
AN UNCONDITIONALLY STABLE, ENERGY PRESERVING METHOD FOR MAGNETOHYDRODYNAMICS

J.A. Hopman, J. Rigola, F.X. Trias

<u>D. Santos</u>

Motivation

MagnetoHydroDynamic (MHD) flows for Nuclear Fusion

Motivation

MagnetoHydroDynamic (MHD) flows for Nuclear Fusion

-High Hartmann number,

$$Ha = LB_0 \sqrt{\frac{\sigma_0}{\rho_0 \nu}}$$

Motivation

MagnetoHydroDynamic (MHD) flows for Nuclear Fusion

-High Hartmann number,

$$Ha = LB_0 \sqrt{\frac{\sigma_0}{\rho_0 \nu}}$$
$$Re_m = \sigma \mu Lu_0 \ll 1$$

-Low magnetic Reynolds number,

$$Re_m = \sigma \mu L u_0 \ll 1$$

Challenges

Complex geometries

Balancing Lorentz force & pressure drop

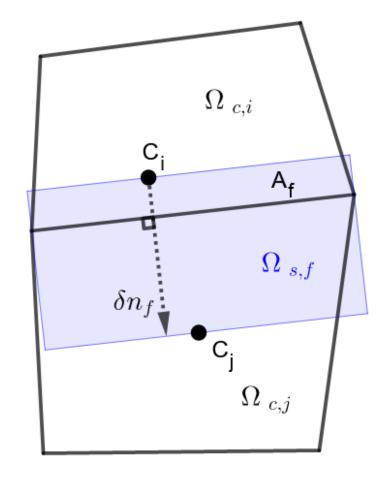
Challenges

Complex geometries

→ Collocated grids

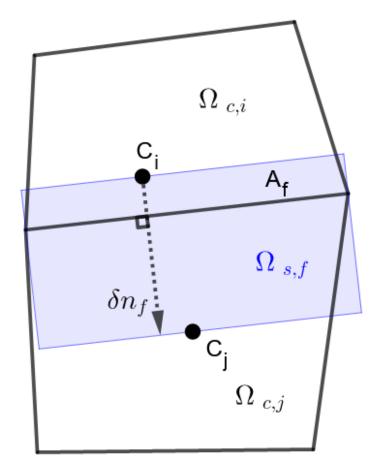
Balancing Lorentz force & pressure drop

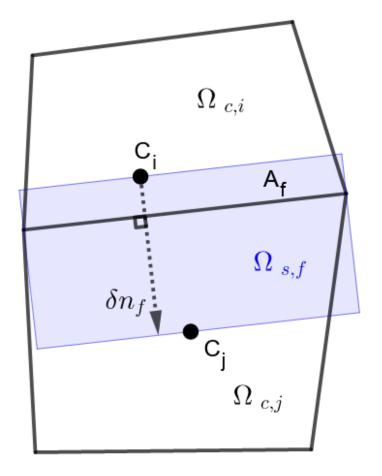
Challenges

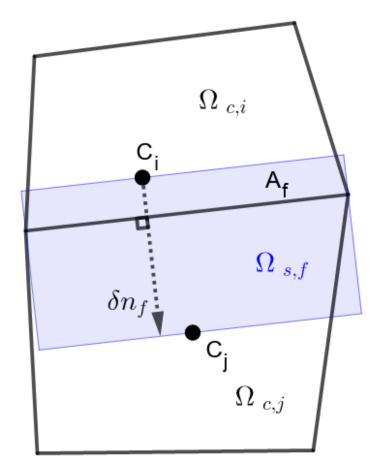

Complex geometries

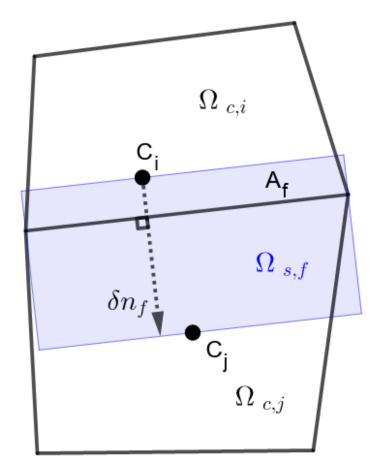
→ Collocated grids

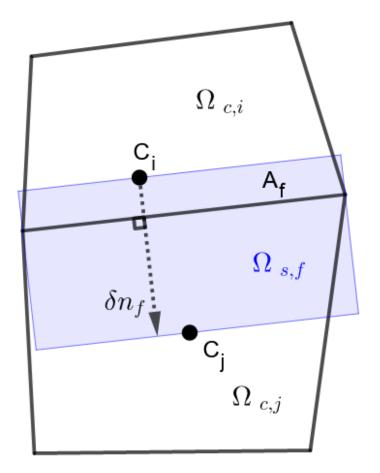
Balancing Lorentz force & pressure drop

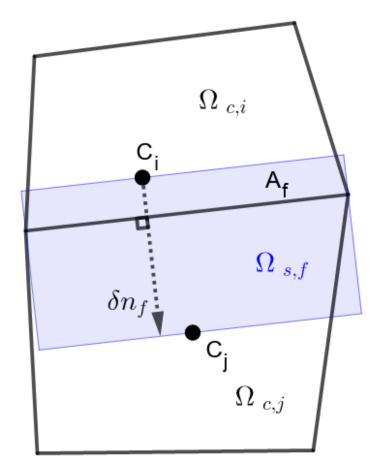


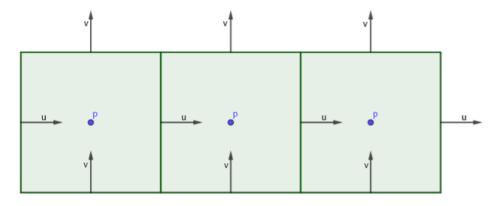

1. Projected gradient distances


- 1. Projected gradient distances
- 2. Consistent Div, Grad, Lap

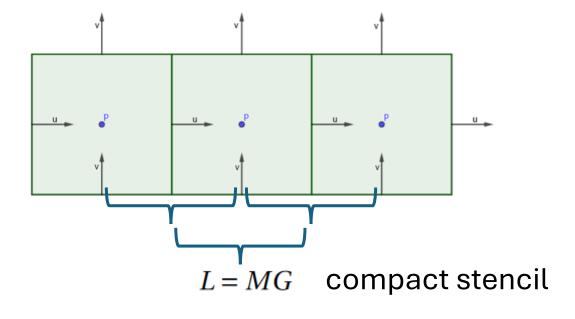

- 1. Projected gradient distances
- 2. Consistent Div, Grad, Lap
- 3. Midpoint interpolation in $C(\mathbf{u}_s)$

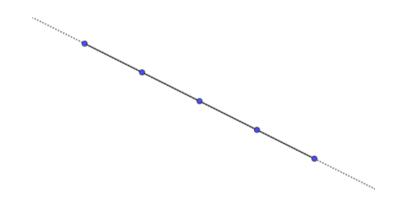

- 1. Projected gradient distances
- 2. Consistent Div, Grad, Lap
- 3. Midpoint interpolation in $C(\mathbf{u}_s)$
- 4. Volumetric interpolation

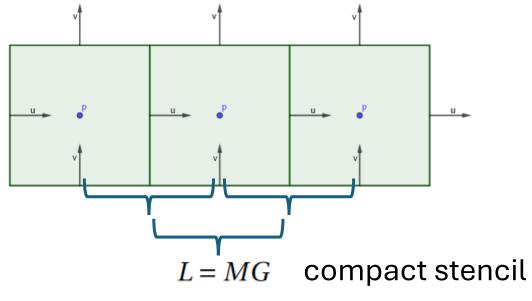

- 1. Projected gradient distances
- 2. Consistent Div, Grad, Lap
- 3. Midpoint interpolation in $C(\mathbf{u}_s)$
- 4. Volumetric interpolation
 - Flux term of Poisson equation

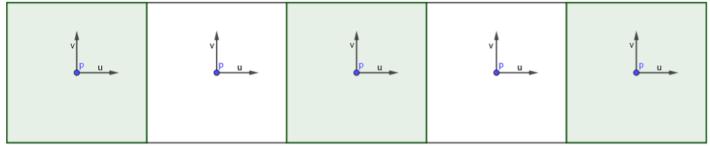


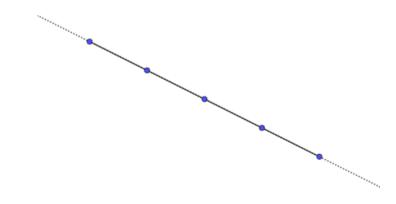
- 1. Projected gradient distances
- 2. Consistent Div, Grad, Lap
- 3. Midpoint interpolation in $C(\mathbf{u}_s)$
- 4. Volumetric interpolation
 - Flux term of Poisson equation
 - Correction term after Poisson

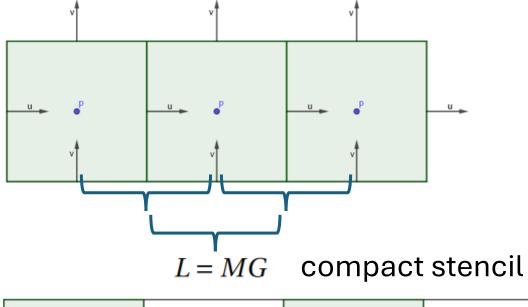


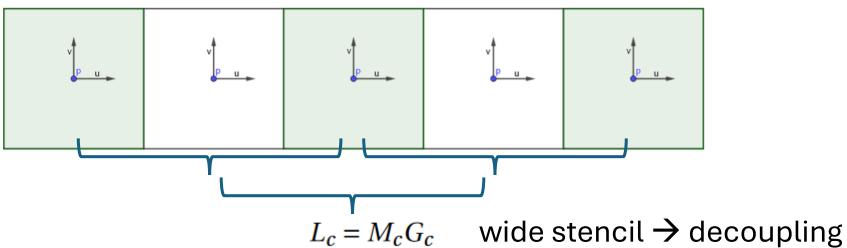


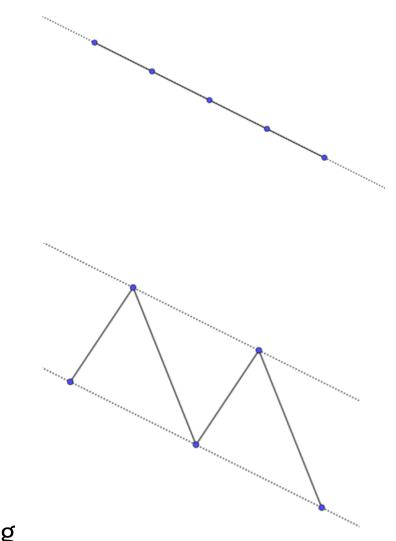


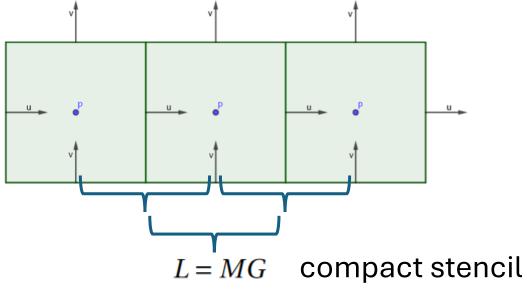


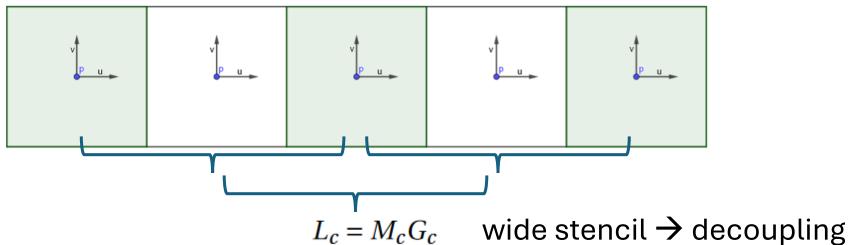


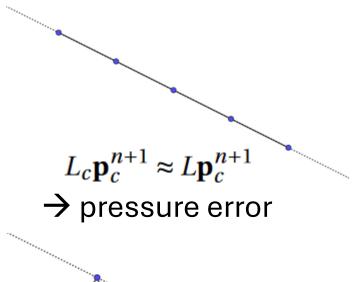












$$\mathbf{u}_c^{p*} = \mathbf{u}_c^p - G_c \tilde{\mathbf{p}}_c^p$$

$$\mathbf{u}_c^{p*} = \mathbf{u}_c^p - G_c \tilde{\mathbf{p}}_c^p$$

$$L\tilde{\mathbf{p}}_c' = M_c \mathbf{u}_c^{p*} = M_c \mathbf{u}_c^p - L_c \tilde{\mathbf{p}}_c^p$$

$$\mathbf{u}_{c}^{p*} = \mathbf{u}_{c}^{p} - G_{c}\tilde{\mathbf{p}}_{c}^{p}$$

$$L\tilde{\mathbf{p}}_{c}' = M_{c}\mathbf{u}_{c}^{p*} = M_{c}\mathbf{u}_{c}^{p} - L_{c}\tilde{\mathbf{p}}_{c}^{p}$$

$$\tilde{\mathbf{p}}_{c}^{n+1} = \tilde{\mathbf{p}}_{c}^{p} + \tilde{\mathbf{p}}_{c}'$$

$$\mathbf{u}_{c}^{p*} = \mathbf{u}_{c}^{p} - G_{c}\tilde{\mathbf{p}}_{c}^{p}$$

$$L\tilde{\mathbf{p}}_{c}' = M_{c}\mathbf{u}_{c}^{p*} = M_{c}\mathbf{u}_{c}^{p} - L_{c}\tilde{\mathbf{p}}_{c}^{p}$$

$$\tilde{\mathbf{p}}_{c}^{n+1} = \tilde{\mathbf{p}}_{c}^{p} + \tilde{\mathbf{p}}_{c}'$$

Lowering pressure error $\sim (L-L_c) \tilde{\mathbf{p}}_c'$

$$\mathbf{u}_{c}^{p*} = \mathbf{u}_{c}^{p} - G_{c}\tilde{\mathbf{p}}_{c}^{p}$$

$$L\tilde{\mathbf{p}}_{c}' = M_{c}\mathbf{u}_{c}^{p*} = M_{c}\mathbf{u}_{c}^{p} - L_{c}\tilde{\mathbf{p}}_{c}^{p}$$

$$\tilde{\mathbf{p}}_{c}^{n+1} = \tilde{\mathbf{p}}_{c}^{p} + \tilde{\mathbf{p}}_{c}'$$

Lowering pressure error $\sim (L-L_c) \tilde{\mathbf{p}}_c'$

Larger part on $L_c \rightarrow More$ prone to checkerboarding

Induction-less approximation

Formulation of second Poisson equation

$$\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla) \mathbf{u} = \nu \nabla^2 \mathbf{u} - \nabla (p/\rho) + (\mathbf{J} \times \mathbf{B}) / \rho, \qquad \nabla \cdot \mathbf{u} = 0,$$
$$\mathbf{J} = \sigma (-\nabla \phi + \mathbf{u} \times \mathbf{B}), \qquad \nabla \cdot \mathbf{J} = 0.$$

Induction-less approximation

Formulation of second Poisson equation

$$\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla) \mathbf{u} = \nu \nabla^2 \mathbf{u} - \nabla (p/\rho) + (\mathbf{J} \times \mathbf{B}) / \rho, \qquad \nabla \cdot \mathbf{u} = 0,$$

$$\mathbf{J} = \sigma (-\nabla \phi + \mathbf{u} \times \mathbf{B}), \qquad \nabla \cdot \mathbf{J} = 0.$$

$$\nabla^2 \phi = \nabla \cdot (\mathbf{u} \times \mathbf{B})$$

$$-\mathbf{u}_c^T \Omega G_c \mathbf{p}_c$$

$$-\mathbf{u}_c^T \Omega G_c \mathbf{p}_c = \mathbf{p}_c^T M_c \mathbf{u}_c$$

$$-\mathbf{u}_c^T \Omega G_c \mathbf{p}_c = \mathbf{p}_c^T M_c \mathbf{u}_c = \Delta t \mathbf{p}_c^T (L - L_c) \mathbf{p}_c$$

$$-\mathbf{u}_c^T \Omega G_c \mathbf{p}_c = \mathbf{p}_c^T M_c \mathbf{u}_c = \Delta t \mathbf{p}_c^T (L - L_c) \mathbf{p}_c \in [\Delta t \mathbf{p}_c^T L \mathbf{p}_c, 0]$$

Starting from the pressure budget term:

$$-\mathbf{u}_c^T \Omega G_c \mathbf{p}_c = \mathbf{p}_c^T M_c \mathbf{u}_c = \Delta t \mathbf{p}_c^T (L - L_c) \mathbf{p}_c \in [\Delta t \mathbf{p}_c^T L \mathbf{p}_c, 0]$$

$$C_{cb} = 1 - \frac{\mathbf{p}_c^T L_c \mathbf{p}_c}{\mathbf{p}_c^T L \mathbf{p}_c}$$

Starting from the pressure budget term:

$$-\mathbf{u}_c^T \Omega G_c \mathbf{p}_c = \mathbf{p}_c^T M_c \mathbf{u}_c = \Delta t \mathbf{p}_c^T (L - L_c) \mathbf{p}_c \in [\Delta t \mathbf{p}_c^T L \mathbf{p}_c, 0]$$

$$C_{cb} = 1 - \frac{\mathbf{p}_c^T L_c \mathbf{p}_c}{\mathbf{p}_c^T L \mathbf{p}_c} = 1 - \frac{\mathbf{p}_c^T G_c^T \Omega G_c \mathbf{p}_c}{\mathbf{p}_c^T G^T \Omega_s G \mathbf{p}_c}$$

Starting from the pressure budget term:

$$-\mathbf{u}_c^T \Omega G_c \mathbf{p}_c = \mathbf{p}_c^T M_c \mathbf{u}_c = \Delta t \mathbf{p}_c^T (L - L_c) \mathbf{p}_c \in [\Delta t \mathbf{p}_c^T L \mathbf{p}_c, 0]$$

$$C_{cb} = 1 - \frac{\mathbf{p}_c^T L_c \mathbf{p}_c}{\mathbf{p}_c^T L \mathbf{p}_c} = 1 - \frac{\mathbf{p}_c^T G_c^T \Omega G_c \mathbf{p}_c}{\mathbf{p}_c^T G^T \Omega_s G \mathbf{p}_c} = 1 - \frac{||G_c \mathbf{p}_c||}{||G \mathbf{p}_c||}$$

Starting from the pressure budget term:

$$-\mathbf{u}_c^T \Omega G_c \mathbf{p}_c = \mathbf{p}_c^T M_c \mathbf{u}_c = \Delta t \mathbf{p}_c^T (L - L_c) \mathbf{p}_c \in [\Delta t \mathbf{p}_c^T L \mathbf{p}_c, 0]$$

$$C_{cb} = 1 - \frac{\mathbf{p}_c^T L_c \mathbf{p}_c}{\mathbf{p}_c^T L \mathbf{p}_c} = 1 - \frac{\mathbf{p}_c^T G_c^T \Omega G_c \mathbf{p}_c}{\mathbf{p}_c^T G^T \Omega_s G \mathbf{p}_c} = 1 - \frac{||G_c \mathbf{p}_c||}{||G \mathbf{p}_c||} \in [0, 1] \begin{cases} 0, & \text{smooth} \\ 1, & \text{fully in } Ker(L_c) \end{cases}$$

Balance checkerboarding and accuracy

General predictor coefficient:

$$\theta_a = \frac{a_c^T L_c a_c}{a_c^T L a_c}$$

General predictor coefficient:

$$\theta_a = \frac{a_c^T L_c a_c}{a_c^T L a_c}$$

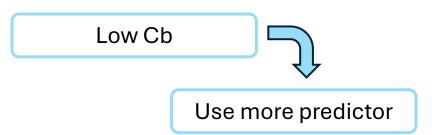
$$\mathbf{u}_c^{p*} = \mathbf{u}_c^p - \theta_p G_c \tilde{\mathbf{p}}_c^p$$
$$\phi_c^{p*} = \phi_c^p - \theta_\phi G_c \phi_c^p$$

General predictor coefficient:

$$\theta_a = \frac{a_c^T L_c a_c}{a_c^T L a_c}$$

Low Cb

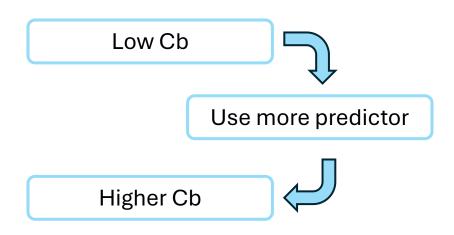
$$\mathbf{u}_c^{p*} = \mathbf{u}_c^p - \theta_p G_c \tilde{\mathbf{p}}_c^p$$
$$\phi_c^{p*} = \phi_c^p - \theta_\phi G_c \phi_c^p$$



General predictor coefficient:

$$\theta_a = \frac{a_c^T L_c a_c}{a_c^T L a_c}$$

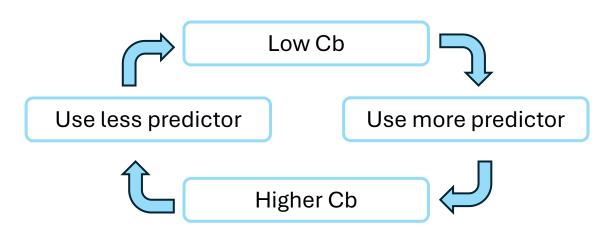
$$\mathbf{u}_c^{p*} = \mathbf{u}_c^p - \theta_p G_c \tilde{\mathbf{p}}_c^p$$
$$\phi_c^{p*} = \phi_c^p - \theta_\phi G_c \phi_c^p$$



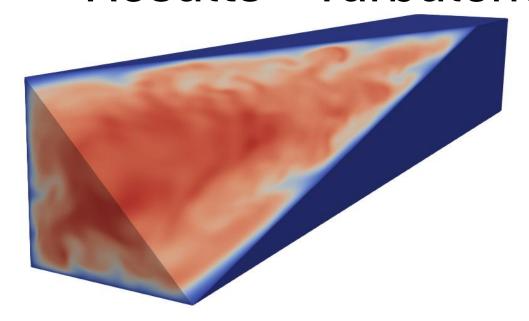
General predictor coefficient:

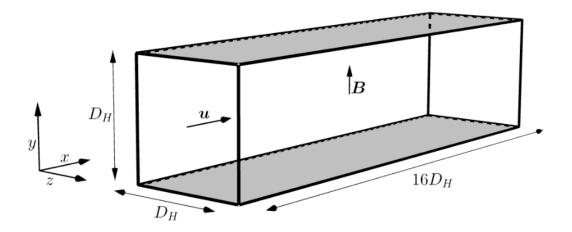
$$\theta_a = \frac{a_c^T L_c a_c}{a_c^T L a_c}$$

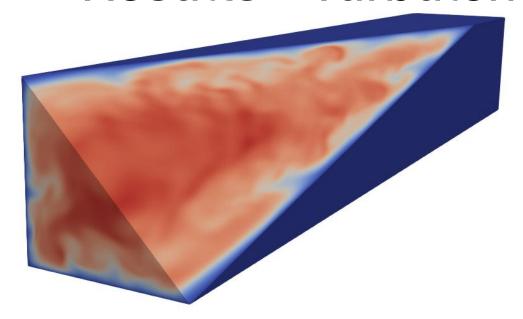
$$\mathbf{u}_c^{p*} = \mathbf{u}_c^p - \theta_p G_c \tilde{\mathbf{p}}_c^p$$
$$\phi_c^{p*} = \phi_c^p - \theta_\phi G_c \phi_c^p$$

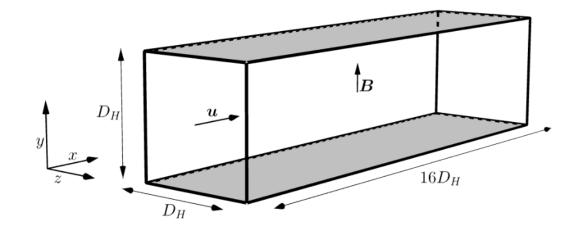


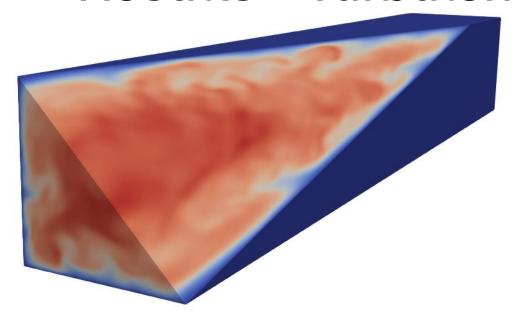
General predictor coefficient:

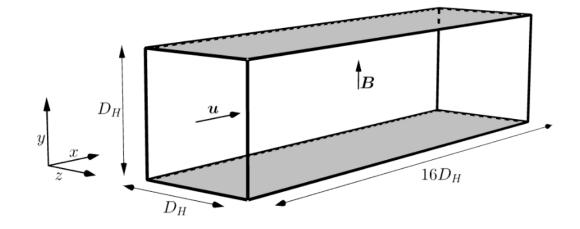

$$\theta_a = \frac{a_c^T L_c a_c}{a_c^T L a_c}$$


$$\mathbf{u}_c^{p*} = \mathbf{u}_c^p - \theta_p G_c \tilde{\mathbf{p}}_c^p$$
$$\phi_c^{p*} = \phi_c^p - \theta_\phi G_c \phi_c^p$$

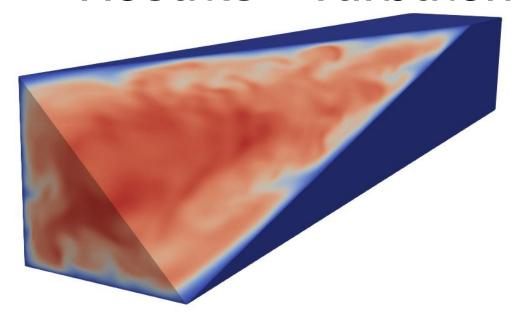


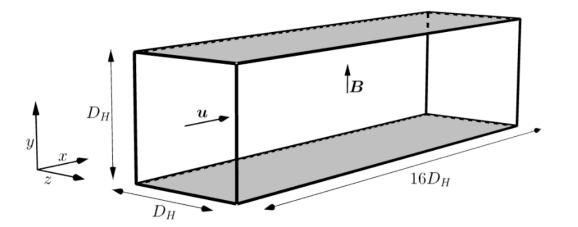




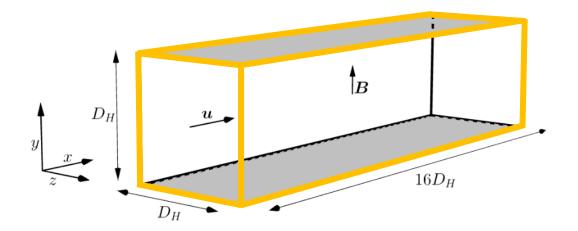


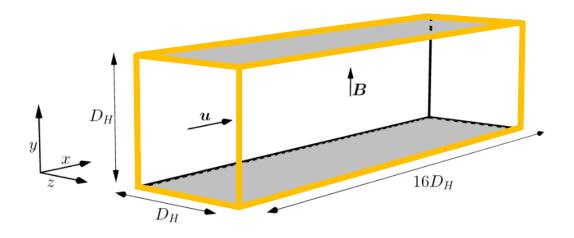
Hydrodynamic

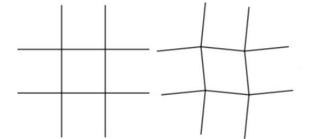


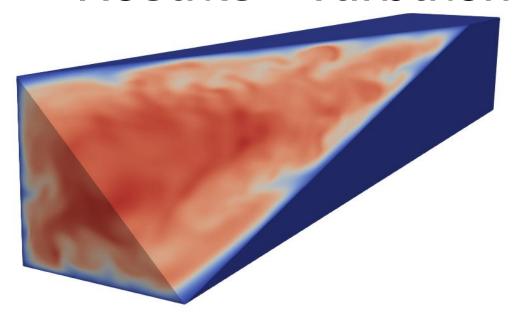

Hydrodynamic MHD

Hydrodynamic MHD Insulated (Shercliff)

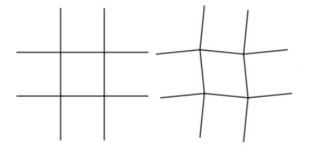


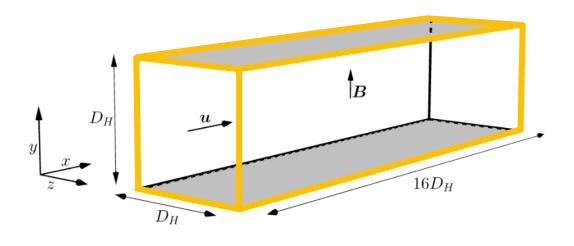

Hydrodynamic MHD Insulated (Shercliff) Conductive



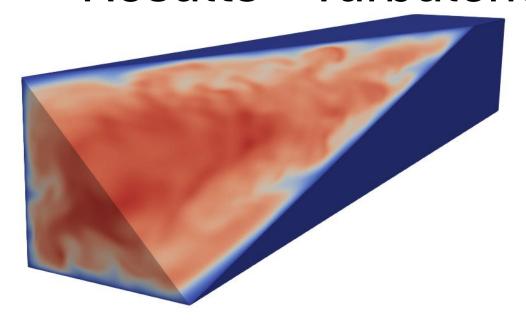


Hydrodynamic MHD Insulated (Shercliff) Conductive

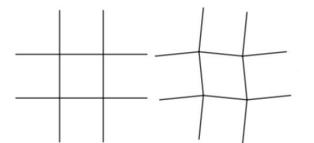


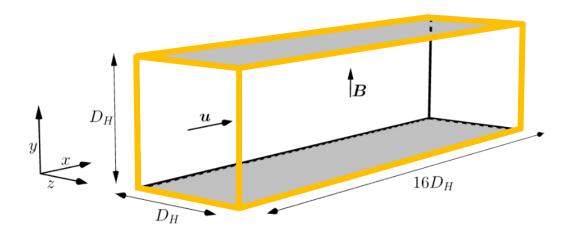


Insulated (Shercliff)
Conductive



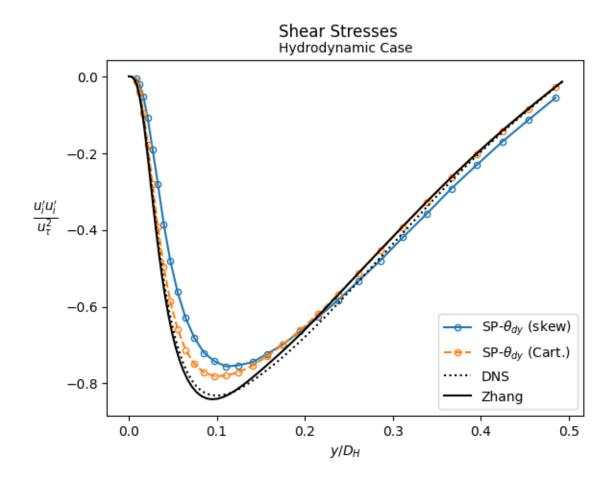
Mesh	L_x	N_x	$N_{\{y,z\}}$	$N_{tot}\left(\cdot 10^6 ight)$	Δx^+	$\Delta \{y,z\}_B^+$	$\Delta \{y,z\}_w^+$
H_{coarse}	$2\pi D_H$	160	64	0.66	11.8	9.1	0.9
H_{fine}	$2\pi D_H$	160	128	2.62	11.8	4.6	0.4
$\dot{M_{coarse}}$	$16D_H$	160	64	0.66	36.0	10.9	1.1
M_{fine}	$16D_H$	320	128	5.24	18.0	5.5	0.5



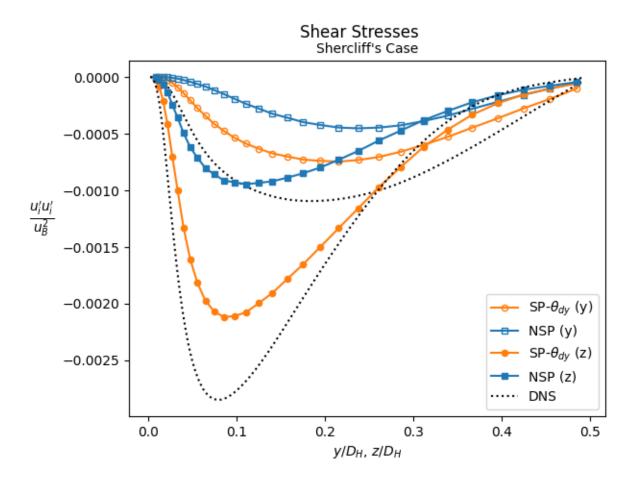


Hydrodynamic MHD

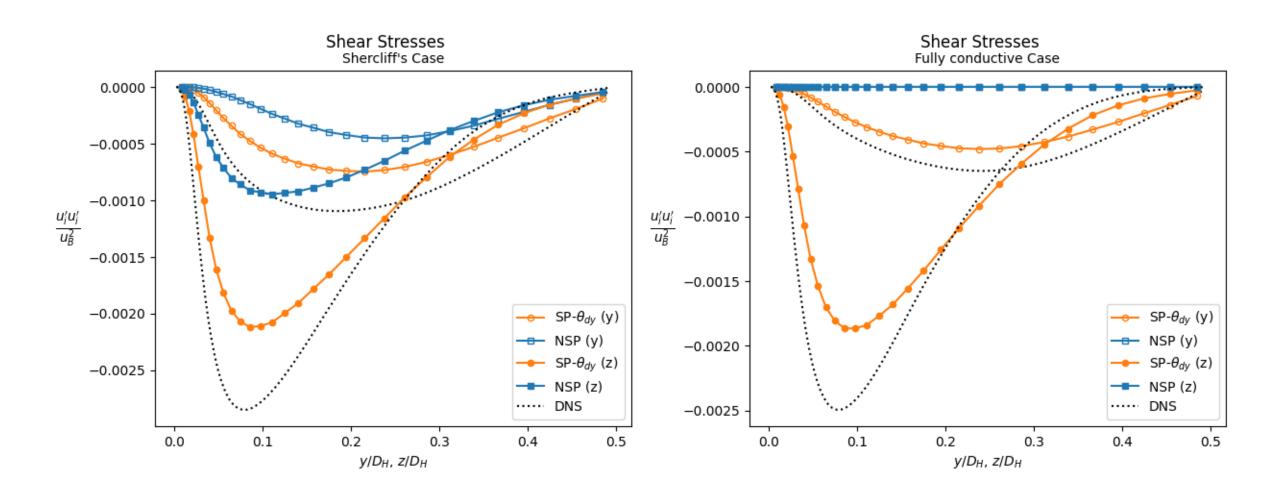
Insulated (Shercliff)
Conductive

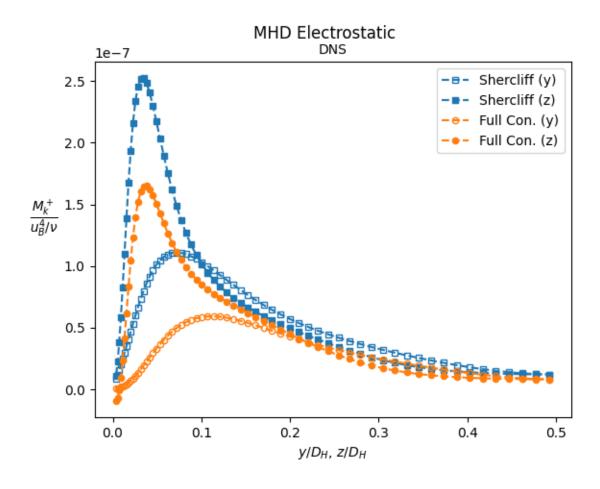

Mesh	L_x	N_x	$N_{\{y,z\}}$	$N_{tot}\left(\cdot 10^6 ight)$	Δx^+	$\Delta \{y,z\}_B^+$	$\Delta \{y,z\}_w^+$
H_{coarse}	$2\pi D_H$	160	64	0.66	11.8	9.1	0.9
H_{fine}	$2\pi D_H$	160	128	2.62	11.8	4.6	0.4
$\dot{M_{coarse}}$	$16D_H$	160	64	0.66	36.0	10.9	1.1
M_{fine}	$16D_H$	320	128	5.24	18.0	5.5	0.5

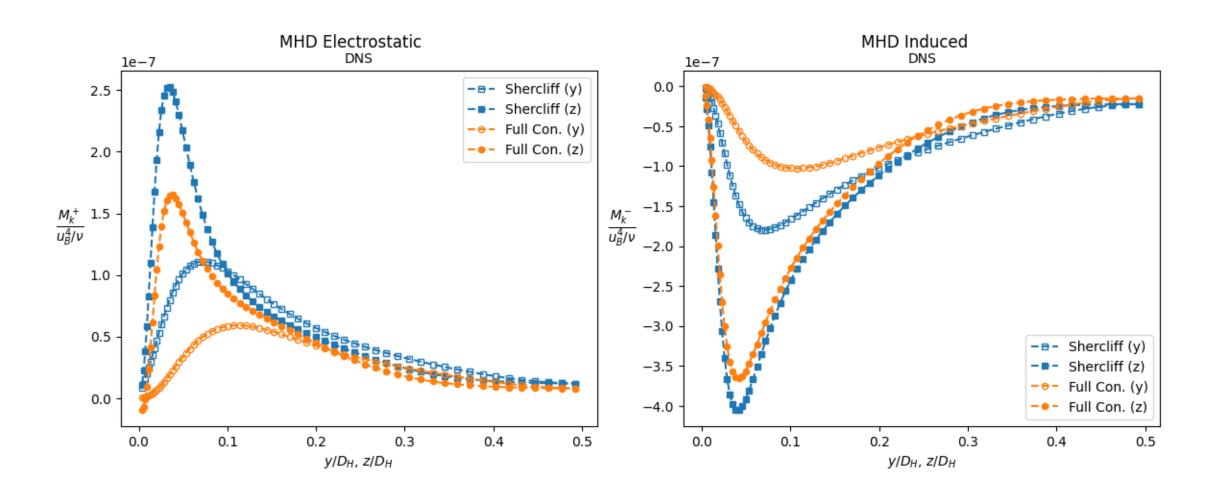
$$\underbrace{\frac{1}{\rho}\overline{u_{i}'(\mathbf{J}\times\mathbf{B})_{i}'}}_{\text{Net MHD work}} = \underbrace{-\frac{\sigma}{\rho}\overline{u_{i}'((\nabla\phi)\times\mathbf{B})_{i}'}}_{M_{k}^{\phi}} + \underbrace{\frac{\sigma}{\rho}\overline{u_{i}'(\mathbf{u}\times\mathbf{B}\times\mathbf{B})_{i}'}}_{M_{k}^{u}}$$



Results - Turbulent hydrodynamic duct flow







				$\text{SP-}\theta_{dy}$			NSP			
Case	Mesh	Cells	p_{cb}	$\phi_{cb}\left(\cdot 10^{-3}\right)$	$Re_{\{ au/B\}}$	p_{cb}	$\phi_{cb}\left(\cdot 10^{-3}\right)$	$Re_{\{ au/B\}}$		
Hydrodyn.	H_{fine}	Cart.	0.14	0	4314[B]	-	-	-		
"	H_{coarse}	Cart.	0.32	0	4536[B]	0.37	0	4389[B]		
"	H_{coarse}	skew.	0.49	0	4787[B]	0.80	0	4826[B]		
Shercliff	M_{fine}	Cart.	0.13	0.17	$368.4[\tau]$	-	-	-		
"	$\dot{M_{coarse}}$	\mathbf{skew}	0.50	0.64	$351.7[\tau]$	0.89	0.61	$328.8[\tau]$		
Full Con.	M_{fine}	Cart.	0.12	2.75	$364.3[\tau]$	-	-	-		
"	M_{coarse}	\mathbf{skew}	0.49	8.33	$351.2[\tau]$	0.87	3.62	$317.9[\tau]$		

				$\text{SP-}\theta_{dy}$			NSP			
Case	Mesh	Cells	p_{cb}	$\phi_{cb}\left(\cdot 10^{-3}\right)$	$Re_{\{ au/B\}}$	p_{cb}	$\phi_{cb}\left(\cdot 10^{-3} ight)$	$Re_{\{ au/B\}}$		
Hydrodyn.	H_{fine}	Cart.	0.14	0	4314[B]	-	-	-		
"	H_{coarse}	Cart.	0.32	0	4536[B]	0.37	0	4389[B]		
"	H_{coarse}	skew.	0.49	0	4787[B]	0.80	0	4826[B]		
Shercliff	M_{fine}	Cart.	0.13	0.17	$368.4[\tau]$	-	-	-		
"	$\dot{M_{coarse}}$	skew	0.50	0.64	$351.7[\tau]$	0.89	0.61	$328.8[\tau]$		
Full Con.	M_{fine}	Cart.	0.12	2.75	$364.3[\tau]$	-	-	-		
"	M_{coarse}	skew	0.49	8.33	$351.2[\tau]$	0.87	3.62	$317.9[\tau]$		

				$\text{SP-} heta_{dy}$			NSP			
Case	Mesh	Cells	p_{cb}	$\phi_{cb}\left(\cdot 10^{-3} ight)$	$Re_{\{ au/B\}}$	p_{cb}	$\phi_{cb}\left(\cdot 10^{-3} ight)$	$Re_{\{ au/B\}}$		
Hydrodyn.	H_{fine}	Cart.	0.14	0	4314[B]	-	-	-		
"	$\dot{H_{coarse}}$	Cart.	0.32	0	4536[B]	0.37	0	4389[B]		
"	H_{coarse}	skew.	0.49	0	4787[B]	0.80	0	4826[B]		
Shercliff	M_{fine}	Cart.	0.13	0.17	$368.4[\tau]$	-	-	-		
"	M_{coarse}	skew	0.50	0.64	$351.7[\tau]$	0.89	0.61	$328.8[\tau]$		
Full Con.	M_{fine}	Cart.	0.12	2.75	$364.3[\tau]$	-	-	-		
"	M_{coarse}	skew	0.49	8.33	$351.2[\tau]$	0.87	3.62	$317.9[\tau]$		

-Interpolation is essential factor in collocated methods

- -Interpolation is essential factor in collocated methods
- -Checkerboarding is an unwanted consequence of collocted methods

- -Interpolation is essential factor in collocated methods
- -Checkerboarding is an unwanted consequence of collocted methods
- -New method balances checkerboarding

- -Interpolation is essential factor in collocated methods
- -Checkerboarding is an unwanted consequence of collocted methods
- -New method balances checkerboarding
- -Symmetry preserving method provides stability