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Research question #1:

@ What are we indeed solving with finite volume method?

DNS! of air-filled Rayleigh-Bénard convection at Ra = 10 and 10%°

!B.Sanderse, F.X.Trias. Energy-consistent discretization of viscous dissipation with
application to natural convection flow. Computers & Fluids, 286:106473, 2025
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@ In the context of LES, most popular (by far) is:

Svol = (AxAyAz)*3 | — Deardorff (1970)

dsco = f(a1, @)dyol, 02 = \/(AX2 +Ay? + Az?)/3
. GGT : GGT
sa =\ GGT . GGT
@ In the context of DES:
‘5max = max(Ax, Ay, Az) ‘<: Sparlart et al. (1997)

<= Trias et al. (2017)

Flow-dependant definitions

0w = \/(w)%AyAz +w2AxAz + w2AxAy)/|w|? <= Chauvet et al. (2007)

b = % n7mr2?),(...,8 [In—Im| <= Mockett et al. (2015)
dsr.a = bw Fu(VTM) < Shur et al. (2015)

9/21



A rational length scale for LES
00e0000

A rational length scale for LES

Research question #3:

@ Can we establish a simple, robust, and easily implementable
definition of § for any type of grid that minimizes the impact of mesh
anisotropies on the performance of subgrid-scale models?

10/21



A rational length scale for LES
00e0000

A rational length scale for LES

Research question #3:

@ Can we establish a simple, robust, and easily implementable
definition of § for any type of grid that minimizes the impact of mesh
anisotropies on the performance of subgrid-scale models?

10/21



A rational length scale for LES
00e0000

A rational length scale for LES

Research question #3:

@ Can we establish a simple, robust, and easily implementable
definition of § for any type of grid that minimizes the impact of mesh
anisotropies on the performance of subgrid-scale models?

8 57 57

10/21



A rational length scale for LES

0O00@000

A rational length scale for LES

- 1 x+h/2
Box filter:  ¢(x) = f ¢pdx
x—h/2

Oxp = Oxp = (Pe — Pw)/h

Remark #1: the actual filter length, J, when computing the face
derivative is he, i.e., the distance between the adjacent nodes P and E.

11/21



A rational length scale for LES

0O00@000

A rational length scale for LES

. x+h/2
Box filter:  ¢(x) = f ¢pdx
x—h/2

. | V.V '}W '}e

hy he

@
[ 1!
1
1

Oxp = Oxp = (Pe — Pw)/h

The diffusive term in a FVM framework is approximated as follows

R~ (5] i) - 5 (%)),
ox \U ox 0x |, w ox \ Ox

Ox

11/21



A rational length scale for LES

0O00@000

A rational length scale for LES

- 1 x+h/2
Box filter:  ¢(x) = f ¢pdx
x—h/2

3x5 :m = (¢e_¢w>/h

The diffusive term in a FVM framework is approximated as follows

0 30) 1/ _0¢ 09 (9¢
(150~ (5L ) - ax(ax>\

JL(pde—9p ¢P—¢W>_ (5¢>
el h " h ©ox \ ox

Ox

11/21



A rational length scale for LES
000000

A rational length scale for LES

x+h/2

Box filter:  ¢(x) = f ¢pdx

x—h/2

3x5 :m = (¢e_¢w>/h

The diffusive term in a FVM framework is approximated as follows

0 0o 1 0p 0¢ 0¢)

()~ e 5) - ax(ax>\

L Ge—dp [ ¢P—dw) _ ( 5¢>
¢ he Y hy T ox \ ox

ox
1 (Te+Tpoe—op Trp+Twop—dw) _ 5¢
h 2 he 2 hy, é’x é’x

2

> |

R

11/21



A rational length scale for LES
000000

A rational length scale for LES

- 1 x+h/2
Box filter: o(x) = f odx
h x—h/2

axa :m = (¢e_¢w)/h

Remark #1: the actual filter length, 0, when computing the face
derivative is he, i.e., the distance between the adjacent nodes P and E.

Remark #2: two filtering operations are performed
when computing the diffusive term:

@ the calculation of the face derivative ﬁ
-0
@ the cell-to-face interpolation of I' Fp (F 1 >
X x/,

11/21



A rational length scale for LES
000000

A rational length scale for LES

x+h/2

Box filter:  ¢(x) = 1j odx

x—h/2

axa :m = (¢e_¢w)/h

Remark #1: the actual filter length, 0, when computing the face
derivative is he, i.e., the distance between the adjacent nodes P and E.

Remark #2: two filtering operations are performed
when computing the diffusive term:

@ the calculation of the face derivative ¢
@ the cell-to-face interpolation of [ 8
Both filtering operators share the same filter length, °

d; namely, the distance between the nodes adjacent
to the corresponding face.

11/21



A rational length scale for LES

0O00@000

A rational length scale for LES

- 1 x+h/2
Box filter: o(x) = j odx
x—h/2

axa :m = (¢e_¢w)/h

Remark #1: the actual filter length, 0, when computing the face
derivative is he, i.e., the distance between the adjacent nodes P and E.

Remark #2: two filtering operations are performed
when computing the diffusive term:

@ the calculation of the face derivative

@ the cell-to-face interpolation of I s BB

Both filtering operators share the same filter length,
d; namely, the distance between the nodes adjacent

to the corresponding face.
11/21



A rational length scale for LES

0O00@000

A rational length scale for LES

- 1 x+h/2
Box filter: o(x) = j odx
x—h/2

axa :m = (¢e_¢w)/h

Remark #1: the actual filter length, 0, when computing the face
derivative is he, i.e., the distance between the adjacent nodes P and E.

Remark #2: two filtering operations are performed
when computing the diffusive term:

@ the calculation of the face derivative
@ the cell-to-face interpolation of I'

Both filtering operators share the same filter length,
d; namely, the distance between the nodes adjacent

to the corresponding face.
11/21



A rational length scale for LES
0000e00

A rational length scale

Properties of new definition, 0,14

Syl

: I 8rls

12/21



A rational length scale for LES
0000e00

A rational length scale

Properties of new definition, 0,14

Syl

: I 8rls

@ Locally defined

12/21



A rational length scale for LES
0000e00

A rational length scale

Properties of new definition, 0,14

Syl

: I 8rls

@ Locally defined
o Well-bounded: Ax < d,15 < Az (assuming Ax < Ay < Az)

12/21



A rational length scale for LES
0000e00

A rational length scale

Properties of new definition, 0,14

Syl

: I 8rls

@ Locally defined
o Well-bounded: Ax < d,15 < Az (assuming Ax < Ay < Az)

@ Sensitive to flow orientation, e.g. shear layers

12/21



A rational length scale for LES
0000e00

A rational length scale

Properties of new definition, 0,14

Syl

: I 8rls

@ Locally defined
o Well-bounded: Ax < d,15 < Az (assuming Ax < Ay < Az)
@ Sensitive to flow orientation, e.g. shear layers

@ Applicable to unstructured grids

12/21



A rational length scale for LES
0000e00

A rational length scale

Properties of new definition, 0,14

Syl

: I 8rls

Locally defined
Well-bounded: Ax < 4,15 < Az (assuming Ax < Ay < Az)
Sensitive to flow orientation, e.g. shear layers

Applicable to unstructured grids

Easy and cheap

12/21



A rational length scale for LES
0000080

A rational length scale

Implementation and an alternative definition

interpolation

13/21



A rational length scale for LES
0000080

A rational length scale

Implementation and an alternative definition

interpolation

13/21



A rational length scale for LES
0000080

A rational length scale

Implementation and an alternative definition

interpolation

13/21



A rational length scale for LES
0000080

A rational length scale

Implementation and an alternative definition

interpolation

2
1/6val A interpolation A
Vtzc 77777 > Vt,C — Vt’s ””” > Vt,S

13/21



A rational length scale for LES
0000080

A rational length scale

Implementation and an alternative definition

interpolation

8rls

1/52 . . 62
vol A interpolation A s
Vic —==== » Ve — Vs - Y Vs

13/21



A rational length scale for LES
0000080

A rational length scale

Implementation and an alternative definition

interpolation

8rls

We can also compute an equivalent filter length, grls: that leads to the
same local dissipation
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@ Definition of § can have a big effect on simulation results
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ABSTRACT

Due to the prohibitive cost of resolving all relevant scales, direct numerical simulations of turbulence remain unfeasible for most real-world
nsequently, dynamically simplified formulations are needed for coarse-grained simulations. In this regard, eddy-viscosity

ddy simulation (LES) are widely used in both academia and industry. These models require a subgrid characteristic length,
typically linked to the local grid size. While this length scale corresponds to the mesh step for isotropic grids, its definition for unstructured
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