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Abstract

Direct numerical simulation of turbulence is too
costly for most practical cases, making dynamically
simplified formulations like eddy-viscosity LES mod-
els widely used in both academia and industry. These
models require a subgrid characteristic length, typi-
cally related to the local grid size. While its defi-
nition is straightforward for isotropic meshes, deter-
mining an appropriate length scale for unstructured
or anisotropic Cartesian meshes, such as the pancake-
like meshes commonly used to capture near-wall tur-
bulence or shear layers, remains a challenge. In this
work, we propose a novel subgrid length derived from
the interplay between numerical discretization and fil-
tering in LES. Its favorable mathematical properties
and simplicity make it well-suited to reduce the impact
of mesh anisotropies. Its effectiveness is demonstrated
through simulations of decaying isotropic turbulence
and turbulent channel flow.

1 Introduction

Direct numerical simulations (DNS) of the Navier—
Stokes (NS) equations remain impractical for most
real-world turbulent flows because not enough reso-
lution is available to resolve all the relevant scales (see
examples in Figure 1). Therefore, practical simula-
tions have to resort to turbulence modeling. Hence, we
may turn to large-eddy simulation (LES) to predict the
large-scale behavior of turbulent flows: namely, the
large scales are explicitly computed, whereas effects
of small scale motions are modeled. LES equations
result from applying a spatial commutative filter, with
filter length 4, to the NS equations

ou+t(u-V)u =vViu-Vvp-V-r(a), Vau=0,

ey
where W is the filtered velocity and 7 (@) is the subgrid
stress (SGS) tensor and aims to approximate the effect
of the under-resolved scales, 7(W) ~ u @ u — T  T.
Because of its inherent simplicity and robustness, the
eddy-viscosity assumption is by far the most used clo-
sure model, i.e. 7(w) &~ —21,.5(w). Then, the eddy-
viscosity, 14, is usually modeled as follows

vt = (Cnd)* D (w), 2)

where C),, is the model constant, § denotes the sub-
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Figure 1: Two examples of DNS simulations are shown.
Top: an air-filled (Pr = 0.7) Rayleigh-Bénard
configuration studied by Dabbagh et al. (2020), at
Rayleigh numbers up to Ra = 10'*. The high-
est Ra was computed on 8192 CPU-cores of the
MareNostrum 4 supercomputer using a mesh with
5.7 billion grid points. Bottom: a turbulent flow
around a square cylinder at Re = 22000, analyzed
in Trias et al. (2015b), computed on 784 CPU-
cores of MareNostrum 3 supercomputer with a
mesh of 323 million grid points.

grid characteristic length, and D,,(w) is the model-
specific differential operator, with units of frequency.
The length scale J, is the responsible for capturing
the effective cut-off length scale, i.e. the spatial scale
that separates the resolved turbulent motions, w, from
the unresolved ones in an LES simulation. Then, the
rest of the flow physics, such as the forward/backward
scattering, laminar-to-turbulence transitions, 2D flow
behavior or presence of walls must be captured by the
the differential operator that defines the SGS model,
i.e. Dy, (u).

In the last decades, most of the research has focused
on either the calculation of the model constant, C,,



(e.g. the dynamic modeling approach and its variants),
or the development of more appropriate model opera-
tors D,, (@) (e.g. WALE, Vreman'’s, Verstappen’s, o-
model, S3PQR,...). Surprisingly, little attention has
been paid on the computation of the subgrid character-
istic length, §. Due to its simplicity and applicability to
unstructured meshes, the approach proposed by Dear-
dorff (1970), i.e. the cube root of the cell volume (see
Eq. 4), is by far the most widely used to computed the
0, despite in some situations it may provide very inac-
curate results.

Alternative methods to compute ¢ are summarized
and classified in Table 1 according to a list of desirable
properties for a (proper) definition of §. According to
the property P3, they can be classified into two main
families; namely, (i) definitions of § that solely depend
on geometrical properties of the mesh, and (ii) defi-
nitions of § that are also dependent on the local flow
topology. The latter is characterized by the gradient of
the resolved velocity field, G = Vu, whereas the local
mesh geometry for a Cartesian grid is contained in the
following second-order diagonal tensor,

A = diag(Az, Ay, Az). 3)

The first seven definitions listed in Table 1 are given
by

5vol = (AszAZ)l/B; 5SCO = f(alv a2)5v017 (4)

Omax = max(Ax, Ay, Az), (5)
W2AYAz + wiAzAz + wiAzAy
6w = ) (6)
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5 —max T tml LR (VTM) (7)
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O1sq = \/(CCT : GGT)/(GGT : GGT), (8)

where w = V X w is the vorticity and f(ay,a2) =
cosh\/4/27[(Ina1)? — Inai Inas + (Inaz)?] is the
correcting function proposed by Scotti et al. (1993).
The function 0 < Fxu(VTM) < 1 was proposed
by Shur et al. (2015) to correct the 50.’ definition pro-
posed by Mockett et al. (2015) in shear layers. Both
definitions were proposed in the context of Detached
Eddy Simulation (DES). Finally, G = GA s the gradi-
ent in the so-called computational space. These prop-
erties are based on physical, numerical, and practical
arguments. The list is completed with the new defini-
tions &,1¢ and &, derived below.

2 Finite-volume filtering

Let us consider a generic 1D convection-diffusion
equation

9, oud) _ 0 (F%), ©)
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where wu(x,t) denotes the advective velocity and
¢(x,t) represents a generic (transported) scalar field.
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Table 1: Properties of different definitions of the subgrid
characteristic length, §. Namely, P1: § > 0, lo-
cality and frame invariant; P2: boundedness, i.e.,
given a structured Cartesian mesh where Az <
Ay < Az, Az < § < Az; P3: sensitive to flow
orientation; P4: applicable to unstructured meshes;
PS: directly computed at the cell faces; P6: com-
putational cost; P7: memory footprint. * Possible
with some adaptations; ° a generalization for un-
structured meshes was proposed by Deck (2012); ©
dOr1s i1s computed at the faces independently of the
local flow field, however, its effect ultimately de-

pends on it.
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Figure 2: One-dimensional mesh

In the finite-volume method (FVM), this equation
is integrated over a set of non-overlapping volumes.
Hence, FVM variables result by applying a box filter
with filter width equal to the local grid size, h,

_ 1 [o+s
B =g [ odn (10
o~}
Notice that this filter commutes with differentiation
910 L[, T
Oz hdzx J, n hJen Ox ox

1)
Moreover, the standard second-order approximation of
the first-derivative at the face is exactly equal to the
filtered derivative

99 ~ Giv1 —¢i _ 1 /mi+1 %dz
ox iti hiJr% hiJr% T ox
_ % Eq.(11) % (12)
81’ Z-Jr% 835 Z-Jr%

Remark 1 This result suggests that the actual filter
length when computing the face derivative is hH%,
i.e. the distance between the adjacent nodes ¢ and i1+ 1
(see Figure 2).



Finally, the diffusive term in a FVM framework is
computed as follows
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In the case of non-constant diffusivity, I'(x), the eval-

uation of the previous expression can be viewed as fil-
tering the I" field, i.e.

: (13)
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while using the trapezoidal rule to approximate the in-
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where U is the FVM filtering along the cell 7
whereas the other two filters are applied to the face
quantities and their associated filter lengths are h;, 1
and h,;_ 1, respectively.

Remark 2 This result suggests that two filtering op-
erations are performed when computing the diffusive
term: the calculation of the face derivative (see Eq.12)
and the cell-to-face interpolation of the diffusivity (see
Eq.14). Both filtering operators share the same filter
length; namely, the distance between the nodes adja-
cent to the corresponding face.

Consequently, this suggests that the SGS characteristic
length used to compute the eddy viscosity, 14, at the
face ¢ + % should be 1 (see Figure 2). This concept
forms the foundation of this work and can be easily
extended to general meshes.

3 Rational length scale

The subgrid characteristic length, §, appears in a
natural way when we consider the calculation of the v
at the cell faces. The flowchart displayed in Figure 3
shows that it basically consists on firstly computing
the ;. at the cells without considering any charac-
teristic length, then interpolating this quantity to the
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Figure 3: Flowchart for the implementation of the dyis.
Dashed lines represent the modifications required
respect to the usual flowchart.

faces, Uy s = 11D ., where Il is a cell-to-face inter-
polation. Finally, this quantity at the face is re-scaled
by the square of the cell distances contained in the di-
agonal matrix A, (see Trias et al. (2024) for details
regarding the construction of €., IT and A;). There-
fore, from an implementation and conceptual point-
of-view, the new approach d,)s (rls stands for rational
length scale) is completely different from all previous
definitions of 4. Although the required code modifica-
tions are minimal (see flowchart in Figure 3), it may
be of interest to compute an equivalent length scale
that provides the same dissipation. Namely, it can be
shown that the local dissipation of the viscous term,
with constant viscosity, is given by

vG: G = vtr(GGT). (16)

If we replace v by 14, we can obtain a very accurate
estimation of the local dissipation introduced by an
eddy-viscosity model. Furthermore, in the new ap-
proach we also need to replace v; and G by 24 and
C, respectively, leading to

G 1 G = Dytr(GGT). (17)

Then, we can compute an equivalent filter length, Sﬂs,
that leads to the same local dissipation, i.e.

SflsﬁtG :G= ZA/tG : G —

buis = || 2 = (18)

where Pggr = tr(GGT) is the first invariant of GGT.

4 Numerical results

Isotropic turbulence on anisotropic grids

The novel definitions of the subgrid characteris-
tic length scale, ;)5 and Sﬂs, respectively proposed
in the previous section, are firstly tested for decaying
isotropic turbulence. The configuration corresponds to
the classical experiment of Comte-Bellot and Corrsin
(1971) (hereafter denoted as CBC) using the grid tur-
bulence with a size of M = 5.08cm and a free-
stream velocity Uy = 10m/s. The Taylor micro-scale
Reynolds number at tUy/M = 42 (initial state) is
Rey = UpmsA/v = T1.6 with uppms = 22.2cm/s
and decreases to 60.6 at tUy/M = 171 (third stage).
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Figure 4: Energy spectra for decaying isotropic turbulence
corresponding to the Comte-Bellot and Corrsin
(1971) experimental set-up. LES results were ob-
tained using the Smagorinsky model on a set of
anisotropic meshes with pancake-like control vol-
umes, employing two different codes: the in-house
NOISEtte code (top) and OpenFOAM (bottom).
Results obtained with the novel definitions of d,1s
and 8,15 respectively are compared with the classi-
cal definition proposed by Deardorff. For clarity,
the results obtained with Sns and 6,1 are shifted
down one and two decades, respectively.

The results are non-dimensionalized with the refer-
ence length L,.; = 11M/(2x) and reference veloc-
ity trep = \/ﬁurmshUO/M:@. The energy spec-
trum of the initial field at tUp/M = 42 matches the
CBC experimental data. All subsequent results are
presented at tUp/M = 98, which corresponds to the
second stage of the CBC experimental data. Sim-
ulations were carried out using two codes: the in-
house NOISEtte solver (see Gorobets and Bakhvalov
(2022); Abalakin et al. (2024)) and OpenFOAM. The
full setup, including all files required to reproduce
the OpenFOAM results, is publicly available in Ru-
ano (2025). In both cases, initial fields were generated
by interpolating a 64 x 64 x 64 mesh with an energy
spectrum corresponding to the CBC initial spectrum.

LES simulations were carried out on a set of artifi-
cially stretched meshes using the Smagorinsky model
with C's = 0.17 (NOISEtte) and C's = 0.21 (Open-
FOAM), calibrated on a 32 x 32 x 32 mesh and
kept constant thereafter. Figure 4 shows results for
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Figure 5: Same as Figure 4 but for pencil-like meshes.

pancake-like meshes of size 32 x 32 x N,, where
N, = {32,64,128,256,512,1024, 2048,4096}. As
expected, the classical Deardorff definition (see Eq. 4)
leads to results that tend to diverge as IV, increases,
as dyo1 vanishes, disabling the SGS model. In con-
trast, the proposed 4,15 and grls definitions yield sta-
ble results that quickly converge with mesh refine-
ment. These trends, observed for both codes, sug-
gest that they effectively reduce the influence of mesh
anisotropies on the SGS model performance.

A similar trend is observed in Figure 5 for pencil-
like meshes composed of 32 x N, x N, grid cells,
where N, = {32,64,128,256,512,768,1024}. In
this case, 02 scales as O(Az*/3) compared to the
O(Az2/3) scaling for the pancake-like meshes, caus-
ing the eddy-viscosity model (see Eq.2) to switch
off even more quickly for increasing values of IV,.
Moreover, in this case, the numerical artifact affects
a wider range of wavenumbers, whereas for pancake-
like meshes, the impact is mostly confined to the
smallest resolved scales (see Figure 4). In contrast,
LES results obtained with d,5 and Srls show con-
vergence with increasing resolution. However, the
first three meshes, i.e. N, = {32,64,128}, exhibit
larger variations than in the pancake case, likely be-
cause pencil-like meshes refine two directions, captur-
ing more physical scales and reducing SGS model in-
fluence. Overall, the proposed length scales mitigate
anisotropy-induced artifacts and offer improved con-
vergence compared to the Deardorff’s definition, dyo).
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Figure 6: Mean velocity for a turbulent channel flow at
Re, = 395 obtained for 48 x 48 x N, with
N. = {48,96,192, 384, 768, 1536}. Solid lines
corresponds to the DNS by Moser et al. (1999).
LES results obtained using the novel definition,
dr1s, are compared against those using dyo1, both
employing the S3QR model by Trias et al. (2015a).
For clarity, the former results are shifted up.
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Figure 7: Same as in Figure 6 but for turbulent kinetic en-
ergy (top) and the ratio between average turbulent
viscosity and the molecular viscosity (bottom).

Turbulent channel flow

To evaluate the performance of the proposed length
scale 6,15 in wall-bounded flows, we consider a tur-
bulent channel at Re, = 395. For clarity, only 6,
which outperformed other alternatives including grls,
is compared against the standard d,.. Simulations
were performed using a symmetry-preserving stag-
gered finite-volume discretization (see Verstappen and

Veldman (2003)) with the S3QR model by Trias et al.
(2015a), as the Smagorinsky model fails to reproduce
the near-wall scaling, i.e. v y3. It reads

V3 = (Cy3000)?Qebr RYSe. (19)

where Cy34r = 0.762, Qg7 and Rggr are the second
and third invariants of the second-order tensor GG” .

Figure 6 shows the average velocity profiles ob-
tained for a set of (artificially) refined meshes in the
span-wise direction, with resolutions of 48 x 48 x N,
and N, = {48,96, 192,384, 768,1536}. This direc-
tion was chosen due to its lower sensitivity compared
to the stream-wise and wall-normal directions. The
domain size matches that of the DNS by Moser et al.
(1999), with uniform stream-wise and span-wise grids,
and wall-normal points distributed as

y; = sinh(vj/N,)/sinh(y/2) 7 =0,1,...,N,/2.

(20)
with v = 7. For N, = 48, the first off-wall point is
located at ¥y ~ 1.75, and the mesh near the wall is
highly anisotropic.

As already observed in the homogeneous isotropic
turbulence test-case, the results in Figure 6 confirm
that the new definition of d,j5 exhibits significantly
greater robustness to mesh anisotropy: the mean ve-
locity profile remains nearly unchanged across refine-
ments, while significant deviations appear with ). A
similar trend is observed in Figure 7 (top) for the re-
solved turbulent kinetic energy, especially in the bulk
region where 4,15 displays minimal dependence on N,.

Finally, Figure 7 (bottom) shows the ratio between
the time-averaged turbulent viscosity, (14), and the
molecular viscosity, v, illustrating key differences in
SGS activity. With d,5, this ratio remains consistent
as N, increases, while d,,) exhibits a pronounced de-
cay in the bulk, effectively deactivating the model. In
the near-wall region, both approaches capture the ex-
pected cubic scaling, i.e. vy ys, though noticeable
differences persist with mesh refinement. Notably, ;15
leads to a monotonic and rapid convergence of (1),
whereas 0., does not.

In summary, the channel flow test demonstrates
that 9,15 provides consistent predictions for mean ve-
locity, turbulent kinetic energy and turbulent viscos-
ity across a wide range of anisotropic meshes. Unlike
dvol, Which is highly sensitive to refinement, d,)5; main-
tains SGS model activity and accuracy, confirming its
suitability for LES in wall-bounded flows.

5 Conclusions

This work addresses a central research question in
LES modeling: can we establish a simple, robust, and
easily implementable definition of § for any type of
grid that minimizes the impact of mesh anisotropies
on the performance of SGS models for LES? Despite
its known limitations on highly anisotropic meshes,
the Deardorff definition, d,.;, which consists on the



cube root of the cell volume (Eq. 4), remains the most
widely used in both research and industry. This moti-
vates the development of improved alternatives.

In this context, we propose the rational length scale
0r1s, Which arises naturally from the entanglement be-
tween LES filtering and numerical discretization. It
is locally defined, frame-invariant, well-bounded (see
properties P1 and P2 in Table 1), computationally ef-
ficient (P6), applicable to unstructured meshes (P4),
and evaluated at cell faces (PS), a key feature distin-
guishing it from existing definitions (see Tablel). Im-
plementation requires only minor changes to standard
eddy-viscosity models (see Figure 3), and although
derived within a second-order FVM framework, the
concept is compatible with other discretization ap-
proaches. Moreover, we also introduce the dissipation-
equivalent definition grls (see Eq. 18), evaluated at cell
centers and dependent on the local velocity gradient
G = Vu (P3).

The effectiveness of &5 and dy5 has been con-
firmed through LES of decaying isotropic turbulence
using two different codes. Compared to Deardorft’s
dvol, both demonstrate significantly greater robust-
ness to mesh anisotropy. Among them, d,5 consis-
tently performs better in highly stretched configura-
tions. This behavior has also been validated in a tur-
bulent channel flow at Re, = 395, further supporting
its practical relevance. Given these results, along with
its simplicity, we believe the proposed length scale
has strong potential for application in SGS models,
particularly in complex geometries involving highly
anisotropic or unstructured meshes.

Finally, the choice of turbulent length scale is also
crucial in hybrid RANS-LES methods, particularly
DES. As shown in the previous work by Pont-Vilchez
et al. (2021), even models with strong grey-area mit-
igation properties may fail in regions of resolved tur-
bulence on anisotropic meshes. This is especially rel-
evant in aeroacoustic applications (see Duben et al.
(2023), for instance), where poor resolution of turbu-
lence dynamics can significantly degrade predictions.
The proposed ;15 thus emerges as a promising candi-
date for use in DES simulations as well.
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