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Abstract

Many industrial applications, such as nuclear fu-
sion reactor design and aeronautics, require accu-
rate numerical simulation tools, that conserve physical
properties, for magnetohydrodynamic (MHD) flows at
low magnetic Reynolds numbers. The interaction be-
tween the magnetic field and the conductive fluid of-
ten results in complex flow phenomena, which require
conservative discretisation schemes. These schemes
minimise numerical dissipation to improve accuracy,
but can lead to the checkerboard problem if applied on
collocated grid arrangements, which are necessary in
complex geometries. An algorithm is constructed to
simulate MHD flows, which relies on the symmetry-
preserving discretisation to allow minimal numeri-
cal dissipation. Moreover, it quantifies the checker-
board problem, to dynamically balance it with nu-
merical dissipation, only when necessary. Turbulent
MHD duct flow cases show the ability of the solver
to generate accurate flow statistics, while mitigating
checkerboarding which lead to flow laminarisation in
a comparative solver. These findings establish the pre-
sented framework as a reliable and efficient approach
for MHD simulations at low magnetic Reynolds num-
bers, particularly where collocated grid arrangements
and low numerical dissipation are required.

1 Introduction

Accurate simulation tools for magnetohydrody-
namic (MHD) flows at low magnetic Reynolds num-
ber are of great interest for many industrial applica-
tions, such as in the design of nuclear fusion reactors
[Hoshino et al. (2011)]. Extreme circumstances cre-
ated inside the reactor limit the use of experimental
techniques, leaving numerical modeling as the method
of choice [Abdou et al. (2001)]. The interaction
of the conductive fluids with magnetic fields, leads
to an opposing Lorentz force. Accurate numerical
schemes which conserve physical properties such as
mass, momentum, kinetic energy and charge density,
are of great importance when modeling the delicate
balance between the high pressure drop and the op-
posing Lorentz force. The opposing Lorentz force
is stronger at the center of the flow, which can cre-
ate quasi-two-dimensional turbulence effects at high

Reynolds numbers [Smolentsev et al. (2015)]. In
these cases, conservative schemes are essential in de-
picting turbulent transition in space and time, since
numerical dissipation greatly affects the small scale
flow structures which form the basis of turbulence
[Verstappen and Veldman (2003)]. The often complex
geometries found in industrial applications require a
collocated grid approach, which, combined with low-
dissipative schemes for incompressible flows, can lead
to the checkerboard problem [Trias ef al. (2014)]. The
problem finds its origins in the discrete collocated gra-
dient and Laplacian operators, which are insensitive
to high-frequency modes in the pressure [Hopman et
al. (2025)]. This problem becomes more relevant
in MHD at low magnetic Reynolds numbers, since
an additional Poisson equation is formed to solve the
electric potential field. In most finite volume codes,
the classical Rhie-Chow interpolation and a compact-
stencil Laplacian operator are used to minimise the
checkerboard problem at the cost of adding numeri-
cal dissipation. A low-dissipative method for MHD
is developed, which quantifies the checkerboard prob-
lem and allows numerical dissipation in the solution
accordingly, and thereby maintains high accuracy and
unconditional stability. This numerical framework is
presented in section 2. The method is tested on a tur-
bulent duct flow benchmark case with a conductive
fluid and a transverse magnetic field. Some prelimi-
nary test results are presented in section 3.

2 Numerical Framework

A fractional step method forms the basis of the nu-
merical scheme, of which the equations are given in
algorithm 1. The discretisation of the algebraic oper-
ators can be found in [Hopman et al. (2025)], with
the physical variables given by: collocated velocity,
u,, staggered velocity, us, modified kinematic pres-
sure P, current density, J., magnetic field, B, elec-
tric potential, ¢, density, p, and electrical conduc-
tivity, o. The discrete operators are given by: collo-
cated gradient, GG.. face gradient, GG, collocated di-
vergence, M., compact-stencil Laplacian, L, cell-to-
face dot-interpolator, I, and face-to-cell interpolator,
I'sc.. Treatment of the temporal discretisation is left
out of scope, and the temporal treatment of the con-



vective and diffusive terms are included in function
F(uc,ug). [], gives a skew-symmetric matrix form
of a vector field which enables the cell-wise cross
product between two vector fields.
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Algorithm 1: Symmetry-preserving algorithm for MHD
flows

Compared to well-known hydrodynamic versions
of algorithm 1, the MHD part only consists of an extra
source term in the form of a Lorentz force in equation
(Al.1), and equations (A1.6)-(A1.9), in which a sec-
ond Poisson equation for the electromagnetic quanti-
ties is posed and solved. The definition of the face-
to-cell interpolator, I'y., in equation (A1.8) plays a
crucial role in the conservation of charge density, and
prevents numerical dissipation through the form of
Lorentz work. In this framework, the definition is
linked to the cell-to-face dot interpolator, I, by:

Ty = Q'TLQ;, (1

with volumetric interpolation between cell-centers
and faces, I'.4, to ensure unconditional stability [San-
tos et al. (2025)]. This is in contrast with the defini-
tion by [Ni et al. (2007)]:
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where ry — r; gives the vector from cell-center ¢ to
face-center f, for which the relation given in equation
(1) does not hold.

Addition of the predictor fields for p and ¢ in equa-
tions (A1l.1) and (A1.6) can increase the order of the
numerical errors and lower the numerical dissipation.
However, setting these predictor values to the values
at the previous time-step can cause checkerboarding
in the solution fields. Therefore, by quantifying the
checkerboard problem, a coefficient can be calculated
which directly couples back to the predictor value.
Thereby establishing a negative feedback mechanism
which is able to dynamically balance the checker-
board problem with numerical dissipation. The pre-
dictor values in the final algorithm are defined by:

af = (1-aq)af, 3

where « represents the pressure or electric potential
field. o gives the quantity of checkerboarding of the
respective fields, and is calculated as:

al (L-L.)a.
alLa,

Qeh = ; “)
with a, = 0 if the denominator equals zero. This
symmetry-preserving algorithm with dynamical treat-
ment of the checkerboarding was compared to a
method which uses equation (2) to interpolate the
charge density, and which does not have the dynami-
cal treatment of the predictor fields.

The solver is implemented in open source software
OpenFOAM, and made available under RKSymMag-
Foam at [Hopman and Frederix (2003)].

3 Results

Case description. To examine the accuracy of
the proposed solver, several turbulent duct flow cases
were used. Initially, a hydrodynamic square duct flow
was utilised, similar to [Zhang et al. (2015)], to
benchmark the solver, with Re, = @ = 300,

frictional velocity w, = 4/ %, and wall shear stress

Tw = uagw, using the dynamic viscosity p. This
value takes the velocity derivative at the wall and av-
erages it along the perimeter of the duct. A fixed pres-
sure gradient and cyclic boundaries in the stream-wise
direction were used to drive the flow. The relation be-
tween the driving pressure gradient and the wall shear
stress leads to an exact expression for the frictional
\/%D—f. The dimen-
sions of the duct are [16Dy x Dy x Dy in a- ,y-
and z-direction, respectively, as used in [Blishchik et
al. (2021)]. To examine MHD effects, a Reynolds
bulk was fixed with a variable pressure gradient at
Rep = % = 5602, corresponding to Re, ~ 360.
At this point a magnetic field was applied in the y-
direction, leading to a Hartmann number of Ha =

ByDp /p% = 21.2. The Reynolds bulk was kept

constant by varying the pressure gradient and keep-
ing the mass flow rate constant, resulting in the same
governing dimensionless numbers as the ones used in
[Chaudhary et. al (2010), Blishchik er al. (2021)].
A schematic drawing of the case can be seen in Fig-
ure 1, in which the Hartmann walls, normal to y, are
shaded to contrast with the side walls, normal to z.
It proved beneficial to work with a fixed Rep, as an
increase in the Hartmann number and the resulting
Lorentz force lead to suppression of turbulence, when
a fixed pressure gradient was used to drive the flow.
Two different electromagnetic cases were examined,
Sherclift’s case, with fully insulated walls, and a case
with fully conductive walls. This strongly influences
the flow qualities, as fully insulated walls force the
current density loops to close inside the domain. This
can lead to local alignment of the current density and

Reynolds number, Re, =



the magnetic field, which affects the resulting Lorentz
force. This is in contrast with the fully conductive
case, where the current density loops can close out-
side of the domain.

Figure 1: Schematic drawing of the duct (stream-wise di-
mension not to scale), with important variables in-
dicated and Hartmann walls shaded in contrast to
the side walls.

Quantification method. To quantify the accu-
racy of each solver, mean stream-wise velocity, the
shear stressees and the turbulent kinetic energy were
measured. These statistical terms are averaged in the
stream-wise direction and time, and mirrored in y- and
z-direction. The statistics are presented as a graph in
the wall-normal direction at the center-line(s) of the
duct. Finally, the checkerboard coefficient was moni-
tored for both the pressure and electric potential field,
using p.p and ¢p, respectively.

Discretisation and solvers. = The newly intro-
duced solving algorithm is denoted by SP-0,,, to indi-
cate the symmetry-preserving (SP) discretisation with
the dynamic (dy) predictor values. This solver is com-
pared to a non-symmetry-preserving (NSP) equiv-
alent, without the dynamic predictor values. The
temporal integration was handled with the classical
Runge—Kutta 3 method, as implemented in Open-
FOAM by [Komen et. al (2020)] and available at
[Hopman et. al (2023]. The time-step size depended
on the spatial discretisation and was chosen such that
the CFL number of the flow did not exceed 0.4.
The cases were initialised from a pre-existing turbu-
lent field, and developed during a transitional period,
with cyclic boundaries in the stream-wise direction.
The non-dimensional time units are given by ty; =
Dy /Up. The case was developed for 389ty ~ 25ty
and then run for an additional 1167¢,; ~ 75tp. The
approximated values are found using the frictional
Reynolds number, Re, ~ 360, which corresponds to
the hydrodynamic duct flow at Rep = 5602. Each
case was run on a high quality mesh (High Mesh Q)
first, which is of DNS quality, for verification of the
accuracy of the solver, and to establish a reference re-
sult. Subsequently, the cases were run on a low quality
mesh (Low Mesh Q) to examine the accuracy of the
solvers with respect to the high quality mesh results.
The mesh specifics which were used are presented in
Table 1, with Ai™ = Ai%=. Note that the cell-width
at the wall, A{y, z}., equals twice the distance from

w?

the wall to the first grid point at the cell-center. A
stretching of the grid was applied in the wall-normal
direction, following [Zhang et al. (2015)]:

L, tenh (925

di - 1 9
2 + tanh (gq)

®)

fori = 0,1,..., Ng and with g4 = 1.85 and N, the
number of vertices in wall-normal direction d. On
the low quality meshes, a light skew was applied in
the center of the duct, with 0.1N; < ¢ < 0.9Ny, to
provoke checkerboarding and to see the difference be-
tween the interpolators that each solver uses. The ar-
eas close to the wall are essential for the occurrence
of turbulence and are therefore not skewed.

Table 1: Different mesh characteristics used for the turbu-
lent duct flow cases, with Ai™ values based on
Re, = 360. The high quality meshes are Carte-
sian, whereas the low quality meshes have skewed
cells outside of the boundary zones. Subscript B
denotes the largest cell-width, at the bulk, subscript
w denotes the smallest cell-width, at the wall.

MeshQ N, Ny, Azt Ay, z}g Ay, 2}
Low 160 64 36.0 10.9 1.1
High 320 128 18.0 55 0.5

Results.
Table 2: Turbulent duct flow quantified levels of checker-
boarding for p and ¢.
SP-04, NSP

Case Mesh Q Per  $ob (-107%) pev Ge (-1077)
Shercliff ~ High 0.13 0.17 - -

v Low 0.50 0.64 0.89 0.61
Full Con. High 0.12 275 - -

” Low 0.49 8.33 0.87 3.62

The flow profiles for Shercliff’s case are given in
Figures 2—4. Since rotational symmetry is lost under
the transverse magnetic field, the plots are depicted as
a function of y and z. The mean stream-wise veloc-
ities, shear stresses and TKE profiles are given for in
this figure. It can be seen that the NSP solver is not
able to properly generate turbulence in the low quality
mesh. The mean stream-wise velocity profile is closer
to a parabolic shape, which is a sign of less intense
turbulence. This is confirmed by the lower absolute
values of the shear stresses and TKE. Although the
values for the SP-64, solver also show some disagree-
ment with the reference result, the solver is still able to
generate substantially more turbulence and give more
accurate results. From Table 2, it can be seen that
pressure checkerboarding might play a role in the poor
accuracy results of the NSP solver, whereas the elec-
tric potential field is rather smooth for all solvers, as



seen from the low values of ¢.,. However, the smooth
field of ¢. does not necessarily mean it is not prone
to checkerboarding. In fact, laminar pressure fields
have shown to be more prone to checkerboarding, as
the predictor value, p®, forms the largest part of the
updated pressure, p2*1. This is because the predic-
tor part is moved to the right-hand side of the Pois-
son equation, which is solved using the wide-stencil
Laplacian and relies on collocated operators, allowing
for disconnected neighbouring cells.
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Figure 2: Mean stream-wise velocity profiles in y- and z-
direction, with Shercliff boundary conditions, for
each solver on the low quality mesh, compared to
the DNS result.
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Figure 3: Shear stress profiles in y- and z-direction, with

Shercliff boundary conditions, for each solver on
the low quality mesh, compared to the DNS result.

The results for the fully conductive case, Figures
5-7, show that the results for the NSP solver have de-
teriorated further. Turbulence seems to be completely
absent from the shear stresses and TKE, and the mean
stream-wise flow profile deviates a lot from the ref-
erence results. The M-shape which is to be expected
at this Hartmann number for laminar flow can even
be seen. Table 2 shows that the case has similar lev-
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Figure 4: Turbulent kinetic energy profiles in y- and z-
direction, with Shercliff boundary conditions, for

each solver on the low quality mesh, compared to
the DNS result.

els of checkerboarding to Shercliff’s case, however is
not able to fully develop turbulence. This might in-
dicate that not just the checkerboarding, but also the
non-symmetry-preserving interpolator play a role in
the low accuracy results.
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Figure 5: Mean stream-wise velocity profiles in y- and z-
direction, with fully conductive boundary condi-

tions, for each solver on the low quality mesh,
compared to the DNS result.

4 Conclusions

In this work, the symmetry-preserving method
is implemented for MHD flows, and extended with
a dynamic method to balance checkerboarding with
numerical dissipation. = The symmetry-preserving
method reflects the properties of the continuous oper-
ators in its discrete counterparts, making the method
conservative in physical properties such as mass, mo-
mentum, kinetic energy and charge density and there-
fore unconditionally stable, not considering potential
instability issues resulting from the temporal integra-
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Figure 6: Shear stress profiles in y- and z-direction, with
fully conductive boundary conditions, for each
solver on the low quality mesh, compared to the
DNS result.
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Figure 7: Turbulent kinetic energy profiles in y- and z-
direction, with fully conductive boundary condi-

tions, for each solver on the low quality mesh,
compared to the DNS result.

tion method and leaving only the pressure error due to
the collocated grid arrangement. On collocated grid
arrangements for complex geometries, the method of
interpolating variables between their staggered and
collocated placements is vital in retaining this con-
servation to the highest degree possible. This can
be done successfully, by defining a volume-weighted
relation between the face-to-cell interpolator and its
transpose counterpart. A second challenge when us-
ing collocated grids, is the occurrence of checker-
boarding in solution fields of the Poisson equations,
which occur for both pressure and electric potential
in commonly used algorithms for MHD flows at low
magnetic Reynolds numbers. Low numerical dissi-
pation in combination with temporal and spatial dis-
cretisation factors can evoke checkerboarding. Allow-
ing some numerical dissipation counter-acts the prob-
lem, however, this should be minimised as much as

possible. By quantifying the severity of the checker-
board problem during run-time, and using this value
in a negative feedback mechanism through predic-
tor fields, the checkerboard problem is mitigated only
when it arises, and with minimal numerical dissipa-
tion.

The turbulent duct flow cases show the perfor-
mance of the solver in a three-dimensional case in
which any numerical dissipation can greatly affect the
resulting flow statistics. MHD duct flow cases with
insulated and conductive boundary conditions were
used to study the accuracy of the solvers, by calculat-
ing the turbulent kinetic energy budgets. The results
show that a non-symmetry-preserving method without
any treatment for checkerboarding is not able to accu-
rately generate the expected turbulent flow on skew
meshes, in some cases resulting in a laminarised flow
profile. The tendency to evoke checkerboarding on
skew meshes, which can further deteriorate the flow
statistics, is diminished by applying a dynamic predic-
tor value, while at the same time offering an accurate
solution.

The symmetry-preserving discretisation method,
as well as the checkerboard quantification method
both show their usefulness in MHD flows at low mag-
netic Reynolds numbers. The usefulness for the dy-
namic electric potential predictor field was more dif-
ficult to demonstrate, however, as this field did not
show much variance in the levels of checkerboarding.
Test cases which are known to develop more fluctu-
ating charge density fields could be useful for this,
as they might require a more dynamically changing
electric potential field, which could be more prone to
the checkerboard problem. Examining this, alongside
other possible applications and feed-back mechanisms
of the checkerboard coefficient will be the focus of fu-
ture work.
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