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1. Definition of basic collocated operators

Let us suppose we have n control volumes and m faces.

Finite volume discretization of incompressible NS equations on an

arbitrary collocated mesh

du,

th

+ C(us)uc = —Du. — QG.p,, (1)
Mug = 0. (2)

o p.=(p1,-y p,,)T € R" s the cell-centered pressure.

o uc. = (ug,up,u3)” € R¥ | where u; = ((uj)1, .., (u;)n) T are the vectors
containing the velocity components corresponding to the x;—spatial direction.

o us = ((us)1, .-, (us)m)™ € R™ is the staggered velocity.

@ The velocities are related via the interpolator from cells to faces
rc—>s S RmXSn — us = rc—>suc~
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Definition of basic collocated operators

o is a diagonal matrix with the cell-centered volumes
— =hL®Q..

o| C.(us) € R™" is the cell-centered convective operator for a discrete scalar

ield = u;) =l ® Co(us).
o is the cell-centered diffusive operator for a discrete scalar field
— D=hk®D..
Finally,

o G. € R3™" represents the discrete collocated gradient.

o M e R™™ s the face-to-cell discrete divergence operator.
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Definition of basic collocated operators

e Q. € R™" s a diagonal matrix with the cell-centered volumes
= Q=5hLK®Q..
o C.(us) € R™" s the cell-centered convective operator for a discrete scalar
field = C(us) = K ® Cc(us).
o D. € R™" s the cell-centered diffusive operator for a discrete scalar field
— D=5kK®D..
Finally,

° represents the discrete collocated gradient.

° is the face-to-cell discrete divergence operator.
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Mimicking continuous properties

Mimicking Hilbert adjointness in L? inner product —
G=-Q;'MT,

Mimicking continuous Laplacian —
L=MG=—-MQ;IMT,

Le=M.Ge= Ml Q' T, .mM",

Metric-consistency of L2 inner product —
e =Q71 . Q (3)

c—s=tSs:
where G is the center-to-face staggered gradient, L is the Laplacian operator, L. is
the collocated-Laplacian operator and I's_,. is the face-to-cell interpolator.

For more information about Symmetry-Preserving discretization consult: F.X. Trias, O.
Lehmkuhl, A. Oliva, C.D. Perez-Segarra, and R.W.C.P. Verstappen. Symmetry-preserving
discretization of Navier-Stokes equations on collocated unstructured meshes. Journal of
Computational Physics, 258:246-267, 2014.
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Volume-weighted interpolator

@ Momentum is conserved when interpolated by the volume-weighted:

Vo
u 71 = (u 71 — = — 1,f )
(ue, 1c)o = (us, Lo)o, = or V1f+V2,f¢C1 Vir+ V2,f¢62
A
o
i
x
!
I
N

Figure 1: Volume-weighted volumes
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@ Volume-weighted is needed for flux term of the Poisson equation and
correction terms.
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Volume-weighted interpolator

@ Momentum is conserved when interpolated by the volume-weighted:

(um lc)Q = (u57 15)95 — ¢f ==

e e

Figure 1: Volume-weighted volumes

@ Volume-weighted is needed for flux term of the Poisson equation and
correction terms.

@ MidPoint interpolation is required for the convective term.
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Conservation of global kinetic energy

Global kinetic energy equation

dlfucl?

™ —uCT(C(us) + CT(us))uC = uCT(D + DT)uC

—u/QG.p,—plGIQTu.. (4)

In the absence of diffusion, that is, D = 0, the global kinetic energy is conserved if:
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Conservation of global kinetic energy

Global kinetic energy equation with skew-symmetric convective

operator

d||UC||2 _

o —u/(D+DMu, —ulQGp, —pl G QTu,.

In absence of diffusion, that is D = 0, the global kinetic energy is conserved if:
e MIN._su. =0

In collocated framework, we either solve:

Mus =0 — Lp. = Ml su? — Kinetic Energy Error (5)
Ml suc =0 — Lcpe = MI ., su? — Checkerboard (6)
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Conservation of global kinetic energy

Global kinetic energy equation with skew-symmetric convective

operator

d||ur:||2 _

it —u] (D4 D"u. —u!QGp, —pl GIQTu..

In collocated framework and explicit time integration, the (artificial) kinetic energy
added is given by:
—p. G/ QTuc = pl (L — Lo)pAt (7)

This term is strictly dissipative iff the volume-weighted interpolator is used.
For more information consult: D. Santos, J. A. Hopman, C.D. Perez-Segarra, and F.X.
Trias. On a symmetry-preserving unconditionally stable projection method on collo-

cated unstructured grids for incompressible flows. Journal of Computational Physics,
523:113631, 2025.

Daniel Santos 10/15



2. A mimetic FVM Thermal MHD solver

Equations for thermal MHD buoyant

flow under low magnetic Re:

ou Vp
ot

jxB
+JTO +g6(T_ Tref)a

V.-u=0,
j=om(=V¢+ u x By),
V-j=0,

oT

S PV (wT)= aV?T,

Poisson equation for the electric
potential:

V2p =V - (u x By).

Daniel Santos 11/15

—+ V. (u®u)277+yv2u

Steps of the FSM (explicit first-order
time-integration scheme):

u? = u” — AtQ[C(us) + D]u”
il x B
+JC 0 + /6( ref)

up = rc—>su57
Lp™ = Mu? — pI*t,
uZ’H =uf — Gp”+1,
un+1 = up - rsapon-Ha
j2 = ul x By,
Jg = rc—)sjlc),
L¢n+l MJ57_> ¢n+1

+1 +1
JZ = UmI_S*)C( s — G¢n )a

Tm = 77+ At(—C(us) + al) T



2D MHD Cavity

777777777777777 T»VT

Figure 2: 2D enclosed buoyant cavity with conductive walls full of liquid metal with a
strong horizontal magnetic field. Hadamard boundary layers are also depicted.

Analytical solution:
dw —Gr dw —Gr

dX | 2Ha dX | Ha?

(10)
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2D MHD Cavity

Time integration: RK3
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Figure 3: Test mesh (90-10;10-90;10). Figure 4: Plot of dW/dX with the

The aspect ratio between the bulk and adimensional position. The initial estimate

the wall control volumes is 37.5. for the boundary layer thickness was 0.05,
while the simulation results indicate a refined
value of approximately 0.015.
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MHD Cavity

Full Mesh Zoomed Region Ha = 500 Mesh Analytical: 10.00
15x60 (A) | (90-10; 10-90; 10) 10.10
15x60 (B) | (96-4; 10-90; 10) 10.03
1560 (C) | (97-3; 10-90; 10) 10.02
15x60 (D) | (97-3; 10-90; 4) 10.03
15x60 (E) | (97-3; 10-90; 2) 10.05
15x60 (F) | (97-3; 10-90; 1) 10.09
15x30 (G) | (97-3; 10-90; 10) 10.07
15x30 (H) | (97-3; 10-90; 20) 10.05
Table 1: Comparison of numerical results

of dW/dX at the center of the plane for

Figure 5: Test mesh (97-3;10-90;10). A 112 = 500 for different meshes.

zoomed region is shown close to the wall.
The aspect ratio between the bulk and the

wall control volumes is 108 @ Better results with 8 times smaller

meshes than literature.

@ 27 nodes located at the Hadamard
BL vs 4 nodes in the literature.
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@ Direct extension to other physics.
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Ongoing work
@ Currently working on DCLL breeding blanket conditions: 3D simulation, Ha =
6500, Gr = 7 x 10°.
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