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1 Introduction
Large-eddy simulation (LES) equations result
from applying a spatial commutative filter, with filter
length §, to the Navier—Stokes equations
du+(w-V)u =vVu-Vp-V-r(u), Vu=0,
(1)
where w is the filtered velocity and 7(@) is the subgrid
stress (SGS) tensor and aims to approximate the effect
of the under-resolved scales, 7(w) * U @ u — U Q u.
Because of its inherent simplicity and robustness, the
eddy-viscosity assumption is by far the most used clo-
sure model, i.e. 7(w) ~ —21:S(w). Then, the eddy-
viscosity, vy, is usually modeled as follows

vi = (Cnd)* Dy (). (2)

In the last decades, most of the research has focused
on either the calculation of the model constant, C,,
(e.g. the dynamic modeling approach and its variants),
or the development of more appropriate model opera-
tors D,,, (@) (e.g. WALE, Vreman'’s, Verstappen’s, o-
model, S3PQR [1].,...). Surprisingly, little attention has
been paid on the computation of the subgrid character-
istic length, §. Due to its simplicity and applicabil-
ity to unstructured meshes, the approach proposed by
Deardorff [2], i.e. the cube root of the cell volume (see
Eq. 4), is by far the most widely used to computed the
0, despite in some situations it may provide very inac-
curate results.

Alternative methods to compute § are summarized
and classified in Table 1 according to a list of desirable
properties for a (proper) definition of §. According to
the property P2, they can be classified into two main
families; namely, (i) definitions of § that solely depend
on geometrical properties of the mesh, and (ii) defi-
nitions of § that are also dependent on the local flow
topology. The latter is characterized by the gradient of
the resolved velocity field, G = Vu, whereas the local
mesh geometry for a Cartesian grid is contained in the
following second-order diagonal tensor,

A = diag(Azx, Ay, Az). 3)

Hereafter, we take Ax < Ay < Az without loss of
generality. The first seven definition listed in Table 1
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Table 1: Properties of different definition of the subgrid
characteristic length, §. Namely, P0: 6 > 0, lo-
cality and frame invariant; P1: boundedness, i.e.,
given a structured Cartesian mesh where Az <
Ay < Az, Az < § < Az; P2: sensitive to flow
orientation; P3: applicable to unstructured meshes;
P4: well-conditioned and low computational cost.

are given by

5vol = (AxAyAZ>1/37 5Sco = f(alv a2)5v017 (4)

Omax = max(Az, Ay, Az), (5)
wZAyAz + wZArAz + wiAzAy
6w = ) (6)
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where w = V x w is the vorticity and f(aj,a2) =
cosh\/4/27[(Ina1)? — Inas Inas + (Inaz)?] is the
correcting function proposed by Scotti [3]. The func-
tion 0 < Fxu(VTM) < 1 was proposed by Shur et
al. [4] to correct the Sw definition proposed by Mock-
ett et al. [5], both in the context of Detached Eddy
Simulation. Finally, G5 = GA is the gradient in the
so-called computational space. These properties are
based on physical, numerical, and/or practical argu-
ments. The list is completed with the novel definitions
Or1s and 5rls introduced in the next sections.

2 Finite-volume filtering

Let us consider a generic 1D convection-diffusion
equation
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Figure 1: One-dimensional mesh

where u(x,t) denotes the advective velocity and
¢(x,t) represents a generic (transported) scalar field.
In a finite-volume method (FVM), this equation is
integrated over a set of non-overlapping volumes.
Hence, FVM variables result by applying a box filter
with filter width equal to the local grid size, h,

_ 1 [ot5
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Notice that this filter commutes with differentiation
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Moreover, the standard second-order approximation of
the first-derivative at the face is exactly equal to the
filtered derivative
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Remark 1 This result suggests that the actual filter
length when computing the face derivative is h; i
i.e. the distance between the adjacent nodes i and i+ 1
(see Figure I).

Finally, the diffusive term in a FVM framework is
computed as follows
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In the case of non-constant diffusivity, I'(z), the eval-

uation of the previous expression can be viewed as fil-
tering the I field, i.e.
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Figure 2: Flowchart for the implementation of the &yis.
Dashed lines represent the modifications required
respect to the usual flowchart.

while using the trapezoidal rule to approximate the in-
tegral. Altogether leads to
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where () ~ is the FVM filtering along the cell ¢
whereas the other two filters are applied to the face
quantities and their associated filter lengths are h; 1
and h,;_ 1, respectively.

Remark 2 This result suggests that two filtering op-
erations are performed when computing the diffusive
term: the calculation of the face derivative (see Eq.12)
and the cell-to-face interpolation of the diffusivity (see
Eq.14). Both filtering operators share the same filter
length; namely, the distance between the nodes adja-
cent to the corresponding face.

Consequently, this suggests that the SGS characteristic
length used to compute the eddy viscosity, 14, at the
face ¢ + % should be hH% (see Figure 1). This concept
forms the foundation of this work and can be easily
extended to general meshes.

3 Rationale length scale

The subgrid characteristic length, §, appears in a
natural way when we consider the calculation of the
v, at the cell faces. The flowchart shown in Figure 2
shows that it basically consists on firstly computing
the D, . at the cells without considering any charac-
teristic length, then interpolating this quantity to the
faces, ; ; = I ., where Il is a cell-to-face interpo-
lation. Finally, this quantity at the face is re-scaled by
the square of the cell distances contained in the diag-
onal matrix Ag (see [9] for details regarding the con-
struction of Q., IT and A,). Therefore, from an im-
plementation and conceptual point-of-view, the new
approach 4,15 (rls stands for rational length scale) is
completely different from all previous definitions of
0. Although the required code modifications are min-
imal (see flowchart in Figure 2), it may be of interest
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Figure 3: Energy spectra for decaying isotropic turbulence
corresponding to the experiment of Comte-Bellot
and Corrsin [10]. Results obtained with the new
definitions 6,15 and Sns proposed in respectively
Eqgs.(15) and (18) are compared with the classical
definition proposed by Deardorff given in Eq.(4).
For clarity, the results obtained with 51.15 dvol are
shifted down one and two decades, respectively.

to compute an equivalent length scale that provides the
same dissipation. Namely, it can be shown that the lo-
cal dissipation of the viscous term, with constant vis-
cosity, is given by

vG: G = vtr(GGT). (16)

If we replace v by 14, we can obtain a very accurate
estimation of the local dissipation introduced by an
eddy-viscosity model. Furthermore, in the new ap-
proach we also need to replace v; and G by 7 and
Gs, respectively, leading to

7:Gs : Gs = Dytr(GsGY). (17)

Then, we can compute an equivalent filter length, 5rls,
that leads to the same local dissipation, i.e.

62 0,G:G=10,Gs: G5 =

rls

< [Gs:Gs
5“5*\/ G:G

Notice that Pggr = tr(GGT) is the first invariant of
the symmetric tensor GG7'.

tT(GgG?)
tr(GGT)

(18)

4 Conclusions and preliminary results
This work proposes a novel definition of the
subgrid characteristic length, 0, aimed at address-
ing the following research question: can we es-
tablish a simple, robust, and easily implementable
definition of 0 for any type of grid that minimizes
the impact of mesh anisotropies on the performance
of SGS models? In doing so, we firstly analyzed
the entanglement between the numerical discretiza-
tion and the filtering in LES. Preliminary results
displayed in Figure 3 correspond to the classical

experimental results obtained by Comte-Bellot and
Corrsin [10]. LES results have been obtained us-
ing the Smagorinsky model, for a set of (artificially)
stretched pancake-like meshes with 32 x 32 x IV, and
N, = {32,64,128,256,512,1024,2048,4096}: the
results obtained using the Deardorff definition, given
in Eq.(4), tend to diverge as N, increases. This is be-
cause the value of ¢ tends to vanish and, therefore, the
subgrid-scale models switch off. In contrast, the newly
proposed 4,15 and grls avoid this issue, and the results
rapidly converge for larger values of N,. This sug-
gests that they effectively reduce the influence of mesh
anisotropies on SGS model performance. A detailed
analysis and comparisons with other existing length
scales will be presented in the final paper.
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