A mimetic Finite Volume Method on Collocated Grids for incompressible flows: Application to thermal magnetohydrodynamics

D. Santos, J.A. Hopman, J. Plana-Riu, F.X. Trias,

Heat and Mass Transfer Technological Center, Technical University of Catalonia, C/Colom 11, 08222 Terrassa (Barcelona)

22-24 September 2025, ETMM-15, Dubrovnik, Croatia

Centre Tecnològic de Transferència de Calor UNIVERSITAT POLITÈCNICA DE CATALUNYA

Index

- Mimetic unconditionally stable discretization of NS equations on Collocated unstructured grids.
- 2 A mimetic FVM Thermal MHD solver
- Summary and conclusions

オロトオ側トオミトオミト ミ めなべ

 ${\sf Mimetic}\ {\sf FVM} \to {\sf Symmetry\text{-}preserving:}$

 ${\sf Mimetic}\ {\sf FVM} \to {\sf Symmetry\text{-}preserving:}$

• Free of Checkerboard

 $\mbox{Mimetic FVM} \rightarrow \mbox{Symmetry-preserving:}$

- Free of Checkerboard
- Free of artificial numerical dissipation → Only dissipation from the LES model

Mimetic FVM \rightarrow Symmetry-preserving:

- Free of Checkerboard
- Free of artificial numerical dissipation → Only dissipation from the LES model
- Unconditionally stable → Volume-weighted interpolation for momentum

Mimetic FVM \rightarrow Symmetry-preserving:

- Free of Checkerboard
- Free of artificial numerical dissipation → Only dissipation from the LES model
- Unconditionally stable → Volume-weighted interpolation for momentum
- Easily portable (to other codes, platforms...)

Mimetic FVM \rightarrow Symmetry-preserving:

- Free of Checkerboard
- Free of artificial numerical dissipation → Only dissipation from the LES model
- Unconditionally stable → Volume-weighted interpolation for momentum
- Easily portable (to other codes, platforms...)
- Easily extension to other physics: MHD, multiphase...

◄□▶◀圖▶◀불▶◀불▶ 불 쒸٩℃

 $\mbox{Mimetic FVM} \rightarrow \mbox{Symmetry-preserving:}$

Challenge: Thermal Magnetohydrodynamics

- Free of Checkerboard
- Free of artificial numerical dissipation → Only dissipation from the LES model
- Unconditionally stable → Volume-weighted interpolation for momentum
- Easily portable (to other codes, platforms...)
- Easily extension to other physics: MHD, multiphase...

 $\mbox{Mimetic FVM} \rightarrow \mbox{Symmetry-preserving:}$

- Free of Checkerboard
- Free of artificial numerical dissipation → Only dissipation from the LES model
- Unconditionally stable → Volume-weighted interpolation for momentum
- Easily portable (to other codes, platforms...)
- Easily extension to other physics: MHD, multiphase...

Challenge: Thermal Magnetohydrodynamics

• High Hartmann number:

3/15

$$Ha = LB_0 \sqrt{\frac{\sigma}{\mu}}$$

 $\mbox{Mimetic FVM} \rightarrow \mbox{Symmetry-preserving:}$

- Free of Checkerboard
- Free of artificial numerical dissipation → Only dissipation from the LES model
- Unconditionally stable → Volume-weighted interpolation for momentum
- Easily portable (to other codes, platforms...)
- Easily extension to other physics: MHD, multiphase...

Challenge: Thermal Magnetohydrodynamics

• High Hartmann number:

3/15

$$Ha = LB_0\sqrt{\frac{\sigma}{\mu}}$$

Low Prandtl number:

$$Pr = \frac{c_p \mu}{k}$$

 $\mbox{Mimetic FVM} \rightarrow \mbox{Symmetry-preserving:}$

- Free of Checkerboard
- Free of artificial numerical dissipation → Only dissipation from the LES model
- Unconditionally stable → Volume-weighted interpolation for momentum
- Easily portable (to other codes, platforms...)
- Easily extension to other physics: MHD, multiphase...

Challenge: Thermal Magnetohydrodynamics

• High Hartmann number:

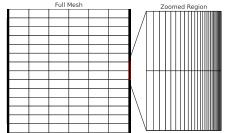
$$Ha = LB_0\sqrt{rac{\sigma}{\mu}}$$

Low Prandtl number:

$$Pr = \frac{c_p \mu}{k}$$

• High Grashof number:

$$Gr = \frac{g\beta\Delta TL^3}{\nu^2}$$



Daniel Santos 3/15

Let us suppose we have n control volumes and m faces.

Finite volume discretization of incompressible NS equations on an arbitrary collocated mesh

$$\Omega \frac{d\mathbf{u}_c}{dt} + C(\mathbf{u}_s)\mathbf{u}_c = -D\mathbf{u}_c - \Omega G_c \mathbf{p}_c, \tag{1}$$

$$M\mathbf{u}_s = \mathbf{0}_c.$$
 (2)

- $\mathbf{p}_c = (p_1, ..., p_n)^T \in \mathbb{R}^n$ is the cell-centered pressure.
- $\mathbf{u}_c = (\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3)^T \in \mathbb{R}^{3n}$, where $\mathbf{u}_i = ((u_i)_1, ..., (u_i)_n)^T$ are the vectors containing the velocity components corresponding to the x_i -spatial direction.
- $\mathbf{u}_s = ((u_s)_1, ..., (u_s)_m)^T \in \mathbb{R}^m$ is the staggered velocity.
- The velocities are related via the interpolator from cells to faces $\Gamma_{c \to s} \in \mathbb{R}^{m \times 3n} \implies \mathbf{u}_s = \Gamma_{c \to s} \mathbf{u}_c$.

◆ロト ◆型ト ◆基ト ◆基ト ・基・ 少 Q ©
Daniel Santos

Let us suppose we have n control volumes and m faces.

Finite volume discretization of incompressible NS equations on an arbitrary collocated mesh

$$\Omega \frac{d\mathbf{u}_c}{dt} + C(\mathbf{u}_s)\mathbf{u}_c = -D\mathbf{u}_c - \Omega G_c \mathbf{p}_c, \tag{1}$$

$$M\mathbf{u}_s = \mathbf{0}_c.$$
 (2)

- $\mathbf{p}_c = (p_1, ..., p_n)^T \in \mathbb{R}^n$ is the cell-centered pressure.
- $\mathbf{u}_c = (\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3)^T \in \mathbb{R}^{3n}$, where $\mathbf{u}_i = ((u_i)_1, ..., (u_i)_n)^T$ are the vectors containing the velocity components corresponding to the x_i -spatial direction.
- $\mathbf{u}_s = ((u_s)_1, ..., (u_s)_m)^T \in \mathbb{R}^m$ is the staggered velocity.
- The velocities are related via the interpolator from cells to faces $\Gamma_{c \to s} \in \mathbb{R}^{m \times 3n} \implies \mathbf{u}_s = \Gamma_{c \to s} \mathbf{u}_c$.

◆ロト ◆型ト ◆基ト ◆基ト ・基・ 少 Q ©
Daniel Santos

Let us suppose we have n control volumes and m faces.

Finite volume discretization of incompressible NS equations on an arbitrary collocated mesh

$$\Omega \frac{d\mathbf{u}_c}{dt} + C(\mathbf{u}_s)\mathbf{u}_c = -D\mathbf{u}_c - \Omega G_c \mathbf{p}_c, \tag{1}$$

$$M\mathbf{u}_s = \mathbf{0}_c.$$
 (2)

- $\mathbf{p}_c = (p_1, ..., p_n)^T \in \mathbb{R}^n$ is the cell-centered pressure.
- $\mathbf{u}_c = (\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3)^T \in \mathbb{R}^{3n}$, where $\mathbf{u}_i = ((u_i)_1, ..., (u_i)_n)^T$ are the vectors containing the velocity components corresponding to the x_i —spatial direction.
- $\mathbf{u}_s = ((u_s)_1, ..., (u_s)_m)^T \in \mathbb{R}^m$ is the staggered velocity.
- The velocities are related via the interpolator from cells to faces $\Gamma_{c \to s} \in \mathbb{R}^{m \times 3n} \implies \mathbf{u}_s = \Gamma_{c \to s} \mathbf{u}_c.$

Let us suppose we have n control volumes and m faces.

Finite volume discretization of incompressible NS equations on an arbitrary collocated mesh

$$\Omega \frac{d\mathbf{u}_c}{dt} + C(\mathbf{u}_s)\mathbf{u}_c = -D\mathbf{u}_c - \Omega G_c \mathbf{p}_c, \tag{1}$$

$$M\mathbf{u}_s = \mathbf{0}_c.$$
 (2)

- $\mathbf{p}_c = (p_1, ..., p_n)^T \in \mathbb{R}^n$ is the cell-centered pressure.
- $\mathbf{u}_c = (\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3)^T \in \mathbb{R}^{3n}$, where $\mathbf{u}_i = ((u_i)_1, ..., (u_i)_n)^T$ are the vectors containing the velocity components corresponding to the x_i -spatial direction.
- $\mathbf{u}_s = ((u_s)_1, ..., (u_s)_m)^T \in \mathbb{R}^m$ is the staggered velocity.
- The velocities are related via the interpolator from cells to faces $\Gamma_{C \to s} \in \mathbb{R}^{m \times 3n} \implies \mathbf{u}_s = \Gamma_{C \to s} \mathbf{u}_C$.

◆ロト ◆型ト ◆基ト ◆基ト ・基・ 少 Q ©
Daniel Santos

Let us suppose we have n control volumes and m faces.

Finite volume discretization of incompressible NS equations on an arbitrary collocated mesh

$$\Omega \frac{d\mathbf{u}_c}{dt} + C(\mathbf{u}_s)\mathbf{u}_c = -D\mathbf{u}_c - \Omega G_c \mathbf{p}_c, \tag{1}$$

$$M\mathbf{u}_s = \mathbf{0}_c.$$
 (2)

- $\mathbf{p}_c = (p_1, ..., p_n)^T \in \mathbb{R}^n$ is the cell-centered pressure.
- $\mathbf{u}_c = (\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3)^T \in \mathbb{R}^{3n}$, where $\mathbf{u}_i = ((u_i)_1, ..., (u_i)_n)^T$ are the vectors containing the velocity components corresponding to the x_i -spatial direction.
- $\mathbf{u}_s = ((u_s)_1, ..., (u_s)_m)^T \in \mathbb{R}^m$ is the staggered velocity.
- The velocities are related via the interpolator from cells to faces $\Gamma_{c \to s} \in \mathbb{R}^{m \times 3n} \implies \mathbf{u}_s = \Gamma_{c \to s} \mathbf{u}_c$.

◆ロト ◆型ト ◆基ト ◆基ト ・基・ 少 Q ©
Daniel Santos

- $\Omega_c \in \mathbb{R}^{n \times n}$ is a diagonal matrix with the cell-centered volumes $\Rightarrow \Omega = I_3 \otimes \Omega_c$.
- $C_c(\mathbf{u}_s) \in \mathbb{R}^{n \times n}$ is the cell-centered convective operator for a discrete scalar field $\implies C(\mathbf{u}_s) = I_3 \otimes C_c(\mathbf{u}_s)$.
- $D_c \in \mathbb{R}^{n \times n}$ is the cell-centered diffusive operator for a discrete scalar field $D = D = I_3 \otimes D_c$.

Finally,

- $oldsymbol{G}_c \in \mathbb{R}^{3n imes n}$ represents the discrete collocated gradient.
- $M \in \mathbb{R}^{n \times m}$ is the face-to-cell discrete divergence operator.

◄□▶◀圖▶◀불▶◀불▶ 불 쒸٩℃

- $\Omega_c \in \mathbb{R}^{n \times n}$ is a diagonal matrix with the cell-centered volumes $\Longrightarrow \Omega = I_3 \otimes \Omega_c$.
- $C_c(\mathbf{u}_s) \in \mathbb{R}^{n \times n}$ is the cell-centered convective operator for a discrete scalar field $\Longrightarrow C(\mathbf{u}_s) = I_3 \otimes C_c(\mathbf{u}_s)$.
- $D_c \in \mathbb{R}^{n \times n}$ is the cell-centered diffusive operator for a discrete scalar field $\Longrightarrow D = I_3 \otimes D_c$.

Finally,

- $oldsymbol{G}_c \in \mathbb{R}^{3n imes n}$ represents the discrete collocated gradient.
- $M \in \mathbb{R}^{n \times m}$ is the face-to-cell discrete divergence operator.

- $\Omega_c \in \mathbb{R}^{n \times n}$ is a diagonal matrix with the cell-centered volumes $\Rightarrow \Omega = I_3 \otimes \Omega_c$.
- $C_c(\mathbf{u}_s) \in \mathbb{R}^{n \times n}$ is the cell-centered convective operator for a discrete scalar field $\implies C(\mathbf{u}_s) = I_3 \otimes C_c(\mathbf{u}_s)$.
- $D_c \in \mathbb{R}^{n \times n}$ is the cell-centered diffusive operator for a discrete scalar field $\implies D = I_3 \otimes D_c$.

Finally,

- $G_c \in \mathbb{R}^{3n \times n}$ represents the discrete collocated gradient.
- $M \in \mathbb{R}^{n \times m}$ is the face-to-cell discrete divergence operator.

4 D P 4 D P 4 E P 4 E P E *) 4 (*

Mimicking Hilbert adjointness in L^2 inner product \rightarrow

$$G = -\Omega_s^{-1} M^T$$

Mimicking continuous Laplacian \rightarrow

$$L = MG = -M\Omega_s^{-1}M^T,$$

$$L_c = M_c G_c = -M \Gamma_{c \to s} \Omega^{-1} \Gamma_{c \to s}^T M^T,$$

Metric-consistency of L^2 inner product \rightarrow

$$\Gamma_{s \to c} = \Omega^{-1} \Gamma_{c \to s}^{\mathcal{T}} \Omega_s. \tag{3}$$

where G is the center-to-face staggered gradient, L is the Laplacian operator, L_c is the collocated-Laplacian operator and $\Gamma_{s \to c}$ is the face-to-cell interpolator.

For more information about Symmetry-Preserving discretization consult: F.X. Trias, O. Lehmkuhl, A. Oliva, C.D. Perez-Segarra, and R.W.C.P. Verstappen. Symmetry-preserving discretization of Navier-Stokes equations on collocated unstructured meshes. Journal of Computational Physics, 258:246–267, 2014.

Daniel Santos 6 / 15

Mimicking Hilbert adjointness in L^2 inner product \rightarrow

$$G = -\Omega_s^{-1} M^T$$
,

Mimicking continuous Laplacian \rightarrow

$$L_c = MG = -M\Omega_s^{-1}M^T,$$

$$L_c = M_cG_c = -M\Gamma_{c \to s}\Omega^{-1}\Gamma_{c \to s}^TM^T,$$

Metric-consistency of L^2 inner product \rightarrow

$$\Gamma_{s \to c} = \Omega^{-1} \Gamma_{c \to s}^{\mathcal{T}} \Omega_s. \tag{3}$$

where G is the center-to-face staggered gradient, L is the Laplacian operator, L_c is the collocated-Laplacian operator and $\Gamma_{s \to c}$ is the face-to-cell interpolator.

For more information about Symmetry-Preserving discretization consult: F.X. Trias, O. Lehmkuhl, A. Oliva, C.D. Perez-Segarra, and R.W.C.P. Verstappen. Symmetry-preserving discretization of Navier-Stokes equations on collocated unstructured meshes. Journal of Computational Physics, 258:246–267, 2014.

Daniel Santos 6 / 15

Mimicking Hilbert adjointness in L^2 inner product \rightarrow

$$G = -\Omega_s^{-1} M^T$$
,

Mimicking continuous Laplacian \rightarrow

$$L = MG = -M\Omega_s^{-1}M^T,$$

$$\left[L_c = M_c G_c = -M \Gamma_{c \to s} \Omega^{-1} \Gamma_{c \to s}^T M^T,\right]$$

Metric-consistency of L^2 inner product \rightarrow

$$\Gamma_{s \to c} = \Omega^{-1} \Gamma_{c \to s}^{T} \Omega_{s}. \tag{3}$$

where G is the center-to-face staggered gradient, L is the Laplacian operator, L_c is the collocated-Laplacian operator and $\Gamma_{s\to c}$ is the face-to-cell interpolator.

For more information about Symmetry-Preserving discretization consult: F.X. Trias, O. Lehmkuhl, A. Oliva, C.D. Perez-Segarra, and R.W.C.P. Verstappen. Symmetry-preserving discretization of Navier-Stokes equations on collocated unstructured meshes. Journal of Computational Physics, 258:246–267, 2014.

Daniel Santos 6 / 15

Mimicking Hilbert adjointness in L^2 inner product \rightarrow

$$G = -\Omega_s^{-1} M^T$$
,

Mimicking continuous Laplacian \rightarrow

$$L = MG = -M\Omega_s^{-1}M^T,$$

$$L_c = M_c G_c = -M \Gamma_{c \to s} \Omega^{-1} \Gamma_{c \to s}^T M^T,$$

Metric-consistency of L^2 inner product \rightarrow

$$\Gamma_{s \to c} = \Omega^{-1} \Gamma_{c \to s}^{T} \Omega_{s}. \tag{3}$$

where G is the center-to-face staggered gradient, L is the Laplacian operator, L_c is the collocated-Laplacian operator and $\Gamma_{s \to c}$ is the face-to-cell interpolator.

For more information about Symmetry-Preserving discretization consult: F.X. Trias, O. Lehmkuhl, A. Oliva, C.D. Perez-Segarra, and R.W.C.P. Verstappen. Symmetry-preserving discretization of Navier-Stokes equations on collocated unstructured meshes. Journal of Computational Physics, 258:246–267, 2014.

Daniel Santos 6/15

Volume-weighted interpolator

Momentum is conserved when interpolated by the volume-weighted:

$$(\mathbf{u}_c, \mathbf{1}_c)_{\Omega} = (\mathbf{u}_s, \mathbf{1}_s)_{\Omega_s} \to \phi_f = \frac{\tilde{V}_{1,f}}{\tilde{V}_{1,f} + \tilde{V}_{2,f}} \phi_{c1} + \frac{\tilde{V}_{2,f}}{\tilde{V}_{1,f} + \tilde{V}_{2,f}} \phi_{c2}$$

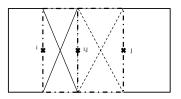


Figure 1: Volume-weighted volumes

Volume-weighted interpolator

Momentum is conserved when interpolated by the volume-weighted:

$$(\mathbf{u}_c, \mathbf{1}_c)_{\Omega} = (\mathbf{u}_s, \mathbf{1}_s)_{\Omega_s} \to \phi_f = \frac{\tilde{V}_{1,f}}{\tilde{V}_{1,f} + \tilde{V}_{2,f}} \phi_{c1} + \frac{\tilde{V}_{2,f}}{\tilde{V}_{1,f} + \tilde{V}_{2,f}} \phi_{c2}$$

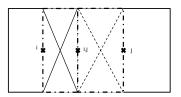


Figure 1: Volume-weighted volumes

 Volume-weighted is needed for flux term of the Poisson equation and correction terms.

Volume-weighted interpolator

Momentum is conserved when interpolated by the volume-weighted:

$$(\mathbf{u}_c, \mathbf{1}_c)_{\Omega} = (\mathbf{u}_s, \mathbf{1}_s)_{\Omega_s} \to \phi_f = \frac{\tilde{V}_{1,f}}{\tilde{V}_{1,f} + \tilde{V}_{2,f}} \phi_{c1} + \frac{\tilde{V}_{2,f}}{\tilde{V}_{1,f} + \tilde{V}_{2,f}} \phi_{c2}$$

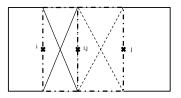


Figure 1: Volume-weighted volumes

- Volume-weighted is needed for flux term of the Poisson equation and correction terms.
- MidPoint interpolation is required for the convective term.

Daniel Santos 7/15

Global kinetic energy equation

$$\frac{d||\mathbf{u}_c||^2}{dt} = -\mathbf{u}_c^T (C(\mathbf{u}_s) + C^T(\mathbf{u}_s))\mathbf{u}_c - \mathbf{u}_c^T (D + D^T)\mathbf{u}_c - \mathbf{u}_c^T \Omega G_c \mathbf{p}_c - \mathbf{p}_c^T G_c^T \Omega^T \mathbf{u}_c.$$
(4)

In the absence of diffusion, that is, D=0, the global kinetic energy is conserved if:

Global kinetic energy equation

$$\frac{d||\mathbf{u}_c||^2}{dt} = -\mathbf{u}_c^T (C(\mathbf{u}_s) + C^T(\mathbf{u}_s))\mathbf{u}_c - \mathbf{u}_c^T (D + D^T)\mathbf{u}_c
-\mathbf{u}_c^T \Omega G_c \mathbf{p}_c - \mathbf{p}_c^T G_c^T \Omega^T \mathbf{u}_c.$$
(4)

In the absence of diffusion, that is, D=0, the global kinetic energy is conserved if:

ullet $C(u_s) = -C^T(u_s)$, i.e, the convective operator should be skew-symmetric.

4□ > 4個 > 4 분 > 4분 > 분 99.0°

Global kinetic energy equation

$$\frac{d||\mathbf{u}_c||^2}{dt} = -\mathbf{u}_c^T (C(\mathbf{u}_s) + C^T(\mathbf{u}_s))\mathbf{u}_c - \mathbf{u}_c^T (D + D^T)\mathbf{u}_c
-\mathbf{u}_c^T \Omega G_c \mathbf{p}_c - \mathbf{p}_c^T G_c^T \Omega^T \mathbf{u}_c.$$
(4)

In the absence of diffusion, that is, D=0, the global kinetic energy is conserved if:

- ullet $C(u_s) = -C^T(u_s)$, i.e, the convective operator should be skew-symmetric.
- $\bullet (-\Omega G_c)^T = M\Gamma_{c\to s},$

Global kinetic energy equation

$$\frac{d||\mathbf{u}_c||^2}{dt} = -\mathbf{u}_c^T (C(\mathbf{u}_s) + C^T(\mathbf{u}_s))\mathbf{u}_c - \mathbf{u}_c^T (D + D^T)\mathbf{u}_c - \mathbf{u}_c^T \Omega G_c \mathbf{p}_c - \mathbf{p}_c^T G_c^T \Omega^T \mathbf{u}_c.$$
(4)

In the absence of diffusion, that is, D=0, the global kinetic energy is conserved if:

- $C(\mathbf{u}_s) = -C^T(\mathbf{u}_s)$, i.e, the convective operator should be skew-symmetric.
- $\bullet \ (-\Omega G_c)^T = M\Gamma_{c\to s},$
- $M\Gamma_{c\to s}\mathbf{u}_c=0$

Global kinetic energy equation with skew-symmetric convective operator

$$\frac{d||\mathbf{u}_c||^2}{dt} = -\mathbf{u}_c^T (D + D^T) \mathbf{u}_c - \mathbf{u}_c^T \Omega G_c \mathbf{p}_c - \mathbf{p}_c^T G_c^T \Omega^T \mathbf{u}_c.$$

In absence of diffusion, that is D=0, the global kinetic energy is conserved if:

•
$$M\Gamma_{C\rightarrow S}\mathbf{u}_{C}=0$$

In collocated framework, we either solve:

$$M\mathbf{u}_s = 0 \to Lp_c = M\Gamma_{c \to s}\mathbf{u}_c^p \to \text{Kinetic Energy Error}$$
 (5)

$$M\Gamma_{c\to s}\mathbf{u}_c = 0 \to L_c p_c = M\Gamma_{c\to s}\mathbf{u}_c^p \to \text{Checkerboard}$$
 (6)

<ロト <回ト < 亘ト < 亘ト ∈ 更 のQ () 9 / 15

Global kinetic energy equation with skew-symmetric convective operator

$$\frac{d||\mathbf{u}_c||^2}{dt} = -\mathbf{u}_c^T (D + D^T) \mathbf{u}_c - \mathbf{u}_c^T \Omega G_c \mathbf{p}_c - \mathbf{p}_c^T G_c^T \Omega^T \mathbf{u}_c.$$

In collocated framework and explicit time integration, the (artificial) kinetic energy added is given by:

$$-\mathbf{p}_c^T G_c^T \Omega^T \mathbf{u}_c = \mathbf{p}_c^T (L - L_c) \mathbf{p}_c \Delta t$$
 (7)

This term is strictly dissipative iff the volume-weighted interpolator is used.

For more information consult: D. Santos, J. A. Hopman, C.D. Perez-Segarra, and F.X. Trias. On a symmetry-preserving unconditionally stable projection method on collocated unstructured grids for incompressible flows. Journal of Computational Physics, 523:113631, 2025.

2. A mimetic FVM Thermal MHD solver

Equations for thermal MHD buoyant flow under low magnetic Re:

$$\begin{split} & \frac{\partial \boldsymbol{u}}{\partial t} + \nabla \cdot (\boldsymbol{u} \otimes \boldsymbol{u}) = -\frac{\nabla \rho}{\rho} + \nu \nabla^2 \boldsymbol{u} \\ & + \frac{\mathbf{j} \times \mathbf{B}_0}{\rho} + \mathbf{g} \beta (T - T_{ref}), \\ & \nabla \cdot \boldsymbol{u} = 0, \\ & \mathbf{j} = \sigma_m (-\nabla \phi + \boldsymbol{u} \times \mathbf{B}_0), \\ & \nabla \cdot \mathbf{j} = 0, \\ & \frac{\partial T}{\partial t} + \nabla \cdot (\boldsymbol{u} T) = \alpha \nabla^2 T, \end{split}$$

Poisson equation for the electric potential:

$$abla^2 \phi =
abla \cdot (\mathbf{u} \times \mathbf{B}_0).$$

Steps of the FSM (explicit first-order time-integration scheme):

$$\begin{aligned} & \boldsymbol{u}_{c}^{p} = \boldsymbol{u}_{c}^{n} - \Delta t \Omega^{-1}[\mathsf{C}(\boldsymbol{u}_{s}) + \mathsf{D}]\boldsymbol{u}_{c}^{n} \\ & + \frac{\mathbf{j}_{c}^{n} \times \mathbf{B}_{0}}{\rho} + \mathbf{g}\beta(T_{c}^{n} - T_{ref}), \\ & \boldsymbol{u}_{s}^{p} = \Gamma_{c \to s}\boldsymbol{u}_{c}^{p}, \\ & \mathsf{L}\boldsymbol{p}_{c}^{n+1} = \mathsf{M}\boldsymbol{u}_{s}^{p} \to \boldsymbol{p}_{c}^{n+1}, \\ & \boldsymbol{u}_{s}^{n+1} = \boldsymbol{u}_{s}^{p} - \mathsf{G}\boldsymbol{p}_{c}^{n+1}, \\ & \boldsymbol{u}_{c}^{n+1} = \boldsymbol{u}_{c}^{p} - \Gamma_{s \to c}\mathsf{G}\boldsymbol{p}_{c}^{n+1}, \\ & \mathbf{j}_{c}^{p} = \boldsymbol{u}_{c}^{n} \times \mathbf{B}_{0}, \\ & \mathbf{j}_{s}^{p} = \Gamma_{c \to s}\mathbf{j}_{c}^{p}, \\ & \mathsf{L}\phi^{n+1} = \mathsf{M}\mathbf{j}_{s}^{p}, \to \phi_{c}^{n+1} \\ & \mathbf{j}_{c}^{n+1} = \sigma_{m}\Gamma_{s \to c}(\mathbf{j}_{s}^{p} - \mathsf{G}\phi^{n+1}), \\ & T_{c}^{n+1} = T_{c}^{n} + \Delta t(-\mathsf{C}(\boldsymbol{u}_{s}) + \alpha\mathsf{L})T_{c}^{n} \end{aligned}$$

2D MHD Cavity

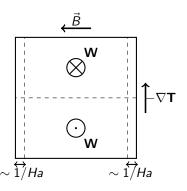


Figure 2: 2D enclosed buoyant cavity with conductive walls full of liquid metal with a strong horizontal magnetic field. Hadamard boundary layers are also depicted.

Analytical solution:

$$\frac{dW}{dX}_{\perp} = \frac{-Gr}{2Ha} \qquad \frac{dW}{dX}_{\parallel} = \frac{-Gr}{Ha^2} \tag{10}$$

Daniel Santos 12 / 15

2D MHD Cavity

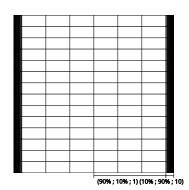


Figure 3: Test mesh (90-10;10-90;10). The aspect ratio between the bulk and the wall control volumes is 37.5.

Time integration: RK3

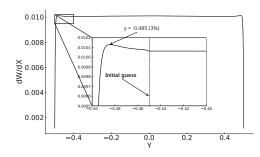


Figure 4: Plot of dW/dX with the adimensional position. The initial estimate for the boundary layer thickness was 0.05, while the simulation results indicate a refined value of approximately 0.015.

2D MHD Cavity

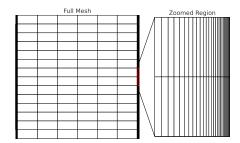


Figure 5: Test mesh (97-3;10-90;10). A zoomed region is shown close to the wall. The aspect ratio between the bulk and the wall control volumes is 108.

Ha = 500	Mesh	Analytical: 10.00
15×60 (A)	(90-10; 10-90; 10)	10.10
15×60 (B)	(96-4; 10-90; 10)	10.03
15×60 (C)	(97-3; 10-90; 10)	10.02
15×60 (D)	(97-3; 10-90; 4)	10.03
15×60 (E)	(97-3; 10-90; 2)	10.05
15×60 (F)	(97-3; 10-90; 1)	10.09
15×30 (G)	(97-3; 10-90; 10)	10.07
15×30 (H)	(97-3; 10-90; 20)	10.05

Table 1: Comparison of numerical results of dW/dX at the center of the plane for Ha = 500 for different meshes.

- Better results with 8 times smaller meshes than literature.
- 27 nodes located at the Hadamard BL vs 4 nodes in the literature.

Daniel Santos 14/15

General conclusions

• A mimetic FVM on collocated grids has been presented:

General conclusions

- A mimetic FVM on collocated grids has been presented:
 - Free of Checkerboard.

General conclusions

- A mimetic FVM on collocated grids has been presented:
 - Free of Checkerboard.
 - (Almost)Free of artificial numerical dissipation \rightarrow Artificial dissipation controlled and small $\mathbf{p}_c^T(L-L_c)\mathbf{p}_c$.

General conclusions

- A mimetic FVM on collocated grids has been presented:
 - Free of Checkerboard.
 - (Almost)Free of artificial numerical dissipation \rightarrow Artificial dissipation controlled and small $\mathbf{p}_c^T(L-L_c)\mathbf{p}_c$.
 - Unconditionally stable.

General conclusions

- A mimetic FVM on collocated grids has been presented:
 - Free of Checkerboard.
 - (Almost)Free of artificial numerical dissipation \rightarrow Artificial dissipation controlled and small $\mathbf{p}_c^T(L-L_c)\mathbf{p}_c$.
 - Unconditionally stable.
 - Easily portable (to other codes, platforms...) \rightarrow Only five operators are needed. $\Omega_c, \Omega_s, N, \Pi_{c \rightarrow s}, M$.

15 / 15

General conclusions

- A mimetic FVM on collocated grids has been presented:
 - Free of Checkerboard.
 - (Almost)Free of artificial numerical dissipation \rightarrow Artificial dissipation controlled and small $\mathbf{p}_c^T(L-L_c)\mathbf{p}_c$.
 - Unconditionally stable.
 - Easily portable (to other codes, platforms...) → Only five operators are needed. Ω_c, Ω_s, N, Π_{c→s}, M.
- Direct extension to other physics.

General conclusions

- A mimetic FVM on collocated grids has been presented:
 - Free of Checkerboard.
 - (Almost)Free of artificial numerical dissipation \rightarrow Artificial dissipation controlled and small $\mathbf{p}_c^T(L-L_c)\mathbf{p}_c$.
 - Unconditionally stable.
 - Easily portable (to other codes, platforms...) → Only five operators are needed. Ω_c, Ω_s, N, Π_{c→s}, M.
- Direct extension to other physics.
- \bullet Particularly useful for MHD \to better results with 8 times smaller meshes than literature.

General conclusions

- A mimetic FVM on collocated grids has been presented:
 - Free of Checkerboard.
 - (Almost)Free of artificial numerical dissipation \rightarrow Artificial dissipation controlled and small $\mathbf{p}_c^T(L-L_c)\mathbf{p}_c$.
 - Unconditionally stable.
 - Easily portable (to other codes, platforms...) → Only five operators are needed. Ω_c, Ω_s, N, Π_{c→s}, M.
- Direct extension to other physics.
- \bullet Particularly useful for MHD \to better results with 8 times smaller meshes than literature.

Ongoing work

• Currently working on DCLL breeding blanket conditions: 3D simulation, Ha = 6500, $Gr = 7 \times 10^9$.

 ✓ □ ▷ ✓ ⓓ ▷ ✓ 僡 ▷ ✓ 僡 ▷ ◯ ء

 Daniel Santos

 15/15