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Abstract

Direct numerical simulation of turbulence is too

costly for most practical cases, making dynamically

simplified formulations like eddy-viscosity LES mod-

els widely used in both academia and industry. These

models require a subgrid characteristic length, typi-

cally related to the local grid size. While its defi-

nition is straightforward for isotropic meshes, deter-

mining an appropriate length scale for unstructured

or anisotropic Cartesian meshes, such as the pancake-

like meshes commonly used to capture near-wall tur-

bulence or shear layers, remains a challenge. In this

work, we propose a novel subgrid length derived from

the interplay between numerical discretization and fil-

tering in LES. Its favorable mathematical properties

and simplicity make it well-suited to reduce the impact

of mesh anisotropies. Its effectiveness is demonstrated

through simulations of decaying isotropic turbulence

and turbulent channel flow.

1 Introduction

Direct numerical simulations (DNS) of the Navier–

Stokes (NS) equations remain impractical for most

real-world turbulent flows because not enough reso-

lution is available to resolve all the relevant scales (see

examples in Figure 1). Therefore, practical simula-

tions have to resort to turbulence modeling. Hence, we

may turn to large-eddy simulation (LES) to predict the

large-scale behavior of turbulent flows: namely, the

large scales are explicitly computed, whereas effects

of small scale motions are modeled. LES equations

result from applying a spatial commutative filter, with

filter length δ, to the NS equations

∂tu+(u · ∇)u = ν∇2
u−∇p−∇·τ(u), ∇·u = 0,

(1)

where u is the filtered velocity and τ(u) is the subgrid

stress (SGS) tensor and aims to approximate the effect

of the under-resolved scales, τ(u) ≈ u⊗ u− u⊗ u.

Because of its inherent simplicity and robustness, the

eddy-viscosity assumption is by far the most used clo-

sure model, i.e. τ(u) ≈ −2νtS(u). Then, the eddy-

viscosity, νt, is usually modeled as follows

νt = (Cmδ)2Dm(u), (2)

where Cm is the model constant, δ denotes the sub-

Figure 1: Two examples of DNS simulations are shown.

Top: an air-filled (Pr = 0.7) Rayleigh–Bénard

configuration studied by Dabbagh et al. (2020), at

Rayleigh numbers up to Ra = 10
11. The high-

est Ra was computed on 8192 CPU-cores of the

MareNostrum 4 supercomputer using a mesh with

5.7 billion grid points. Bottom: a turbulent flow

around a square cylinder at Re = 22000, analyzed

in Trias et al. (2015b), computed on 784 CPU-

cores of MareNostrum 3 supercomputer with a

mesh of 323 million grid points.

grid characteristic length, and Dm(u) is the model-

specific differential operator, with units of frequency.

The length scale δ, is the responsible for capturing

the effective cut-off length scale, i.e. the spatial scale

that separates the resolved turbulent motions, u, from

the unresolved ones in an LES simulation. Then, the

rest of the flow physics, such as the forward/backward

scattering, laminar-to-turbulence transitions, 2D flow

behavior or presence of walls must be captured by the

the differential operator that defines the SGS model,

i.e. Dm(u).

In the last decades, most of the research has focused

on either the calculation of the model constant, Cm



(e.g. the dynamic modeling approach and its variants),

or the development of more appropriate model opera-

tors Dm(u) (e.g. WALE, Vreman’s, Verstappen’s, σ-

model, S3PQR,...). Surprisingly, little attention has

been paid on the computation of the subgrid character-

istic length, δ. Due to its simplicity and applicability to

unstructured meshes, the approach proposed by Dear-

dorff (1970), i.e. the cube root of the cell volume (see

Eq. 4), is by far the most widely used to computed the

δ, despite in some situations it may provide very inac-

curate results.

Alternative methods to compute δ are summarized

and classified in Table 1 according to a list of desirable

properties for a (proper) definition of δ. According to

the property P3, they can be classified into two main

families; namely, (i) definitions of δ that solely depend

on geometrical properties of the mesh, and (ii) defi-

nitions of δ that are also dependent on the local flow

topology. The latter is characterized by the gradient of

the resolved velocity field, G ≡ ∇u, whereas the local

mesh geometry for a Cartesian grid is contained in the

following second-order diagonal tensor,

∆ ≡ diag(∆x,∆y,∆z). (3)

The first seven definitions listed in Table 1 are given

by

δvol = (∆x∆y∆z)1/3, δSco = f(a1, a2)δvol, (4)

δmax = max(∆x,∆y,∆z), (5)

δω =

√

ω2
x∆y∆z + ω2

y∆x∆z + ω2
z∆x∆y

|ω|2 , (6)

δ̃ω =max
n,m

|ln − lm|√
3

, δSLA= δ̃ωFKH(V TM) (7)

δlsq =

√

(ĜĜT : GGT )/(GGT : GGT ), (8)

where ω = ∇ × u is the vorticity and f(a1, a2) =
cosh

√

4/27[(lna1)2 − ln a1 ln a2 + (ln a2)2] is the

correcting function proposed by Scotti et al. (1993).

The function 0 ≤ FKH(V TM) ≤ 1 was proposed

by Shur et al. (2015) to correct the δ̃ω definition pro-

posed by Mockett et al. (2015) in shear layers. Both

definitions were proposed in the context of Detached

Eddy Simulation (DES). Finally, Ĝ ≡ G∆ is the gradi-

ent in the so-called computational space. These prop-

erties are based on physical, numerical, and practical

arguments. The list is completed with the new defini-

tions δrls and δ̃rls derived below.

2 Finite-volume filtering

Let us consider a generic 1D convection-diffusion

equation

∂φ

∂t
+

∂(uφ)

∂x
=

∂

∂x

(

Γ
∂φ

∂x

)

, (9)

where u(x, t) denotes the advective velocity and

φ(x, t) represents a generic (transported) scalar field.

δvol δSco δmaxδω δ̃ω δSLAδlsq δrls δ̃rls
Eq. (4) (4) (5) (6) (7) (7) (8) (15) (18)

P1 Y Y Y Y Y Y Y Y Y

P2 Y Y Y Y Y N Y Y Y

P3 N N N Y Y Y Y Yc Y

P4 Y N Na Nb Y Y Y Y Y

P5 N N N N N N N Y N

P6 + + + ++ +++ ++++ +++ + +++

P7 + + + ++ ++ +++ +++ + +++

Table 1: Properties of different definitions of the subgrid

characteristic length, δ. Namely, P1: δ ≥ 0, lo-

cality and frame invariant; P2: boundedness, i.e.,

given a structured Cartesian mesh where ∆x ≤
∆y ≤ ∆z, ∆x ≤ δ ≤ ∆z; P3: sensitive to flow

orientation; P4: applicable to unstructured meshes;

P5: directly computed at the cell faces; P6: com-

putational cost; P7: memory footprint. a Possible

with some adaptations; b a generalization for un-

structured meshes was proposed by Deck (2012); c

δrls is computed at the faces independently of the

local flow field, however, its effect ultimately de-

pends on it.
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Figure 2: One-dimensional mesh

In the finite-volume method (FVM), this equation

is integrated over a set of non-overlapping volumes.

Hence, FVM variables result by applying a box filter

with filter width equal to the local grid size, h,

φ(x) =
1

h

∫ x+h
2

x−h
2

φdx. (10)

Notice that this filter commutes with differentiation

∂φ

∂x
=

1

h

∂

∂x

∫ x+h
2

x−h
2

φdx =
1

h

∫ x+h
2

x−h
2

∂φ

∂x
dx =

∂φ

∂x
.

(11)

Moreover, the standard second-order approximation of

the first-derivative at the face is exactly equal to the

filtered derivative

∂φ

∂x

∣

∣

∣

∣

i+ 1
2

≈ φi+1 − φi

hi+ 1
2

=
1

hi+ 1
2

∫ xi+1

xi

∂φ

∂x
dx

=
∂φ

∂x

∣

∣

∣

∣

i+ 1
2

Eq.(11)
=

∂φ

∂x

∣

∣

∣

∣

i+ 1
2

. (12)

Remark 1 This result suggests that the actual filter

length when computing the face derivative is hi+ 1
2

,

i.e. the distance between the adjacent nodes i and i+1
(see Figure 2).



Finally, the diffusive term in a FVM framework is

computed as follows

∂

∂x

(

Γ
∂φ

∂x

)
∣

∣

∣

∣

i

≈ 1

hi

(

Γ
∂φ

∂x

∣

∣

∣

∣

i+ 1
2

− Γ
∂φ

∂x

∣

∣

∣

∣

i− 1
2

)

=
∂

∂x

(

Γ
∂φ

∂x

)

∣

∣

∣

∣

∣

i

≈ 1

hi

(

Γi+ 1
2

φi+1 − φi

hi+ 1
2

− Γi− 1
2

φi − φi−1

hi− 1
2

)

=
∂

∂x

(

Γ
∂φ

∂x

)

∣

∣

∣

∣

∣

i

. (13)

In the case of non-constant diffusivity, Γ(x), the eval-

uation of the previous expression can be viewed as fil-

tering the Γ field, i.e.

Γi+ 1
2
≈ Γi + Γi+1

2
≈ 1

hi+ 1
2

∫ xi+1

xi

Γ(x)dx = Γi+ 1
2
,

(14)

while using the trapezoidal rule to approximate the in-

tegral. Altogether leads to

∂

∂x

(

Γ
∂φ

∂x

)∣

∣

∣

∣

i

≈

1

hi

(

Γi+1 + Γi

2

φi+1 − φi

hi+ 1
2

− Γi + Γi−1

2

φi − φi−1

hi− 1
2

)

=
∂

∂x

(

Γ
∂φ

∂x

)

FV
∣

∣

∣

∣

∣

∣

i

, (15)

where (·)FV
is the FVM filtering along the cell i

whereas the other two filters are applied to the face

quantities and their associated filter lengths are hi+ 1
2

and hi− 1
2

, respectively.

Remark 2 This result suggests that two filtering op-

erations are performed when computing the diffusive

term: the calculation of the face derivative (see Eq.12)

and the cell-to-face interpolation of the diffusivity (see

Eq.14). Both filtering operators share the same filter

length; namely, the distance between the nodes adja-

cent to the corresponding face.

Consequently, this suggests that the SGS characteristic

length used to compute the eddy viscosity, νt, at the

face i+ 1
2 should be hi+ 1

2
(see Figure 2). This concept

forms the foundation of this work and can be easily

extended to general meshes.

3 Rational length scale

The subgrid characteristic length, δ, appears in a

natural way when we consider the calculation of the νt
at the cell faces. The flowchart displayed in Figure 3

shows that it basically consists on firstly computing

the ν̂t,c at the cells without considering any charac-

teristic length, then interpolating this quantity to the

νt,c ν̂t,c ν̂t,s νt,s

Λc Λ̃c Λ̃s Λs

Ω
−2/3
c Π ∆

2
s

d
ia
g

d
ia
g

d
ia
g

d
ia
g

Figure 3: Flowchart for the implementation of the δrls.

Dashed lines represent the modifications required

respect to the usual flowchart.

faces, ν̂t,s = Πν̂t,c, where Π is a cell-to-face inter-

polation. Finally, this quantity at the face is re-scaled

by the square of the cell distances contained in the di-

agonal matrix ∆s (see Trias et al. (2024) for details

regarding the construction of Ωc, Π and ∆s). There-

fore, from an implementation and conceptual point-

of-view, the new approach δrls (rls stands for rational

length scale) is completely different from all previous

definitions of δ. Although the required code modifica-

tions are minimal (see flowchart in Figure 3), it may

be of interest to compute an equivalent length scale

that provides the same dissipation. Namely, it can be

shown that the local dissipation of the viscous term,

with constant viscosity, is given by

νG : G = νtr(GGT ). (16)

If we replace ν by νt, we can obtain a very accurate

estimation of the local dissipation introduced by an

eddy-viscosity model. Furthermore, in the new ap-

proach we also need to replace νt and G by ν̂t and

Ĝ, respectively, leading to

ν̂tĜ : Ĝ = ν̂ttr(ĜĜ
T ). (17)

Then, we can compute an equivalent filter length, δ̃rls,
that leads to the same local dissipation, i.e.

δ̃2rlsν̂tG : G = ν̂tĜ : Ĝ =⇒

δ̃rls =

√

Ĝ : Ĝ

G : G
=

√

tr(ĜĜT )

tr(GGT )
(18)

where PGGT = tr(GGT ) is the first invariant of GGT .

4 Numerical results

Isotropic turbulence on anisotropic grids

The novel definitions of the subgrid characteris-

tic length scale, δrls and δ̃rls, respectively proposed

in the previous section, are firstly tested for decaying

isotropic turbulence. The configuration corresponds to

the classical experiment of Comte-Bellot and Corrsin

(1971) (hereafter denoted as CBC) using the grid tur-

bulence with a size of M = 5.08cm and a free-

stream velocity U0 = 10m/s. The Taylor micro-scale

Reynolds number at tU0/M = 42 (initial state) is

Reλ = urmsλ/ν = 71.6 with urms = 22.2cm/s
and decreases to 60.6 at tU0/M = 171 (third stage).
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Figure 4: Energy spectra for decaying isotropic turbulence

corresponding to the Comte-Bellot and Corrsin

(1971) experimental set-up. LES results were ob-

tained using the Smagorinsky model on a set of

anisotropic meshes with pancake-like control vol-

umes, employing two different codes: the in-house

NOISEtte code (top) and OpenFOAM (bottom).

Results obtained with the novel definitions of δrls
and δ̃rls respectively are compared with the classi-

cal definition proposed by Deardorff. For clarity,

the results obtained with δ̃rls and δvol are shifted

down one and two decades, respectively.

The results are non-dimensionalized with the refer-

ence length Lref = 11M/(2π) and reference veloc-

ity uref =
√

3/2urms|tU0/M=42. The energy spec-

trum of the initial field at tU0/M = 42 matches the

CBC experimental data. All subsequent results are

presented at tU0/M = 98, which corresponds to the

second stage of the CBC experimental data. Sim-

ulations were carried out using two codes: the in-

house NOISEtte solver (see Gorobets and Bakhvalov

(2022); Abalakin et al. (2024)) and OpenFOAM. The

full setup, including all files required to reproduce

the OpenFOAM results, is publicly available in Ru-

ano (2025). In both cases, initial fields were generated

by interpolating a 64 × 64 × 64 mesh with an energy

spectrum corresponding to the CBC initial spectrum.

LES simulations were carried out on a set of artifi-

cially stretched meshes using the Smagorinsky model

with CS = 0.17 (NOISEtte) and CS = 0.21 (Open-

FOAM), calibrated on a 32 × 32 × 32 mesh and

kept constant thereafter. Figure 4 shows results for
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Figure 5: Same as Figure 4 but for pencil-like meshes.

pancake-like meshes of size 32 × 32 × Nz , where

Nz = {32, 64, 128, 256, 512, 1024, 2048, 4096}. As

expected, the classical Deardorff definition (see Eq. 4)

leads to results that tend to diverge as Nz increases,

as δvol vanishes, disabling the SGS model. In con-

trast, the proposed δrls and δ̃rls definitions yield sta-

ble results that quickly converge with mesh refine-

ment. These trends, observed for both codes, sug-

gest that they effectively reduce the influence of mesh

anisotropies on the SGS model performance.

A similar trend is observed in Figure 5 for pencil-

like meshes composed of 32 × Nz × Nz grid cells,

where Nz = {32, 64, 128, 256, 512, 768, 1024}. In

this case, δ2vol scales as O(∆z4/3) compared to the

O(∆z2/3) scaling for the pancake-like meshes, caus-

ing the eddy-viscosity model (see Eq.2) to switch

off even more quickly for increasing values of Nz .

Moreover, in this case, the numerical artifact affects

a wider range of wavenumbers, whereas for pancake-

like meshes, the impact is mostly confined to the

smallest resolved scales (see Figure 4). In contrast,

LES results obtained with δrls and δ̃rls show con-

vergence with increasing resolution. However, the

first three meshes, i.e. Nz = {32, 64, 128}, exhibit

larger variations than in the pancake case, likely be-

cause pencil-like meshes refine two directions, captur-

ing more physical scales and reducing SGS model in-

fluence. Overall, the proposed length scales mitigate

anisotropy-induced artifacts and offer improved con-

vergence compared to the Deardorff’s definition, δvol.
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Figure 6: Mean velocity for a turbulent channel flow at

Reτ = 395 obtained for 48 × 48 × Nz with

Nz = {48, 96, 192, 384, 768, 1536}. Solid lines

corresponds to the DNS by Moser et al. (1999).

LES results obtained using the novel definition,

δrls, are compared against those using δvol, both

employing the S3QR model by Trias et al. (2015a).

For clarity, the former results are shifted up.
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Figure 7: Same as in Figure 6 but for turbulent kinetic en-

ergy (top) and the ratio between average turbulent

viscosity and the molecular viscosity (bottom).

Turbulent channel flow

To evaluate the performance of the proposed length

scale δrls in wall-bounded flows, we consider a tur-

bulent channel at Reτ = 395. For clarity, only δrls,
which outperformed other alternatives including δ̃rls,
is compared against the standard δvol. Simulations

were performed using a symmetry-preserving stag-

gered finite-volume discretization (see Verstappen and

Veldman (2003)) with the S3QR model by Trias et al.

(2015a), as the Smagorinsky model fails to reproduce

the near-wall scaling, i.e. νt ∝ y3. It reads

νS3QR
t = (Cs3qrδ)

2Q−1
GGTR

5/6

GGT , (19)

where Cs3qr = 0.762, QGGT and RGGT are the second

and third invariants of the second-order tensor GGT .

Figure 6 shows the average velocity profiles ob-

tained for a set of (artificially) refined meshes in the

span-wise direction, with resolutions of 48× 48×Nz

and Nz = {48, 96, 192, 384, 768, 1536}. This direc-

tion was chosen due to its lower sensitivity compared

to the stream-wise and wall-normal directions. The

domain size matches that of the DNS by Moser et al.

(1999), with uniform stream-wise and span-wise grids,

and wall-normal points distributed as

yj = sinh(γj/Ny)/ sinh(γ/2) j = 0, 1, . . . , Ny/2.
(20)

with γ = 7. For Ny = 48, the first off-wall point is

located at y+ ≈ 1.75, and the mesh near the wall is

highly anisotropic.

As already observed in the homogeneous isotropic

turbulence test-case, the results in Figure 6 confirm

that the new definition of δrls exhibits significantly

greater robustness to mesh anisotropy: the mean ve-

locity profile remains nearly unchanged across refine-

ments, while significant deviations appear with δvol. A

similar trend is observed in Figure 7 (top) for the re-

solved turbulent kinetic energy, especially in the bulk

region where δrls displays minimal dependence on Nz .

Finally, Figure 7 (bottom) shows the ratio between

the time-averaged turbulent viscosity, 〈νt〉, and the

molecular viscosity, ν, illustrating key differences in

SGS activity. With δrls, this ratio remains consistent

as Nz increases, while δvol exhibits a pronounced de-

cay in the bulk, effectively deactivating the model. In

the near-wall region, both approaches capture the ex-

pected cubic scaling, i.e. νt ∝ y3, though noticeable

differences persist with mesh refinement. Notably, δrls
leads to a monotonic and rapid convergence of 〈νt〉,
whereas δvol does not.

In summary, the channel flow test demonstrates

that δrls provides consistent predictions for mean ve-

locity, turbulent kinetic energy and turbulent viscos-

ity across a wide range of anisotropic meshes. Unlike

δvol, which is highly sensitive to refinement, δrls main-

tains SGS model activity and accuracy, confirming its

suitability for LES in wall-bounded flows.

5 Conclusions

This work addresses a central research question in

LES modeling: can we establish a simple, robust, and

easily implementable definition of δ for any type of

grid that minimizes the impact of mesh anisotropies

on the performance of SGS models for LES? Despite

its known limitations on highly anisotropic meshes,

the Deardorff definition, δvol, which consists on the



cube root of the cell volume (Eq. 4), remains the most

widely used in both research and industry. This moti-

vates the development of improved alternatives.

In this context, we propose the rational length scale

δrls, which arises naturally from the entanglement be-

tween LES filtering and numerical discretization. It

is locally defined, frame-invariant, well-bounded (see

properties P1 and P2 in Table 1), computationally ef-

ficient (P6), applicable to unstructured meshes (P4),

and evaluated at cell faces (P5), a key feature distin-

guishing it from existing definitions (see Table1). Im-

plementation requires only minor changes to standard

eddy-viscosity models (see Figure 3), and although

derived within a second-order FVM framework, the

concept is compatible with other discretization ap-

proaches. Moreover, we also introduce the dissipation-

equivalent definition δ̃rls (see Eq. 18), evaluated at cell

centers and dependent on the local velocity gradient

G ≡ ∇u (P3).

The effectiveness of δrls and δ̃rls has been con-

firmed through LES of decaying isotropic turbulence

using two different codes. Compared to Deardorff’s

δvol, both demonstrate significantly greater robust-

ness to mesh anisotropy. Among them, δrls consis-

tently performs better in highly stretched configura-

tions. This behavior has also been validated in a tur-

bulent channel flow at Reτ = 395, further supporting

its practical relevance. Given these results, along with

its simplicity, we believe the proposed length scale

has strong potential for application in SGS models,

particularly in complex geometries involving highly

anisotropic or unstructured meshes.

Finally, the choice of turbulent length scale is also

crucial in hybrid RANS–LES methods, particularly

DES. As shown in the previous work by Pont-Vı́lchez

et al. (2021), even models with strong grey-area mit-

igation properties may fail in regions of resolved tur-

bulence on anisotropic meshes. This is especially rel-

evant in aeroacoustic applications (see Duben et al.

(2023), for instance), where poor resolution of turbu-

lence dynamics can significantly degrade predictions.

The proposed δrls thus emerges as a promising candi-

date for use in DES simulations as well.
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