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1 Introduction

Accurate simulation tools for magnetohydrody-
namic (MHD) flows at low magnetic Reynolds num-
ber are of great interest for many industrial applica-
tions, such as in the design of nuclear fusion reactors
[Hoshino et al. (2011)]. Extreme circumstances cre-
ated inside the reactor limit the use of experimental
techniques, leaving numerical modeling as the method
of choice [Abdou et al. (2001)]. The interaction
of the conductive fluids with magnetic fields, leads
to an opposing Lorentz force. Accurate numerical
schemes which conserve physical properties such as
mass, momentum, kinetic energy and charge density,
are of great importance when modeling the delicate
balance between the high pressure drop and the op-
posing Lorentz force. The opposing Lorentz force
is stronger at the center of the flow, which can cre-
ate quasi-two-dimensional turbulence effects at high
Reynolds numbers [Smolentsev et al. (2015)]. In
these cases, conservative schemes are essential in de-
picting turbulent transition in space and time, since nu-
merical dissipation greatly affects the small scale flow
structures which form the basis of turbulence [Ver-
stappen and Veldman (2003)]. The often complex
geometries found in industrial applications require a
collocated grid approach, which, combined with low-
dissipative schemes for incompressible flows, can lead
to the checkerboard problem [Trias ez al. (2014)]. The
problem finds its origins in the discrete collocated gra-
dient and Laplacian operators, which are insensitive
to high-frequency modes in the pressure [Hopman et
al. (2025)]. This problem becomes more relevant
in MHD at low magnetic Reynolds numbers, since
an additional Poisson equation is formed to solve the
electric potential field. In most finite volume codes,
the classical Rhie-Chow interpolation and a compact-
stencil Laplacian operator are used to minimise the
checkerboard problem at the cost of adding numeri-
cal dissipation. A low-dissipative method for MHD
is developed, which quantifies the checkerboard prob-
lem and allows numerical dissipation in the solution
accordingly, and thereby maintains high accuracy and
unconditional stability. This numerical framework is

presented in section 2. The method is tested on a turbu-
lent duct flow benchmark case with a conductive fluid
and a transverse magnetic field. Some preliminary test
results are presented in section 3.

2 Numerical Framework

A fractional step method forms the basis of the nu-
merical scheme, of which the equations are given in
algorithm 1. The discretisation of the algebraic oper-
ators can be found in [Hopman et al. (2025)], with
the physical variables given by: collocated velocity,
u., staggered velocity, ug, modified kinematic pres-
sure p., current density, J., magnetic field, B, elec-
tric potential, ¢., density, p, and electrical conduc-
tivity, 0. The discrete operators are given by: collo-
cated gradient, G.. face gradient, GG, collocated di-
vergence, M., compact-stencil Laplacian, L, cell-to-
face dot-interpolator, I'.s; and face-to-cell interpola-
tor, I's.. Treatment of the temporal discretisation is
left out of scope, and the temporal treatment of the
convective and diffusive terms are included in func-
tion F(u.,u,). [], gives a skew-symmetric matrix
form of a vector field which enables the cell-wise cross
product between two vector fields.
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Algorithm 1: Symmetry-preserving algorithm for MHD
flows

Compared to well-known hydrodynamic versions
of algorithm 1, the MHD part only consists of an extra



source term in the form of a Lorentz force in equation
(Al.1), and equations (A1.6)-(A1.9), in which a sec-
ond Poisson equation for the electromagnetic quanti-
ties is posed and solved. The definition of the face-
to-cell interpolator, I's., in equation (A1.8) plays a
crucial role in the conservation of charge density, and
prevents numerical dissipation through the form of
Lorentz work. In this framework, the definition is
linked to the cell-to-face dot interpolator, I, by:

Fsc = Q_lrz;Qm (1)

with volumetric interpolation between cell-centers and
faces, I'.s, to ensure unconditional stability [Santos et
al. (2025)]. This is in contrast with the definition by
[Ni et al. (2007)]:
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where ry — r; gives the vector from cell-center 4 to
face-center f, for which the relation given in equation
(1) does not hold.

Addition of the predictor fields for p and ¢ in equa-
tions (A1.1) and (A1.6) can increase the order of the
numerical errors and lower the numerical dissipation.
However, setting these predictor values to the values
at the previous time-step can cause checkerboarding
in the solution fields. Therefore, by quantifying the
checkerboard problem, a coefficient can be calculated
which directly couples back to the predictor value.
Thereby establishing a negative feedback mechanism
which is able to dynamically balance the checkerboard
problem with numerical dissipation. The predictor
values in the final algorithm are defined by:

af =(1-aw)ag, 3)

where o represents the pressure or electric potential
field. ap gives the quantity of checkerboarding of the
respective fields, and is calculated as:

al (L-L.)a.
alLa,

Qeb = ; “
with a., = 0 if the denominator equals zero. This
symmetry-preserving algorithm with dynamical treat-
ment of the checkerboarding was compared to a
method which uses equation (2) to interpolate the
charge density, and which does not have the dynam-
ical treatment of the predictor fields.

The solver is implemented in open source software
OpenFOAM, and made available under RKSymMag-
Foam at [Hopman and Frederix (2003)].

3 Results

Preliminary tests were performed using a turbulent
duct flow case, with insulated walls [Shercliff (1953)]
at Regp = 5602 and Ha = 21.2. The fluid flows

along the duct in the z-direction, whereas the mag-
netic field is applied in the y-direction. The simula-
tion was first performed on a high resolution Cartesian
mesh, similar to [Zhang et al. 2015], to establish ref-
erence results. The simulations were then performed
again on a non-Cartesian mesh with eight times less
control volumes. This was done to see a difference in
the interpolation method, as they converge to the same
method on Cartesian meshes. Moreover, unstructured
grids are more common in industrial cases with com-
plex geometries. These meshes are also more prone to
the checkerboard problem, which gives a good method
to see the difference between the solvers. The newly
introduced solving algorithm is denoted by SP-f4,, to
indicate the symmetry-preserving (SP) discretisation
with the dynamic (dy) predictor values. This solver is
compared to a non-symmetry-preserving (NSP) equiv-
alent, without the dynamic predictor values.
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Figure 1: Mean streamwise velocity profiles in y and z, for
the two solvers

Turbulent Kinetic Energy

shercliff's Case

—e— SP-Byy (y)

3.5 —e— SP-Oyy (2)

—8— NSP (y)
—=— NSP (z)

3.0 4

2.54

Sl=

2.04
154
104
0.54

0.0 “#

T
0.0 0.1 0.2 0.3 0.4 0.5
YIDy, 2Dy

Figure 2: Turbulent kinetic energy profiles in y and z, for

the two solvers

Figure 1 shows the mean velocity profiles. The
DNS shows a clear distinction between the y- and z-



profiles, which is due to the magnetic field applied
in the y-direction. The influence of the coarse non-
Cartesian mesh can be seen in an elevated velocity pro-
file, especially at the center of the duct. This indicates
lower levels of turbulence due to numerical dissipa-
tion, as the profiles are closer to the laminar parabolic
shape. This effect is mostly visible for the NSP solver,
which indicates that the symmetry preserving interpo-
lator has a beneficial effect on the conservational prop-
erties of the solver. The turbulent kinetic energy pro-
files, seen in figure 2, confirm these findings, showing
a large deficit for the NSP solver, especially close to
the wall in the z-profile.

SP-04, NSP

Deb 0.5 0.9
b 0.6 0.6

Table 1: Checkerboard coefficient for the pressure and elec-
tric potential fields

From the quantification of the checkerboard values
of the pressure and electric potential fields, given in
table 1, a distinction can also be seen for the amount
of pressure checkerboarding. The checkerboarding is
suppressed dynamically in the SP-64, solver, resulting
in a lower value. This might also contribute to a higher
numerical dissipation in the NSP solver, which leads
to the results seen in figures 1 and 2.

To expand on this analysis, other test cases will
be run, using other combinations of the checkerboard
treatment and (non-)symmetry-preserving interpola-
tor. These results will be presented using analysis
of the higher order statistical terms, including the
turbulent kinetic energy budgets, to give a better
understanding of the causes and effects of the chosen
numerical method.
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