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1 Introduction

Large-eddy simulation (LES) equations result

from applying a spatial commutative filter, with filter

length δ, to the Navier–Stokes equations

∂tu+(u · ∇)u = ν∇2
u−∇p−∇·τ(u), ∇·u = 0,

(1)

where u is the filtered velocity and τ(u) is the subgrid

stress (SGS) tensor and aims to approximate the effect

of the under-resolved scales, τ(u) ≈ u⊗ u− u⊗ u.

Because of its inherent simplicity and robustness, the

eddy-viscosity assumption is by far the most used clo-

sure model, i.e. τ(u) ≈ −2νtS(u). Then, the eddy-

viscosity, νt, is usually modeled as follows

νt = (Cmδ)2Dm(u). (2)

In the last decades, most of the research has focused

on either the calculation of the model constant, Cm

(e.g. the dynamic modeling approach and its variants),

or the development of more appropriate model opera-

tors Dm(u) (e.g. WALE, Vreman’s, Verstappen’s, σ-

model, S3PQR [1],...). Surprisingly, little attention has

been paid on the computation of the subgrid character-

istic length, δ. Due to its simplicity and applicabil-

ity to unstructured meshes, the approach proposed by

Deardorff [2], i.e. the cube root of the cell volume (see

Eq. 4), is by far the most widely used to computed the

δ, despite in some situations it may provide very inac-

curate results.

Alternative methods to compute δ are summarized

and classified in Table 1 according to a list of desirable

properties for a (proper) definition of δ. According to

the property P2, they can be classified into two main

families; namely, (i) definitions of δ that solely depend

on geometrical properties of the mesh, and (ii) defi-

nitions of δ that are also dependent on the local flow

topology. The latter is characterized by the gradient of

the resolved velocity field, G ≡ ∇u, whereas the local

mesh geometry for a Cartesian grid is contained in the

following second-order diagonal tensor,

∆ ≡ diag(∆x,∆y,∆z). (3)

Hereafter, we take ∆x ≤ ∆y ≤ ∆z without loss of

generality. The first seven definition listed in Table 1

δvol δSco δmaxδω δ̃ω δSLAδlsq δrls δ̃rls
Ref [2] [3] [6] [7] [5] [4] [8]

Eq. (4) (4) (5) (6) (7) (7) (8) (15) (18)

P0 Y Y Y Y Y Y Y Y Y

P1 Y Y Y Y Y Y Y Y Y

P2 N N N Y Y Y Y Y Y

P3 Y N N N* Y Y Y Y Y

P4 +++ ++ ++++ ++ + + +++ ++++ +++

Table 1: Properties of different definition of the subgrid

characteristic length, δ. Namely, P0: δ ≥ 0, lo-

cality and frame invariant; P1: boundedness, i.e.,

given a structured Cartesian mesh where ∆x ≤

∆y ≤ ∆z, ∆x ≤ δ ≤ ∆z; P2: sensitive to flow

orientation; P3: applicable to unstructured meshes;

P4: well-conditioned and low computational cost.

are given by

δvol = (∆x∆y∆z)1/3, δSco = f(a1, a2)δvol, (4)

δmax = max(∆x,∆y,∆z), (5)

δω =

√

ω2
x∆y∆z + ω2

y∆x∆z + ω2
z∆x∆y

|ω|2 , (6)

δ̃ω =max
n,m

|ln − lm|√
3

, δSLA= δ̃ωFKH(V TM) (7)

δlsq =
√

(GδG
T
δ : GGT )/(GGT : GGT ), (8)

where ω = ∇ × u is the vorticity and f(a1, a2) =
cosh

√

4/27[(lna1)2 − ln a1 ln a2 + (ln a2)2] is the

correcting function proposed by Scotti [3]. The func-

tion 0 ≤ FKH(V TM) ≤ 1 was proposed by Shur et

al. [4] to correct the δ̃ω definition proposed by Mock-

ett et al. [5], both in the context of Detached Eddy

Simulation. Finally, Gδ ≡ G∆ is the gradient in the

so-called computational space. These properties are

based on physical, numerical, and/or practical argu-

ments. The list is completed with the novel definitions

δrls and δ̃rls introduced in the next sections.

2 Finite-volume filtering

Let us consider a generic 1D convection-diffusion

equation

∂φ

∂t
+

∂(uφ)

∂x
=

∂

∂x

(

Γ
∂φ

∂x

)

, (9)
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Figure 1: One-dimensional mesh

where u(x, t) denotes the advective velocity and

φ(x, t) represents a generic (transported) scalar field.

In a finite-volume method (FVM), this equation is

integrated over a set of non-overlapping volumes.

Hence, FVM variables result by applying a box filter

with filter width equal to the local grid size, h,

φ(x) =
1

h

∫ x+h
2

x−h
2

φdx. (10)

Notice that this filter commutes with differentiation

∂φ

∂x
=

1

h

∂

∂x

∫ x+h
2

x−h
2

φdx =
1

h

∫ x+h
2

x−h
2

∂φ

∂x
dx =

∂φ

∂x
.

(11)

Moreover, the standard second-order approximation of

the first-derivative at the face is exactly equal to the

filtered derivative

∂φ

∂x

∣

∣

∣

∣

i+ 1
2

≈ φi+1 − φi

hi+ 1
2

=
1

hi+ 1
2

∫ xi+1

xi

∂φ

∂x
dx

=
∂φ

∂x

∣

∣

∣

∣

i+ 1
2

Eq.(11)
=

∂φ

∂x

∣

∣

∣

∣

i+ 1
2

. (12)

Remark 1 This result suggests that the actual filter

length when computing the face derivative is hi+ 1
2

,

i.e. the distance between the adjacent nodes i and i+1
(see Figure 1).

Finally, the diffusive term in a FVM framework is

computed as follows

∂

∂x

(

Γ
∂φ

∂x

)∣

∣

∣

∣

i

≈ 1

hi

(

Γ
∂φ

∂x

∣

∣

∣

∣

i+ 1
2

− Γ
∂φ

∂x

∣

∣

∣

∣

i− 1
2

)

=
∂

∂x

(

Γ
∂φ

∂x

)

∣

∣

∣

∣

∣

i

≈ 1

hi

(

Γi+ 1
2

φi+1 − φi

hi+ 1
2

− Γi− 1
2

φi − φi−1

hi− 1
2

)

=
∂

∂x

(

Γ
∂φ

∂x

)

∣

∣

∣

∣

∣

i

. (13)

In the case of non-constant diffusivity, Γ(x), the eval-

uation of the previous expression can be viewed as fil-

tering the Γ field, i.e.

Γi+ 1
2
≈ Γi + Γi+1

2
≈ 1

hi+ 1
2

∫ xi+1

xi

Γ(x)dx = Γi+ 1
2
,

(14)
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Figure 2: Flowchart for the implementation of the δrls.

Dashed lines represent the modifications required

respect to the usual flowchart.

while using the trapezoidal rule to approximate the in-

tegral. Altogether leads to

∂

∂x

(

Γ
∂φ

∂x

)
∣

∣

∣

∣

i

≈

1

hi

(

Γi+1 + Γi

2

φi+1 − φi

hi+ 1
2

− Γi + Γi−1

2

φi − φi−1

hi− 1
2

)

=
∂

∂x

(

Γ
∂φ

∂x

)

FV
∣

∣

∣

∣

∣

∣

i

, (15)

where (·)FV
is the FVM filtering along the cell i

whereas the other two filters are applied to the face

quantities and their associated filter lengths are hi+ 1
2

and hi− 1
2

, respectively.

Remark 2 This result suggests that two filtering op-

erations are performed when computing the diffusive

term: the calculation of the face derivative (see Eq.12)

and the cell-to-face interpolation of the diffusivity (see

Eq.14). Both filtering operators share the same filter

length; namely, the distance between the nodes adja-

cent to the corresponding face.

Consequently, this suggests that the SGS characteristic

length used to compute the eddy viscosity, νt, at the

face i+ 1
2 should be hi+ 1

2
(see Figure 1). This concept

forms the foundation of this work and can be easily

extended to general meshes.

3 Rationale length scale

The subgrid characteristic length, δ, appears in a

natural way when we consider the calculation of the

νt at the cell faces. The flowchart shown in Figure 2

shows that it basically consists on firstly computing

the ν̂t,c at the cells without considering any charac-

teristic length, then interpolating this quantity to the

faces, ν̂t,s = Πν̂t,c, where Π is a cell-to-face interpo-

lation. Finally, this quantity at the face is re-scaled by

the square of the cell distances contained in the diag-

onal matrix ∆s (see [9] for details regarding the con-

struction of Ωc, Π and ∆s). Therefore, from an im-

plementation and conceptual point-of-view, the new

approach δrls (rls stands for rational length scale) is

completely different from all previous definitions of

δ. Although the required code modifications are min-

imal (see flowchart in Figure 2), it may be of interest
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Figure 3: Energy spectra for decaying isotropic turbulence

corresponding to the experiment of Comte-Bellot

and Corrsin [10]. Results obtained with the new

definitions δrls and δ̃rls proposed in respectively

Eqs.(15) and (18) are compared with the classical

definition proposed by Deardorff given in Eq.(4).

For clarity, the results obtained with δ̃rls δvol are

shifted down one and two decades, respectively.

to compute an equivalent length scale that provides the

same dissipation. Namely, it can be shown that the lo-

cal dissipation of the viscous term, with constant vis-

cosity, is given by

νG : G = νtr(GGT ). (16)

If we replace ν by νt, we can obtain a very accurate

estimation of the local dissipation introduced by an

eddy-viscosity model. Furthermore, in the new ap-

proach we also need to replace νt and G by ν̂t and

Gδ , respectively, leading to

ν̂tGδ : Gδ = ν̂ttr(GδG
T
δ ). (17)

Then, we can compute an equivalent filter length, δ̃rls,
that leads to the same local dissipation, i.e.

δ̃2rlsν̂tG : G = ν̂tGδ : Gδ =⇒

δ̃rls =

√

Gδ : Gδ

G : G
=

√

tr(GδG
T
δ )

tr(GGT )
(18)

Notice that PGGT = tr(GGT ) is the first invariant of

the symmetric tensor GGT .

4 Conclusions and preliminary results

This work proposes a novel definition of the

subgrid characteristic length, δ, aimed at address-

ing the following research question: can we es-

tablish a simple, robust, and easily implementable

definition of δ for any type of grid that minimizes

the impact of mesh anisotropies on the performance

of SGS models? In doing so, we firstly analyzed

the entanglement between the numerical discretiza-

tion and the filtering in LES. Preliminary results

displayed in Figure 3 correspond to the classical

experimental results obtained by Comte-Bellot and

Corrsin [10]. LES results have been obtained us-

ing the Smagorinsky model, for a set of (artificially)

stretched pancake-like meshes with 32× 32×Nz and

Nz = {32, 64, 128, 256, 512, 1024, 2048, 4096}: the

results obtained using the Deardorff definition, given

in Eq.(4), tend to diverge as Nz increases. This is be-

cause the value of δ tends to vanish and, therefore, the

subgrid-scale models switch off. In contrast, the newly

proposed δrls and δ̃rls avoid this issue, and the results

rapidly converge for larger values of Nz . This sug-

gests that they effectively reduce the influence of mesh

anisotropies on SGS model performance. A detailed

analysis and comparisons with other existing length

scales will be presented in the final paper.
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