the FSM or

PISO).

• The method preserves the symmetries of the dif-
ferential operators.

Then, pT
c (L− Lc)p

T
c ≤ 0 at each time step ⇐⇒

1. The volume-weighted interpolator is used for the
pressure gradient.

2.

Vk =
∑

f∈F (k)

Ṽk,fn
2
i,f , ∀k ∈ {1, ..., n},

∑
f∈F (k)

Ṽk,fni,fnj,f = 0, ∀k ∈ {1, ..., n},

where Ṽk,f = δk,fSf , where δk,f is the projected
distance between the cell center and the face. The
volume-weighted interpolator is an interpolation that
conserves integrated quantities when interpolating
from cells to faces and can be constructed in any mesh
as follows:

Πc→s = ∆−1
s ∆T

sc, (15)

where ∆s ∈ Rm×m is a diagonal matrix containing
the projected distances between two adjacent control
volumes, and ∆sc ∈ Rm×n is a matrix containing the
projected distances between an adjacent cell node and
its corresponding face. Fig.3 shows a representation of
these distances.



Figure 3: δi are the components of ∆s, while the compo-
nents of ∆sc would be calculated in the same way
but taking the distance between a control volume
and their corresponding face centers.

5 Discretization of the Magnetohydro-
dynamic equations in the quasi-static ap-
proximation

In the regime of low magnetic Reynolds number
Rm, also referred to as the quasi-static approxima-
tion, the influence of the fluid motion on the magnetic
field is negligible. Under this assumption, the mag-
netic field remains externally imposed and unaltered
by the flow dynamics. Consequently, the governing
equations for thermal MHD buoyant flow can be con-
veniently formulated using the electric potential ϕ.

∂u

∂t
+ (u · ∇)u = −∇p

ρ
+ ν∇2u

+
j×B0

ρ
+ gβ(T − Tref ), (16a)

∇ · u = 0, (16b)
j = σm(−∇ϕ+ u×B0),(16c)

∇ · j = 0, (16d)
∂T

∂t
+∇ · (uT ) = α∇2T, (16e)

where u is the velocity vector, p is the pressure, ρ is
the density, ν is the kinematic viscosity, j is the current
density, B0 is the externally applied magnetic field, g
is the gravity vector, β is the thermal expansion coeffi-
cient, σm is the electrical conductivity, ϕ is the electric
potential, T is the temperature, Tref is the reference
temperature and α is the thermal diffusivity.

By combining Eqs. (16c) and (16d), a Poisson
equation for the electric potential can be derived as:

∇2ϕ = ∇ · (u×B0). (17)

All necessary discrete operators are available to
numerically solve this equation. The following out-
lines the steps of a FSM applied to the discretized
system for a fully explicit first order time integration

scheme:

up
c = un

c −∆tΩ−1[C (us) + D]un
c

+
jnc ×B0

ρ
+ gβ(Tn − Tref ), (18a)

up
s = Γc→su

p
c , (18b)

Lpn+1
c = Mup

s → pn+1
c , (18c)

un+1
s = up

s − Gpn+1
c , (18d)

un+1
c = up

c − Γs→cGp
n+1
c , (18e)

jpc = un
c ×B0, (18f)

jps = Γc→sj
p
c , (18g)

Lϕn+1 = Mjps ,→ ϕn+1
c (18h)

jn+1
c = σmΓs→c(j

p
s − Gϕn+1), (18i)

Tn+1 = Tn +∆t(−C (us) + αL)Tn(18j)

The implemented solver is an extension based on
the Runge-Kutta symmetry-preserving solver found in
https://github.com/janneshopman/RKSymFoam.

It is important to emphasize that for the solver to
remain unconditionally stable, the interpolator Γc→s

must be the volume-weighted (Santos et al., 2025).
Additionally, the operator Γs→c must satisfy the fol-
lowing condition (Trias et al., 2014)):

Γs→c = Ω−1ΓT
c→sΩs. (19)

6 Numerical test: 2D Buoyant flow in an
enclosure in the presence of a strong hori-
zontal magnetic field

The proposed method is particularly well-suited
for scenarios where mesh refinement is required only
in localized regions—such as boundary layers—while
a coarser mesh suffices elsewhere. Its unconditional
stability, even in the presence of high aspect ratios
between adjacent control volumes, enables the use of
meshes with significant size variations.

This is especially advantageous in MHD, where
fine resolution is typically needed near the walls to
capture boundary layer effects, while the core (bulk)
region can be discretized more coarsely. In such
cases, the boundary layer—known as the Hadamard
layer—scales inversely with the Hartmann number,
defined as Ha = B0L

√
σm

µ , where B0 is the external

magnetic field, L is a characteristic length, σm is the
electrical conductivity and µ is the dynamic viscosity.
It is important to note that as the strength of the ex-
ternal magnetic field increases, the Hartmann number
also rises, resulting in a thinner boundary layer.

The test case involves a two-dimensional
buoyancy-driven cavity flow with electrically
conductive walls and a strong horizontal magnetic
field applied perpendicular to the temperature gradi-
ent, as illustrated in Fig.4 (Tagawa et al., 2002). An
analytical solution for the gradient of the transversal
velocity W at the center of the plane is available for
this configuration, providing a valuable benchmark
for validation.

https://github.com/janneshopman/RKSymFoam
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Figure 4: 2D enclosed buoyant cavity with conductive walls
full of liquid metal with a strong horizontal mag-
netic field. Hadamard boundary layers are also de-
picted.

A test case with a Hartmann number of Ha = 500
has been selected for analysis. Multiple mesh config-
urations were tested, two of which are shown in Fig.5
and Fig.6. In these meshes, only six control volumes
are placed in the bulk (along the direction of the mag-
netic field), while 27 control volumes are concentrated
near each boundary wall.

The mesh identification convention is illustrated in
Fig.5: a label like (90–10;10–90;1) indicates that 90%
of the domain contains only 10% of the total control
volumes, with a uniform aspect ratio of 1. Conversely,
the remaining 10% near the wall contains 90% of the
cells, with an aspect ratio of 10 between the smallest
and largest control volumes. The aspect ratio between
bulk and wall control volumes of this mesh is 37.5.

Similarly, the mesh shown in Fig.6 is labeled as
(97-3;10-90;10), meaning that 97% of the domain con-
tains just 10% of the control volumes, and the bound-
ary layer (3% of the domain) is resolved using 90% of
the control volumes with an aspect ratio of 10. The
aspect ratio between bulk and wall control volumes of
this mesh is 108.

We begin by estimating the thickness of the
Hadamard boundary layer using the mesh shown in
Fig.5, where the refined region is positioned near the
wall at x=-0.045m. After running the simulation, the
boundary layer thickness was determined to be ap-
proximately 0.015m (see Fig.7). Based on this result, a
new mesh with finer resolution near the boundary was
developed, as shown in Fig.6.

Table1 shows a comparison of the obtained value
for dW/dX at the center of the plane against the ana-
lytical value:

As anticipated, Case C (Fig.6) outperforms Case
A (Fig.5) in terms of accuracy. Case B demonstrates
that even a slight increase in the boundary layer mesh
thickness can degrade the solution quality. Moreover,
Cases C, D, and E reveal that, beyond just refining the

(90% ; 10% ; 1) (10% ; 90% ; 10)

Figure 5: Test mesh (90-10;10-90;10). The aspect ratio be-
tween the bulk and the wall control volumes is
37.5.

Full Mesh Zoomed Region

Figure 6: Test mesh (97-3;10-90;10). A zoomed region is
shown close to the wall. The aspect ratio between
the bulk and the wall control volumes is 108.

Ha = 500 Mesh Analytical: 10.00
15x60 (A) (90-10; 10-90; 10) 10.10
15x60 (B) (96-4; 10-90; 10) 10.03
15x60 (C) (97-3; 10-90; 10) 10.02
15x60 (D) (97-3; 10-90; 4) 10.03
15x60 (E) (97-3; 10-90; 2) 10.05
15x60 (F) (97-3; 10-90; 1) 10.09
15x30 (G) (97-3; 10-90; 10) 10.07
15x30 (H) (97-3; 10-90; 20) 10.05

Table 1: Comparison of numerical results of dW/dX at
the center of the plane for Ha = 500 for different
meshes.

boundary layer, positioning the first node as close as
possible to the wall improves accuracy. Lastly, Cases
G and H compare results from a 15x30 mesh to those
from a 15x60 mesh. The comparison between Case
G and Case A clearly shows that strategically placing
control volumes near critical regions is more effective
than simply increasing mesh density in the bulk.



0.4 0.2 0.0 0.2 0.4
Position (m)

0.002

0.004

0.006

0.008

0.010

dW
/d

X

0.50 0.48 0.46 0.44 0.42 0.400.0095

0.0096

0.0097

0.0098

0.0099

0.0100

0.0101

0.0102

Initial guess

x = -0.485 (3%)

Figure 7: Plot of dW/dX with the position. The initial esti-
mate for the boundary layer thickness was 0.05m,
while the simulation results indicate a refined
value of approximately 0.015m.

A comparison with the work of Elisabet et al.
(2011) shows that our method attains higher accu-
racy using a significantly coarser mesh—eight times
smaller in size.

7 Conclusions
This work introduces a mimetic finite volume

method on collocated grids that preserves the struc-
tural properties of the governing equations, particu-
larly for incompressible and MHD flows. The core
of the methodology relies on consistent Reduction and
Reconstruction operators, enabling the derivation of
discrete operators that closely mimic their continuous
counterparts. A key contribution is the development
of a symmetry-preserving projection method that en-
sures unconditional stability—even on high-aspect ra-
tio meshes—.

The method was successfully applied to a canon-
ical MHD benchmark problem involving buoyancy-
driven flow in a 2D cavity with an imposed mag-
netic field. Results demonstrate that strategic mesh re-
finement near boundaries (rather than uniform refine-
ment) yields higher accuracy and efficiency. Notably,
placing the first node as close as possible to the wall
and ensuring proper interpolation across cell interfaces
were shown to be critical for achieving accurate gra-
dient estimations. In particular, compared to the re-
sults of Elisabet et al. (2011), the proposed approach
delivers improved accuracy with a mesh that is eight
times smaller, highlighting the method’s superior ef-
ficiency and suitability for boundary layer-dominated
problems.

These findings establish a foundation for extend-
ing mimetic and structure-preserving FVM strategies
to more complex flows and multiphysics scenarios on
general unstructured grids.
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