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Motivation

Research question #1:
What are we indeed solving with finite volume method?

DNS1 of air-filled Rayleigh–Bénard convection at Ra “ 108 and 1010

1B.Sanderse, F.X.Trias. Energy-consistent discretization of viscous dissipation with
application to natural convection flow. Computers & Fluids, 286:106473, 2025

4 / 21



Motivation Revisiting FVM A rational length scale for LES Results Conclusions

Motivation

Research question #2:
What are we interpolating? What is the correct interpretation?N. Valle et al. / Journal of Computational Physics 400 (2020) 108991 3

Fig. 1. Left: Domain � and its boundary ∂�. Right: Mesh M . ci corresponds with the ith cell, n̂i corresponds with the normal vector to the jth face (i.e., 
f j ) and vk corresponds with the kth vertex. Its incidence matrix is stated in equation (2).

Fig. 2. Distances rc± are defined as the shorter distances of the interface to the cell. These are then normal to the interface and correspond with the 
minimum radius of the tangent sphere.

properties such as edge lengths (WE), face surfaces (AF) and cell volumes (VC) are arranged as diagonal matrices. This 
matrix perspective presents several advantages: i) mesh independence, ii) computational simplicity and iii) readily accessible 
algebraic analysis. While we restrain ourselves from digging into the first two, the later is useful both for reviewing the 
classical symmetry-preserving scheme and the development of the novel technique described here. Hereafter, lowercase 
letters correspond with vectors, whose subscript indicates the geometric entity to which they are linked (e.g., pc corresponds 
to pressure located at cells). Capital letters correspond with matrices, whose subscript(s) identify rows and (if different) 
columns (e.g. TFC is the face-to-cell incidence matrix).

2.2. Interface

Interfaces imply a moving topology along the working domain, which implies a Lagrangian frame of reference. Interface 
tracking schemes track such a frame explicitly, at the expenses of numerical complexity [31]. On the other hand, interface 
capturing schemes preserve a fully Eulerian approach, by mapping quantities expressed in the Lagrangian frame back into 
the Eulerian one [7,32,33]. This results in a simpler implementation of the interface at the cost of an implicit representation. 
At this point we split the presentation between the techniques used to actually capture the evolution of the interface and 
the ones used to obtain explicit geometric information out of the implicit form.

2.2.1. Interface capturing
Let’s assume now that the domain � presents an interface at 	, which splits � into �+ and �− . We note that the 

volume of a single phase �+ can be defined as
∫

�+

dV =

∫

�

H(r)dV (3)

where r corresponds with the signed shorter distance from an arbitrary point to the interface, as can be seen in Fig. 2, 
while H(r) is its corresponding Heaviside step function, which is valued 1 at phase �+ and 0 otherwise. Note that this 
function is the key to map a Lagrangian frame (�+) back into an Eulerian one (�). Specific tracking of such a quantity 
is the basis of the Volume of Fluid (VOF) method [7], which yields to the concept of volume fraction or, more generally, 
marker function. Despite being formally neat, the implementation of specific convection schemes is required, eventually 
requiring full geometric reconstruction, resulting in an intricate implementation. A different approach is to capture the 
interface with a CLS [11,12]. This captures the interface as the isosurface of a continuous and smooth function θ . The level 

5 / 21



Motivation Revisiting FVM A rational length scale for LES Results Conclusions

Motivation

Research question #2:
What are we interpolating? What is the correct interpretation?N. Valle et al. / Journal of Computational Physics 400 (2020) 108991 3

Fig. 1. Left: Domain � and its boundary ∂�. Right: Mesh M . ci corresponds with the ith cell, n̂i corresponds with the normal vector to the jth face (i.e., 
f j ) and vk corresponds with the kth vertex. Its incidence matrix is stated in equation (2).

Fig. 2. Distances rc± are defined as the shorter distances of the interface to the cell. These are then normal to the interface and correspond with the 
minimum radius of the tangent sphere.

properties such as edge lengths (WE), face surfaces (AF) and cell volumes (VC) are arranged as diagonal matrices. This 
matrix perspective presents several advantages: i) mesh independence, ii) computational simplicity and iii) readily accessible 
algebraic analysis. While we restrain ourselves from digging into the first two, the later is useful both for reviewing the 
classical symmetry-preserving scheme and the development of the novel technique described here. Hereafter, lowercase 
letters correspond with vectors, whose subscript indicates the geometric entity to which they are linked (e.g., pc corresponds 
to pressure located at cells). Capital letters correspond with matrices, whose subscript(s) identify rows and (if different) 
columns (e.g. TFC is the face-to-cell incidence matrix).

2.2. Interface

Interfaces imply a moving topology along the working domain, which implies a Lagrangian frame of reference. Interface 
tracking schemes track such a frame explicitly, at the expenses of numerical complexity [31]. On the other hand, interface 
capturing schemes preserve a fully Eulerian approach, by mapping quantities expressed in the Lagrangian frame back into 
the Eulerian one [7,32,33]. This results in a simpler implementation of the interface at the cost of an implicit representation. 
At this point we split the presentation between the techniques used to actually capture the evolution of the interface and 
the ones used to obtain explicit geometric information out of the implicit form.

2.2.1. Interface capturing
Let’s assume now that the domain � presents an interface at 	, which splits � into �+ and �− . We note that the 

volume of a single phase �+ can be defined as
∫

�+

dV =

∫

�

H(r)dV (3)

where r corresponds with the signed shorter distance from an arbitrary point to the interface, as can be seen in Fig. 2, 
while H(r) is its corresponding Heaviside step function, which is valued 1 at phase �+ and 0 otherwise. Note that this 
function is the key to map a Lagrangian frame (�+) back into an Eulerian one (�). Specific tracking of such a quantity 
is the basis of the Volume of Fluid (VOF) method [7], which yields to the concept of volume fraction or, more generally, 
marker function. Despite being formally neat, the implementation of specific convection schemes is required, eventually 
requiring full geometric reconstruction, resulting in an intricate implementation. A different approach is to capture the 
interface with a CLS [11,12]. This captures the interface as the isosurface of a continuous and smooth function θ . The level 

5 / 21



Motivation Revisiting FVM A rational length scale for LES Results Conclusions

Motivation

Research question #2:
What are we interpolating? What is the correct interpretation?N. Valle et al. / Journal of Computational Physics 400 (2020) 108991 3

Fig. 1. Left: Domain � and its boundary ∂�. Right: Mesh M . ci corresponds with the ith cell, n̂i corresponds with the normal vector to the jth face (i.e., 
f j ) and vk corresponds with the kth vertex. Its incidence matrix is stated in equation (2).

Fig. 2. Distances rc± are defined as the shorter distances of the interface to the cell. These are then normal to the interface and correspond with the 
minimum radius of the tangent sphere.

properties such as edge lengths (WE), face surfaces (AF) and cell volumes (VC) are arranged as diagonal matrices. This 
matrix perspective presents several advantages: i) mesh independence, ii) computational simplicity and iii) readily accessible 
algebraic analysis. While we restrain ourselves from digging into the first two, the later is useful both for reviewing the 
classical symmetry-preserving scheme and the development of the novel technique described here. Hereafter, lowercase 
letters correspond with vectors, whose subscript indicates the geometric entity to which they are linked (e.g., pc corresponds 
to pressure located at cells). Capital letters correspond with matrices, whose subscript(s) identify rows and (if different) 
columns (e.g. TFC is the face-to-cell incidence matrix).

2.2. Interface

Interfaces imply a moving topology along the working domain, which implies a Lagrangian frame of reference. Interface 
tracking schemes track such a frame explicitly, at the expenses of numerical complexity [31]. On the other hand, interface 
capturing schemes preserve a fully Eulerian approach, by mapping quantities expressed in the Lagrangian frame back into 
the Eulerian one [7,32,33]. This results in a simpler implementation of the interface at the cost of an implicit representation. 
At this point we split the presentation between the techniques used to actually capture the evolution of the interface and 
the ones used to obtain explicit geometric information out of the implicit form.

2.2.1. Interface capturing
Let’s assume now that the domain � presents an interface at 	, which splits � into �+ and �− . We note that the 

volume of a single phase �+ can be defined as
∫

�+

dV =

∫

�

H(r)dV (3)

where r corresponds with the signed shorter distance from an arbitrary point to the interface, as can be seen in Fig. 2, 
while H(r) is its corresponding Heaviside step function, which is valued 1 at phase �+ and 0 otherwise. Note that this 
function is the key to map a Lagrangian frame (�+) back into an Eulerian one (�). Specific tracking of such a quantity 
is the basis of the Volume of Fluid (VOF) method [7], which yields to the concept of volume fraction or, more generally, 
marker function. Despite being formally neat, the implementation of specific convection schemes is required, eventually 
requiring full geometric reconstruction, resulting in an intricate implementation. A different approach is to capture the 
interface with a CLS [11,12]. This captures the interface as the isosurface of a continuous and smooth function θ . The level 

N. Valle et al. / Journal of Computational Physics 400 (2020) 108991 9

Fig. 3. Example of a particular high-resolution scheme � for the advection of θc (in this example, the well-known upwind scheme) and the corresponding 
dedicated curvature interpolator, ϒ. In this case, the interpolation scheme for curvature is downwind.

−

(

dθc

dt

)T

MC = (UGθc)
T

MFϒ (42)

must hold at any time, while releasing a degree of freedom regarding the definition of the normal. We can now plug 

equation (38) in the time derivative and expand the transpose terms

−

(

dθc

dt

)T

MC = (C(uf)Cθc)
T

MC = θc
T
C(uf)

T

C
MC = θc

T
G

T
U

T
MFϒ ∀θc (43)

which should hold for any θc . This leads to

C(uf)
T

C
MC = G

T
U

T
MFϒ (44)

where, exploiting the diagonal arrangement of both U and MF to cast G
T
U

T
MF into G

T
MFU, we can use equation (20) to 

obtain the final condition as

− (MCC(uf)C)T = MCDUϒ (45)

From where we can infer that the convective scheme of the marker function determines the curvature shift operator. This 

identity guarantees that energy transfers are balanced and thus total mechanical energy, Em , is preserved up to temporal 

integration, in the same way that kinetic energy, Ek , is preserved in the symmetry-preserving discretization presented in 

Section 3.2 for the single-phase case.

Regarding the construction of C(uf)C , any high-resolution scheme can be embedded into the algebraic form C(uf)C =

DU�, where � ∈ R|F |×|C | is the actual high-resolution cell-to-face interpolator. For the CLS, this typically corresponds with 

SUPERBEE [11]. We can split � as � = � + � [42], to produce

C(uf)C = DU (� + �) (46)

This represents the symmetric (DU�) and skew-symmetric (DU�) components of C(uf)C . The extension to VOF schemes, 

nicely summarized by Patel et al. [43], requires a previous casting of the advection scheme into the same framework intro-

duced in [42]. Plugging equation (46) into equation (45) results in the final form of the dedicated cell-to-face interpolation 

for curvature

ϒ = � − � (47)

which guarantees a proper potential and kinetic energy transfer. An illustrative example can be seen in Fig. 3. In short, any 

upwind-like component used for the advection of θc turns into a downwind-like component for the interpolation of kf . This 

can be compared with the second-order midpoint rule used by Olsson and Kreiss where ϒ = � [11].

4.3. Analysis

By mimicking equations (30) and (32) we obtain the discrete counterpart of kinetic energy as

dEk

dt
= γ (UGθc,ϒkc)F + μ (uf,LFuf)F (48)

which assumes a proper discretization of all other terms described in Section 3. We proceed similarly for potential energy 

by mimicking equation (34) to define discrete potential energy as
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Subgrid characteristic length for LES: state of the art

Btu ` pu ¨ ∇qu “ ∇2u ´ ∇p ´ ∇ ¨ τpuq ; ∇ ¨ u “ 0
eddy-viscosity ÝÑ τ puq “ ´2νtSpuq

νt “ pCmδq2Dmpuq

Dmpuq ÝÑ Smagorinsky (1963), WALE (1999), Vreman (2004),
QR-model (2011), σ-model (2011), S3PQR2 (2015),
vortex-stretching-based model3 (2017)

Cm ÝÑ Germano’s dynamic model (1991), Lagrangian dynamic (1995),
Global dynamic approach (2006)
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Subgrid characteristic length for LES: state of the art
In the context of LES, most popular (by far) is:

δvol “ p∆x∆y∆zq1{3 ðù Deardorff (1970)

δSco “ f pa1, a2qδvol, δL2 “

b

p∆x2 ` ∆y2 ` ∆z2q{3

δlsq “

d

ĜĜT : GGT

GGT : GGT ðù Trias et al. (2017)

In the context of DES:
δmax “ maxp∆x , ∆y , ∆zq ðù Sparlart et al. p1997q

Flow-dependant definitions

δω “

b

pω2
x ∆y∆z ` ω2

y ∆x∆z ` ω2
z ∆x∆yq{|ω|2ðù Chauvet et al. p2007q

δ̃ω “
1

?
3

max
n,m“1,...,8

|ln ´ lm| ðù Mockett et al. p2015q

δSLA “ δ̃ωFKHpVTMq ðù Shur et al. p2015q
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A rational length scale for LES

Research question #3:
Can we establish a simple, robust, and easily implementable
definition of δ for any type of grid that minimizes the impact of mesh
anisotropies on the performance of subgrid-scale models?

δ
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A rational length scale for LES
φ(x)

eh

W EPw e

wh

h

Box filter: ϕpxq “
1
h

ż x`h{2

x´h{2
ϕdx

Bxϕ “ Bxϕ “ pϕe ´ ϕw q{h

Remark #1: the actual filter length, δ, when computing the face
derivative is he , i.e., the distance between the adjacent nodes P and E .
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to the corresponding face.
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A rational length scale
Properties of new definition, δrls

δrls

δrls

δrls

Locally defined
Well-bounded: ∆x ď δrls ď ∆z (assuming ∆x ď ∆y ď ∆z)
Sensitive to flow orientation, e.g. shear layers
Applicable to unstructured grids
Easy and cheap
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A rational length scale
Implementation and an alternative definition

νt,c νt,s

νt,c ν̂t,c ν̂t,s νt,s

interpolation

t,cν

t,cν

νt,s

δ rls

We can also compute an equivalent filter length, δ̃rls, that leads to the
same local dissipation

δ̃2
rlsν̂tG : G “ ν̂tĜ : Ĝ

ùñ δ̃rls “

d

Ĝ : Ĝ
G : G “

d

trpĜĜT q

trpGGT q

where Ĝ ” G∆ and ∆ ” diagp∆x , ∆y , ∆xq.
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trpĜĜT q

trpGGT q
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where Ĝ ” G∆ and ∆ ” diagp∆x , ∆y , ∆xq.

13 / 21



Motivation Revisiting FVM A rational length scale for LES Results Conclusions

A rational length scale
Implementation and an alternative definition

νt,c νt,s

νt,c ν̂t,c ν̂t,s νt,s

interpolation

1{δ2
vol interpolation δ2

rls

rls

t,s

ν

t,cν

t,c

ν
δ

We can also compute an equivalent filter length, δ̃rls, that leads to the
same local dissipation

δ̃2
rlsν̂tG : G “ ν̂tĜ : Ĝ
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A rational length scale
Properties of new definition δ̃rls
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A rational length scale
Isotropic turbulence on anisotropic grids

Comparison with classical Comte-Bellot & Corrsin (CBC) experiment
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A rational length scale
Turbulent channel flow at Reτ “ 395
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A rational length scale
Turbulent channel flow at Reτ “ 395

Turbulent viscosity 48 ˆ 48 ˆ Nz
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Concluding remarks
A new definition for δ has been proposed
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It is locally defined, well-bounded, cheap and easy to implement
Suitable for unstructured grids
LES tests:

HIT ✓
Turbulent channel flow ✓
Unstructured grids (on-going)

Takeaway message:
Definition of δ can have a big effect on simulation results
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Thank you for your attendance

https://github.com/jruanoperez/DHIT
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