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Motivation
Mimetic FVM → Symmetry-preserving:

Free of Checkerboard
Free of artificial numerical
dissipation → Only dissipation
from the LES model
Unconditionally stable →
Volume-weighted interpolation for
momentum
Easily portable (to other codes,
platforms...)
Easily extension to other physics:
MHD, multiphase...

Challenge: Thermal
Magnetohydrodynamics

High Hartmann number:
Ha = LB0

√
σ
µ

Low Prandtl number:
Pr = cpµ

k
High Grashof number:
Gr = gβ∆TL3

ν2

Full Mesh Zoomed Region
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1. Definition of basic collocated operators

Let us suppose we have n control volumes and m faces.

Finite volume discretization of incompressible NS equations on an
arbitrary collocated mesh

Ωduc
dt + C(us)uc = −Duc − ΩGcpc , (1)

Mus = 0c . (2)

pc = (p1, ..., pn)T ∈ Rn is the cell-centered pressure.
uc = (u1, u2, u3)T ∈ R3n , where ui = ((ui)1, ..., (ui)n)T are the vectors
containing the velocity components corresponding to the xi−spatial direction.
us = ((us)1, ..., (us)m)T ∈ Rm is the staggered velocity.
The velocities are related via the interpolator from cells to faces
Γc→s ∈ Rm×3n =⇒ us = Γc→suc .
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Definition of basic collocated operators

Ωc ∈ Rn×n is a diagonal matrix with the cell-centered volumes
=⇒ Ω = I3 ⊗ Ωc .
Cc(us) ∈ Rn×n is the cell-centered convective operator for a discrete scalar

field =⇒ C(us) = I3 ⊗ Cc(us).
Dc ∈ Rn×n is the cell-centered diffusive operator for a discrete scalar field

=⇒ D = I3 ⊗ Dc .
Finally,

Gc ∈ R3n×n represents the discrete collocated gradient.
M ∈ Rn×m is the face-to-cell discrete divergence operator.
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Mimicking continuous properties

Mimicking Hilbert adjointness in L2 inner product →
G = −Ω−1

s MT ,

Mimicking continuous Laplacian →
L = MG = −MΩ−1

s MT ,

Lc = McGc = −MΓc→sΩ−1ΓT
c→sMT ,

Metric-consistency of L2 inner product →
Γs→c = Ω−1ΓT

c→sΩs . (3)

where G is the center-to-face staggered gradient, L is the Laplacian operator, Lc is
the collocated-Laplacian operator and Γs→c is the face-to-cell interpolator.

For more information about Symmetry-Preserving discretization consult: F.X. Trias, O.
Lehmkuhl, A. Oliva, C.D. Perez-Segarra, and R.W.C.P. Verstappen. Symmetry-preserving
discretization of Navier-Stokes equations on collocated unstructured meshes. Journal of
Computational Physics, 258:246–267, 2014.
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Volume-weighted interpolator
Momentum is conserved when interpolated by the volume-weighted:

(uc , 1c)Ω = (us , 1s)Ωs → ϕf = Ṽ1,f

Ṽ1,f + Ṽ2,f
ϕc1 + Ṽ2,f

Ṽ1,f + Ṽ2,f
ϕc2

i ji,j

Figure 1: Volume-weighted volumes

Volume-weighted is needed for flux term of the Poisson equation and
correction terms.
MidPoint interpolation is required for the convective term.
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Ṽ1,f + Ṽ2,f
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Conservation of global kinetic energy

Global kinetic energy equation

d ||uc ||2

dt = −uT
c (C(us) + CT (us))uc − uT

c (D + DT )uc

−uT
c ΩGcpc − pT

c GT
c ΩT uc . (4)

In the absence of diffusion, that is, D = 0, the global kinetic energy is conserved if:

C(us) = −CT (us), i.e, the convective operator should be skew-symmetric.
(−ΩGc)T = MΓc→s ,
MΓc→suc = 0
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Conservation of global kinetic energy

Global kinetic energy equation with skew-symmetric convective
operator

d ||uc ||2

dt = −uT
c (D + DT )uc − uT

c ΩGcpc − pT
c GT

c ΩT uc .

In absence of diffusion, that is D = 0, the global kinetic energy is conserved if:
MΓc→suc = 0

In collocated framework, we either solve:

Mus = 0 → Lpc = MΓc→sup
c → Kinetic Energy Error (5)

MΓc→suc = 0 → Lcpc = MΓc→sup
c → Checkerboard (6)
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Conservation of global kinetic energy

Global kinetic energy equation with skew-symmetric convective
operator

d ||uc ||2

dt = −uT
c (D + DT )uc − uT

c ΩGcpc − pT
c GT

c ΩT uc .

In collocated framework and explicit time integration, the (artificial) kinetic energy
added is given by:

−pT
c GT

c ΩT uc = pT
c (L − Lc)pc∆t (7)

This term is strictly dissipative iff the volume-weighted interpolator is used.

For more information consult: D. Santos, J. A. Hopman, C.D. Perez-Segarra, and F.X.
Trias. On a symmetry-preserving unconditionally stable projection method on collo-
cated unstructured grids for incompressible flows. Journal of Computational Physics,
523:113631, 2025.
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2. A mimetic FVM Thermal MHD solver

Equations for thermal MHD buoyant
flow under low magnetic Re:

∂u
∂t + ∇ · (u ⊗ u) = −∇p

ρ
+ ν∇2u

+ j × B0
ρ

+ gβ(T − Tref ),

∇ · u = 0,

j = σm(−∇ϕ + u × B0),
∇ · j = 0,

∂T
∂t + ∇ · (uT ) = α∇2T ,

Poisson equation for the electric
potential:

∇2ϕ = ∇ · (u × B0).

Steps of the FSM (explicit first-order
time-integration scheme):

up
c = un

c − ∆tΩ−1[C (us) + D]un
c

+ jnc × B0
ρ

+ gβ(T n
c − Tref ),

up
s = Γc→sup

c ,

Lpn+1
c = Mup

s → pn+1
c ,

un+1
s = up

s − Gpn+1
c ,

un+1
c = up

c − Γs→cGpn+1
c ,

jpc = un
c × B0,

jps = Γc→s jpc ,

Lϕn+1 = Mjps , → ϕn+1
c

jn+1
c = σmΓs→c(jps − Gϕn+1),

T n+1
c = T n

c + ∆t(−C (us) + αL)T n
c
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2D MHD Cavity

W

W

B⃗

−∇T

∼ 1/Ha ∼ 1/Ha

Figure 2: 2D enclosed buoyant cavity with conductive walls full of liquid metal with a
strong horizontal magnetic field. Hadamard boundary layers are also depicted.

Analytical solution:
dW
dX ⊥

= −Gr
2Ha

dW
dX ∥

= −Gr
Ha2 (10)

Daniel Santos
22-24 September 2025, ETMM-15, Dubrovnik, Croatia
12 / 15



2D MHD Cavity

(90% ; 10% ; 1) (10% ; 90% ; 10)

Figure 3: Test mesh (90-10;10-90;10).
The aspect ratio between the bulk and
the wall control volumes is 37.5.

Time integration: RK3

0.4 0.2 0.0 0.2 0.4
Y

0.002

0.004

0.006

0.008

0.010

d
W
/d
X

0.50 0.48 0.46 0.44 0.42 0.40
0.0095

0.0096

0.0097

0.0098

0.0099

0.0100

0.0101

0.0102

Initial guess

y = -0.485 (3%)

Figure 4: Plot of dW/dX with the
adimensional position. The initial estimate
for the boundary layer thickness was 0.05,
while the simulation results indicate a refined
value of approximately 0.015.
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2D MHD Cavity

Full Mesh Zoomed Region

Figure 5: Test mesh (97-3;10-90;10). A
zoomed region is shown close to the wall.
The aspect ratio between the bulk and the
wall control volumes is 108.

Ha = 500 Mesh Analytical: 10.00
15x60 (A) (90-10; 10-90; 10) 10.10
15x60 (B) (96-4; 10-90; 10) 10.03
15x60 (C) (97-3; 10-90; 10) 10.02
15x60 (D) (97-3; 10-90; 4) 10.03
15x60 (E) (97-3; 10-90; 2) 10.05
15x60 (F) (97-3; 10-90; 1) 10.09
15x30 (G) (97-3; 10-90; 10) 10.07
15x30 (H) (97-3; 10-90; 20) 10.05

Table 1: Comparison of numerical results
of dW /dX at the center of the plane for
Ha = 500 for different meshes.

Better results with 8 times smaller
meshes than literature.
27 nodes located at the Hadamard
BL vs 4 nodes in the literature.
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3. Summary and conclusions

General conclusions
A mimetic FVM on collocated grids has been presented:

Free of Checkerboard.
(Almost)Free of artificial numerical dissipation → Artificial dissipation
controlled and small pT

c (L − Lc)pc .
Unconditionally stable.
Easily portable (to other codes, platforms...) → Only five operators are
needed. Ωc , Ωs , N, Πc→s , M.

Direct extension to other physics.
Particularly useful for MHD → better results with 8 times smaller meshes than
literature.

Ongoing work
Currently working on DCLL breeding blanket conditions: 3D simulation, Ha =
6500, Gr = 7 × 109.
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