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1 Introduction

Within the framework of Computational Fluid Dy-
namics (CFD) simulations, the user usually needs to
make a trade-off between three different items: accu-
racy, physical fidelity and performance, without for-
getting the presence of stability, which will also be a
concern in turbulent simulations, as generally its ex-
plicit nature makes stable time-steps rather small to
preserve stability.

In terms of accuracy, any user would prefer using a
high-order discretization as it allows using a coarser
grid to obtain equivalent results, which indeed im-
proves the performance of the run. Nonetheless, the
presence of a general high-order discretization will
not preserve the symmetries present in the continu-
ous nature of the equations and thus the physical fi-
delity will be lost. On the other hand, using a clas-
sical second-order symmetry-preserving discretization
will preserve this physical fidelity that was previously
missing, yet to achieve good enough accuracy, a finer
grid will be needed, losing eventually performance.

Hence, the use of higher-order symmetry-
preserving discretizations would tackle the three
problems simultaneously, as it would eliminate (or at
least limit) the trade-off previously mentioned: the
simulation would have high-order accuracy while
maintaining the physical fidelity as the continuous
operators’ properties will be preserved. Moreover, a
coarser grid could be used maintaining the errors, thus
leading to improved performance.

Nonetheless, in some situations the grid size is de-
termined not by accuracy but by physical lengthscales,
such as in direct numerical solution (DNS) runs, in
which all scales should be resolved in order to solve
the flow properly. In these cases, a higher-order will
be more expensive than the classical second-order, as
matrices (or stencil-like operations) will be denser,
thus having a greater number of operations to be per-
formed, leading to increased wall-clock times.

In order to deal with this issue, this abstract
presents a general method to obtain a high-order
symmetry-preserving discretization together with a
method that, given the presence of repeateb matrix

block structures in the simulation, i.e. symmetries,
geometrical repetitions, parallel-in-time simulations,
etc., to improve the performance of the method which
will make the use of these high-order discretizations
lighter and faster.

2 High-order symmetry-preserving dis-
cretizations
Consider the 1D finite-volume discretization of the

diffusive term:
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where h is the grid spacing. It can be proved that this
second-order derivative is equivalent to box-filtering
the second-order derivative of the filtered ¢,
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which can be easily extended to a multidimensional
problem such that,

V2p = V2¢ + O(h?). 3)

By definition, any symmetric filter, such as the box

filter, is ¢ = ¢ — S—ZVZ(JS + O(h*), which applied to

Eq. (3), it allows improving the order of accuracy of
the second-order derivative as follows

V26 = V26 + V2§ + (V29) + O(h*), (@)

which corresponds to a second-order approximate de-
convolution and in the 1D case leads to the classical 5-
point fourth-order approximation of the second deriva-
tive.

From a discrete standpoint, the standard second-
order approximation to the Laplacian operator, L =
MG should be replaced by

L=(+RLI+R), (5)

where R is the discrete filter residual defined as
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being T, the cell-to-face incidence matrix. Eq. (5)
will eventually lead to a negative semi-definite sym-
metric matrix that preserves the continuous property of
the Laplacian operator. Hence, the high-order Lapla-
cian operator may be built as

L=MG=-G"Q,G, (7
being G = G(I + R), M = (I + R)M, and recall-
ing that G = —Q; M7, and Q; a diagonal matrix

containing the staggered volumes. This interpolation,
given a 1D case, will lead to a 7-point fourth-order
Laplacian discretization.

With regards to the convective term, the same exact
procedure is applied, where the high-order convective
operator is defined as follows,

C=(I+R)CU+R), ®)

where C' is the standard second-order symmetry-
preserving convective operator defined as C =
MUELII, being U, the diagonal matrix containing the
velocities at the faces, and IT = 1|T.,] is the standard
cell-to-face mid-point interpolation. The reader is re-
ferred to Trias et al. (2024) for details in the construc-
tion of each operator. Introducing then the definition
for the convective term to Eq. (8), the high-order dis-
crete form of the convective term can be obtained,

C = MU,II, )

where IT = II( + R). This interpolation, eventually,
will lead to 4-point, zero-diagonal, fourth-order con-
vective operator given a 1D case.

3  Matrix block structures: from SpMvV
to SpMM

As shown in the previous section, the matrices L
and C' will be denser than L and C, as the presence
of more points will end up generating sparse matri-
ces with more non-zeros per row. From a general
standpoint, this will make sparse matrix-vector prod-
ucts (SpMV) more expensive as the amount of data to
transfer will increase, plus the number of operations
to perform will increase as well. Hence, given a fixed
grid size, the time spent in a high-order SpMV will be
greater than in a second-order SpMV.

Nonetheless, under proper circumstances in which
repeated matrix block structures are present, those
can be used to reduce the amount of data to transfer
while preserving the obtention of results, transform-
ing SpMV to sparse matrix-matrix operations (SpMM).
These circumstances may be generated by the user in
cases in which multiple runs may be executed simulta-
neously with the same geometry, so that the operators
can be reused. This is the case of a parallel-in-time
setup (Krasnopolsky, 2018) or a multiple parameter

simulation (Tosi et al., 2022). Moreover, these block
structures appear naturally in the matrices, if arranged
correctly, in simulations in which symmetries or re-
peated geometries are present (Alsalti-Baldellou et al.,
2024).

Let us consider a parallel-in-time framework, in
which multiple simulations are run at the same time
in the same device. In terms of the incompressible
Navier-Stokes equations, these can be written as
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where D = v L. Note that in Eq. (10), the operators
are denoted without ~. Nonetheless, the definition is
general as it may be used for both second- or high-
order operators.

As it can be seen all simulations share the same
exact operators and thus, from a computational point-
of-view, it will be equivalent in terms of results to per-
form a SpMM in such a way that the matrix A is trans-
ferred only once instead of m-times.

() o

By reducing the number of data to be transferred
while maintaining the amount of operations to per-
form, the operational intensity of the kernel is in-
creased, which eventually leads to speed-up in the op-
eration. This speed-up will be bound by the ratio
of operational intensities between the SpMM and the
equivalent SpMV.

One of the parameters relevant in the computa-
tion of the operational intensities is the number of
non-zeros per row that the corresponding sparse matri-
ces have. Table 1 shows the comparison between the
classical second-order implementation and the current
high-order. This will indeed benefit the higher-order
schemes compared to the second-order, thus making
them more suitable for this transformation form SpMvV
to SpMM.

Table 1: Number of non-zeros per row for the divergence,
gradient, cell-to-face interpolator, Laplacian and
convective operators.

M M GU GU L L c¢ C

1D 2 4 2 4 3 05 2 4
2Dt 3 9 2 6 4 10 3 9
o2paved 4 16 2 8 5 13 4 12
3Dtet 4 16 2 8 5 17 4 16
3D 6 36 2 12 7 25 6 24




4 Preliminary results

Some runs have been performed in order to test
the performance of the SpMM compared to running
simulations with a single right-hand side. These runs
were performed under a turbulent planar channel flow
simulation at Re, = 180 and a grid of 1603, with
hyperbolic tangent refinement in the y direction with
v = 1.5. These have been performed using the in-
house code TermoFluids Algebraic with hpc? as the
mathematical engine and Chronos for the solution of
the Poisson equation, in 64 cores of a MareNostrum
5 General Purpose Partition node, which led to a load
per CPU of 64k cells. All simulations have been run
for 1 time unit, running 1, 2, 4, and 8 flow states si-
multaneously.

Results are shown in Fig. 1, where three different
set-ups have been tested: 7 non-zeros, 13 non-zeros
and 27 non-zeros per row. It can be seen in that case
that the performance obtained improves the bigger the
number of non-zeros per row, as the increase in arith-
metic intensity is greater, which leads to bigger speed-
ups compared to having a fewer number of non-zeros
per row.

S Concluding remarks

In this extended abstract a methodology to ex-
tend the order of accuracy for a symmetry-preserving
framework in a general geometry is presented and
the possibility to use high operational intensity algo-
rithms in order to improve the efficiency of the imple-
mentation is depicted, with application in geometries
with symmetries, repetitions; or in parallel-in-time set-
ups. The use of higher-order schemes in the frame-
work of exploiting repeated matrix structures is bene-
fitial as higher-order discrete operators generate denser
sparse matrices, e.g. there is a greater number of non-
zeros per row. This will generate a bigger growth of
operational intensity when incrementing the number
of right-hand sides, thus leading to greater speed-ups
in the SpMM kernel and, overall, in the whole itera-
tion and simulation. Moreover, the implementation of
this method together with testing in a repeated matrix
block structure framework is expected to be presented
in the conference.
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