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Abstract
This work presents a novel methodology for de-

veloping high-order symmetry-preserving discretiza-
tions of the Navier–Stokes equations. These schemes
overcome the classical trade-off between physical fi-
delity and numerical accuracy inherent in second-
order methods by preserving the mathematical sym-
metries of the continuous equations while achieving
fourth-order accuracy. The proposed operators lead
to denser sparse matrices, which, when coupled with
repeated matrix-block structures, enable the transfor-
mation of sparse matrix-vector products (SpMV) into
sparse matrix-matrix products (SpMM), substantially
increasing arithmetic intensity and overall computa-
tional performance. The approach is applied within
a projection method framework and tested in turbu-
lent channel flow simulations using the in-house Ter-
moFluids Algebraic code. Results demonstrate signif-
icant speed-ups across all projection stages, validat-
ing the applicability of the method for modern high-
performance computing architectures.

1 Introduction
Users from Computational Fluid Dynamics (CFD)

tools usually need to choose between multiple items:
robustness, accuracy, physical fidelity, performance,
etc. Thus, it is the user who, depending on the objec-
tive of the simulation, will decide where to put more
efforts in as well as where these efforts are not much
required.

In terms of accuracy, without taking anything else
in consideration, any user would prefer having high-
order discretization schemes that would allow having
coarser grids and thus better performance in the runs.
Nonetheless, generally higher-order schemes lead to
breaking the symmetries present in the continuous for-
mulation of the equations, eventually leading to un-
stable solutions unless some stabilization technique
is employed, and thus the physical fidelity will be
reduced notably. Classical second-order symmetry-
preserving schemes (the second-order definition in
Verstappen and Veldman (2003), Trias et al. (2014))
will indeed preserve these symmetries, at a cost of re-

quiring finer grids to obtain equivalent results, which
eventually will lead to reduced performance.

If higher-order symmetry-preserving schemes, i.e.
schemes that preserve the inherent continuous symme-
tries with a higher-than-second order of accuracy, were
used, this would tackle the three problems simultane-
ously and thus no trade-off camong accuracy, physical
fidelity and performance would not need to be consid-
ered. Hence, the simulation would benefit from the
higher-order schemes while preserving the mathemat-
ical structure raising from the continuous equations.

Moreover, having higher-order discretization
schemes lead to sparse matrices with a higher number
of non-zeros per row. According to Plana-Riu et al.
(2024), having denser matrices provides performance
benefits when exploiting repeated matrix block
structures. These techniques, firstly introduced by
Krasnopolsky (2018), arise with the goal of tackling
the problem that comes with the reduced memory
bandwidths from current supercomputers, i.e. their
peak performance is really high, yet CFD simulations
cannot extract their full potential as there is much
more data to transfer compared to the amount of
computations that need to be performed. According
to the roofline theory from Williams et al. (2008), this
corresponds to a low arithmetic intensity.

Therefore, the benefit of using these high-order
symmetry-preserving schemes is twofold. First of all,
it breaks the trade-off from physical fidelity and ac-
curacy that appears with the classical non-preserving
high-order schemes and the second-order symmetry-
preserving scheme as it allows preserving symmetries
with greater accuracy. On the other hand, the per-
formance gains in a parallel-in-time framework no-
tably increases given the denser operators from these
schemes, thus giving additional benefits without the
use of any additional resources.

2 Towards higher-order symmetry-
preserving discretizations

Considering a 1D finite-volume discretization of
the diffusive term, this reads as
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where h is the grid spacing. Considering a box filter
with filter length h,
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the filtered discretization reads
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Similarly, the partial first derivatives are dis-
cretized using a second-order approximation,
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which filtered counterparts follow similarly to the
second-order derivative,
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Therefore, the second-order finite-volume dis-
cretization corresponds to

∂2ϕ

∂x2

∣∣∣∣
xi

≈ ∂2ϕ̄

∂x2

∣∣∣∣∣
xi

, (6)

which can be extended to multidimensional problems
as

∇2ϕ = ∇2ϕ̄+O(h2). (7)

By definition, a box filter can be defined as ϕ =

ϕ̄+ϕ′ = ϕ̄− h2

24∇
2ϕ+O(h4). This can be applied to

Eq. (7), leading to

∇2ϕ = ∇2ϕ̄+∇2ϕ′ + (∇2ϕ̄)′ + (∇2ϕ′)′. (8)

Therefore, the order of accuracy of Eq. (7) can be
improved by introducing additional terms. This reads
as

∇2ϕ ≈ ∇2ϕ̄+∇2ϕ′ + (∇2ϕ̄)′ +O(h4). (9)

If this procedure is applied to the 1D case, it leads
to the 5-point fourth-order approximation of the sec-
ond derivative. Extending it to a discrete level, this
methodology can be applied to extend the classical
second-order approximation of the discrete Laplacian
L to a fourth-order approximation by

L̃ = (I +R)L(I +R), (10)

where I is the identity matrix of size n, being n the
number of nodes of the discrete domain, and R is the
discrete filter residual, which is defined as

R = − 1

24
TT
csTcs, (11)

where Tcs is the cell-to-face identity matrix. Accord-
ing to Verstappen and Veldman (2003), the diffusive
operator should correspond to a semi-negative defined
symmetric matrix, which is actually fulfilled by L̃.
Namely by definition in a symmetry-preserving frame-
work, L = MG. Therefore, if this is applied to Eq.
(10),

L̃ = M̃G̃ =︸︷︷︸
M̃=−G̃TΩs

−G̃TΩsG̃, (12)

where M̃ = (I +R)M , G̃ = G(I +R), and Ωs is
the diagonal matrix containing the staggered volumes
i associated to each face. Hence, the definition of the
high-order Laplacian actually preserves the duality of
the gradient and the divergence.

With regards to the convective term, its order of ac-
curacy can be improved from second- to fourth-order
in the same manner, i.e.

C̃ = (I +R)C(I +R), (13)

where C is the second-order symmetry-preserving
discretization of the convective term defined as
MUsΠ, where Us = diag(us) is a diagonal matrix
contaning the velocities normal to the faces, and Π
is the cell-to-face interpolator, which in a symmetry-
preserving framework corresponds to 1/2|Tcs|. Intro-
ducing it onto the high-order approximation, it reads

C̃ = M̃UsΠ̃, (14)

where Π̃ = Π(I +R). Therefore, these new operators
will indeed have a greater number of entries. These
sparsity patterns and number of non-zeros will depend
on the operator, the dimensionality of the problem as
well as the kind of mesh that is being used, i.e. hexahe-
dral or tetrahedral, for 3D implementations; squares or
triangles, for the 2D counterparts. Table 1 depicts the
number of non-zeros per row depending on all these
aforementioned parameters.

Application to a projection method
Projection methods, such as the fractional step

method or the PISO algorithm, apply their incom-
pressibility constraint making use of the Helmholtz-
Hodge theorem. Hence, it yields the Poisson equation
for pressure, pc,

Lpc = Mup
s , (15)



Table 1: Number of non-zeros per row for the divergence,
gradient, cell-to-face interpolator, Laplacian and
convective operators.

M M̃ G,Π G̃, Π̃ L L̃ C C̃

1D 2 4 2 4 3 5 2 4

2Dtri 3 9 2 6 4 10 3 9
2Dquad 4 16 2 8 5 13 4 12

3Dhex 6 36 2 12 7 51 6 50

which arises from the projection step us = up
s −Gpc.

If the high-order operators are considered, Eq. (15)
reads as

L̃p̃c = M̃up
s . (16)

This equation will arise from the projection step
ũs = up

s − G̃p̃c. Introducing the definitions for the
high-order operators and simplifying I + R, Eq. (16)
recovers

L(I +R)p̃c = Mup
s , (17)

from which is straightforward to obtain that the out-
come from the Poisson equation for both second- and
high-order schemes is going to be the same. Therefore,
the Laplacian used for the Poisson solution is going to
be the second-order given it is lighter.

3 Exploiting repeated block structures in
the Navier-Stokes equations

Current supercomputers have the greatest peak per-
formance in history. However, CFD simulations can-
not exploit the full potential as their memory band-
width limits the performance that can be extracted out
of the computer. According to the roofline model from
Williams et al. (2008), the maximum performance that
can be extracted in these situations corresponds to

π = βI, (18)

where π is the computer performance, β is the
memory bandwidth, and I corresponds to the arith-
metic intensity, defined as the ratio of computations
and data transferred. As β is fixed by the machine
used, this study aims at giving methods to increment
I .

In order to increment this arithmetic intensity, pre-
vious studies (Krasnopolsky (2018), Alsalti-Baldellou
et al. (2023), Plana-Riu et al. (2024)) focused their ef-
forts in, under circumstances where the matrices show
repeated block structures, playing with these blocks to
reduce the amount of data to transfer by transforming
the sparse matrix-vector products (SpMV) into sparse
matrix-matrix products (SpMM), and eventually im-
proving I .

Let us consider a sparse matrix A = Im ⊗ Ã ∈
Rsn×sm, where Ã ∈ Rn×m is a repeated block from
A. Consider s vectors x̃ ∈ Rm such that x =

(x̃1 x̃2 . . . x̃s)
T . Therefore, the outcome of the SpMV

Ax is going to be the same as the outcome of the
equivalent SpMM,

Ã(x̃1 x̃2 . . . x̃s). (19)

Namely by definition, the maximum possible
speed-up, Pm,SpMM will be related to the ratio of I ,
which for a SpMM of a matrix A with nc columns, nr

rows, nnz(A) non-zeros and s right-hand sides is de-
fined as follows,

ISpMM(m) =

=
(2nnz(A) + 1)s

12nnz(A) + 4(nr/s+ 1) + 8(nr + nc + s)
.

(20)
Therefore, the speed-up will have its upper bound

as

Pm =
ISpMM(m)

ISpMV
=

ISpMM(m)

ISpMM(1)
. (21)

A lower bound can be computed assuming zero
temporal locality when accessing the inpuc vector co-
efficients. This is introduced in Eq. (20) by replacing
8ncs by 8nnz(A)s.

For m → ∞, the upper-bound ends up depending
on the number of non-zeros per row. For square matri-
ces, i.e. nr = nc,

lim
s→∞

Pm ≈
nr≫1

12nnz(A)/nr + 20

16
. (22)

Thus, high-order schemes such as those presented
in Section 2 will take a greater benefit given they are
denser matrices, i.e. they have a greater number of
non-zeros per row. Figure 1 gives a graphical example
on how this speed-up is obtained.

I

π

SpMV SpMM

β

Figure 1: Simplified version of a roofline model in which the
memory-bound (blue) and compute-bound (red)
regions are depicted. The goal of the present paper
is represented in pushing the arithmetic intensity I
towards the compute-bound zone.



A simple way to make these block structures ap-
pear is considering multiple parameter simulations.
Let a flow simulation with an arbitrary parameter of
which s values are of interest, with exact geometry
and mesh. Therefore, these cases will have identical
divergence, gradient and Laplacian operators, which
makes it possible to run all s simulations simultane-
ously. Following the notation from Trias et al. (2014),
the semi-discrete equations can be rewritten as

MUs = 0s, (23a)

Ω
dUc

dt
+MUsΠUc = DUc − ΩGcPc, (23b)

where Uc = (uc,1 uc,2 . . . uc,s) is the dense ma-
trix contaning the s rhs of the velocity field, Pc =
(pc,1 pc,2 . . . pc,s)

T is the equivalent for the pres-
sure field and Us is the velocity at the faces for the
s rhs. Note that in these circumstances, all SpMV are
converted to SpMM and therefore all relevant parame-
ters are being simulated simultaneously.

This way of expressing the Navier-Stokes equa-
tions, i.e. rewriting all the SpMV as SpMM, allows ex-
ploiting this potential performance benefit not only in
the solution of the Poisson equation as in Krasnopol-
sky (2018) but in the whole projection method itself.
Moreover, considering the bigger number of entries
that the higher-order schemes provide, as shown in Ta-
ble 1, the bigger the potential performance gains as
shown by Eq. (22).

Ensemble averaging of multiple flow states
An application where these repeated block struc-

tures appears naturally is in the ensemble averaging of
multiple flow states. Under certain conditions where
the statistically steady state fraction of a turbulent sim-
ulation can be considered ergodic, i.e., an ensemble
average of m different simulations is equivalent to the
time average of a single simulation (Tosi et al. (2022)).
Assuming that the time average of the single simu-
lation has been performed for TA time units after a
transition time of TT , the ensemble averaged relevant
quantities can be computed as

⟨ϕ⟩ = 1

m

m∑
i=1

1

TA/m

∫ TT+TA/m

TT

ϕ dt, (24)

where ϕ and ⟨ϕ⟩ are the relevant quantity and its en-
semble averaged counterpart, respectively. By running
these flow states simultaneously in the same device,
the repeated block structures will appear.

4 Numerical experiments
This section presents the numerical experiments

performed to assess the performance of the high-order
symmetry-preserving discretizations presented in Sec-
tion 2 and their application to the ensemble averaging
of multiple flow states. In order to test this perfor-
mance, a turbulent planar channel flow at a Reynolds

number of Reτ = 180 is considered, with a domain
size of 4πδ×2δ×4πδ/3. The used mesh corresponds
to a 128 × 128 × 128 Cartesian mesh, which cor-
responds to approximately 2.1 million nodes. These
simulations have been run in a single node of the JFF2
cluster, corresponding to 2x Intel Xeon 6230 proces-
sors, which sums up to 40 CPUs. Therefore, the gran-
ularity of the runs corresponds to 52428 cells per core,
which is equivalent to the strong scaling limit accord-
ing to Mosqueda-Otero et al. (2024). The simulations
have been run in an OpenMP environment, with 40
threads per run.

The high-order operators have been implemented
in the in-house CFD code, TermoFluids Algebraic
(tfa), in which the calculations are carried out using
the HPC2 framework, which allows the portability of
the code to different HPC architectures, and allows
converting SpMVs into SpMMs. Therefore, the perfor-
mance gains from the high-order symmetry-preserving
operators in a repeated matrix-block structure can be
assessed.

The relevant metric in this performance compari-
son will be the speed-up Pm, which is defined as

Pm =
mTSpMV
TSpMM,m

, (25)

where TSpMV is the time spent in the SpMV and TSpMM,m
is the time spent in the SpMM with m right-hand
sides. Therefore, the speed-ups for the SpMV opera-
tions originating from the divergence, gradient, and in-
terpolator operators are going to be computed, as their
sparsity patterns differ from one another. Moreover,
the speed-ups for the whole diffusive and convective
operators are going to be computed similarly to Eq.
(25), as it is in the whole of these operations that the
overall speed-up is going to translate to the whole iter-
ation.

Figure 2 (top) shows the obtained speed-ups for
the used operators in the simulations according to the
application of the method in a projection method. It
shows that the speed-ups for the high-order methods
are generally greater than the second-order gradient,
which is present as it is required as well for the pro-
jection step. Note that the high-order gradient appears
multiplying the velocity field, as the implementation
of the diffusive term is performed as M̃G̃, given that
it makes the implementation flexible for LES simula-
tions. As shown in Eq. (22), a matrix with a greater
number of non-zeros per row will eventually lead to
a greater potential speed-up. Therefore, as the high-
order divergence, M̃ has a greater number of non-
zeros per row (in the 3D hexahedral case, 36 non-zeros
per row) compared to the high-order gradient and in-
terpolator, which in the hexahedral case have 12 non-
zeros per row, the shown speed-up is greater for the
divergence operator than for the gradient and interpo-
lator, which behave equally as their sparsity pattern is
identical.
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Figure 2: Speed-up Pm for the SpMM of the used operators
in the high-order framework: the high-order diver-
gence, gradient, interpolator (top). Speed-up Pm

for the whole diffusive and convective operators
(bottom).

With regards to the whole diffusive and convec-
tive operators, Figure 2 (bottom) shows that the com-
putation of these terms, which are not only based on
SpMVs but also other operations such as elementwise
vector products (axty), have speed-ups which even-
tually translate to the whole iteration. Note that the
translation form SpMV to SpMM is also applied in
the numerical solution of the Poisson equation, which
highly relies on sparse matrix-vector products and thus
a big speed-up is also obtained there. The perfor-
mance benefits from this SpMM-based Poisson solver
are shown in Plana-Riu et al. (2024) for the classical
second-order discretization, which is the one used in
the present methodology.

In comparison, Figure 3 shows the speed-ups ob-
tained for the second-order symmetry-preserving dis-
cretizations. While the benefit obtained in the indi-
vidual operators is around a 4% and 16% with the
largest number of right-hand sides for the divergence
and gradient operators, respectively, the benefit ob-
tained in the whole diffusive and convective opera-
tors corresponds to a 33% and 6% for the diffusive
and convective terms, respectively. These speed-up

figures thus take into consideration also the other op-
erations required in the computation of these terms.
Note, moreover, that the trends for the speed-ups in the
second-order operators show that the speed-up tends to
saturate, while for the higher-order counterparts, the
speed-up is still increasing. This highlights the fact
that for denser matrices, a bigger number of right-hand
sides can be exploited, leading to greater speed-ups.
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Figure 3: Speed-up Pm for the SpMM of the used operators
in the second-order framework: the second-order
divergence, gradient, interpolator (top). Speed-up
Pm for the whole diffusive and convective opera-
tors (bottom).

Therefore, using these high-order symmetry-
preserving discretizations leads to a performance ben-
efit throughout the whole projection method stages:
in the computation of the predictor velocity with the
computation of the diffusive and convective terms, in
the numerical solution of the Poisson equation, and
in the projection of the predictor velocity using the
pressure field. Thus, bigger performance gains com-
pared to those from Krasnopolsky (2018) and Plana-
Riu et al. (2024) are expected, as the SpMM is applied
throughout the whole simulation, and the gains are in-
creased in the computation of the predictor velocity
given the denser operators arising from the high-order
discretizations.



5 Conclusions
This work presents a methodology to obtain

high-order symmetry-preserving discretizations of the
Navier-Stokes equations which tackle the trade-off
between physical fidelity and accuracy that appears
with the classical second-order symmetry-preserving
schemes, where the preservation of the continuous
symmetries leads to a reduced order of accuracy.
The high-order discretizations presented are based on
the classical second-order symmetry-preserving dis-
cretizations, which are extended to a fourth-order ac-
curacy by introducing the higher-order residuals from
the box filter.

As an application example, these high-order dis-
cretizations are applied to a projection method, where
the methodology leads to having this increased order
of accuracy while preserving the second-order oper-
ators for the numerical solution of the Poisson equa-
tion. Therefore, with the ultimate goal of higher-order
schemes, which corresponds to having coarser grids
for the same accuracy, the solution of the Poisson
equation is going to be lighter, which is a benefit for
the performance of the whole projection method, as
it is well-known that the Poisson equation is the most
expensive part of any incompressible flow simulation.

These high-order schemes lead therefore to denser
operators, which has been shown to lead to perfor-
mance benefits if repeated block structures in the op-
erators are present and exploited. This is exempli-
fied in the present work by considering multiple flow
states run simultaneously, which implicitly leads to
these repeated block structures and thus it allows con-
verting the sparse matrix-vector products (SpMV) into
sparse matrix-matrix products (SpMM), leading to in-
cremented arithmetic intensities and thus performance
benefits in these products. Figure 2 shows the ob-
tained speed-ups for the SpMM of the high-order di-
vergence, gradient and interpolator operators, as well
as the second-order gradient operator.

This results in an incremented performance in the
computation of both diffusive and convective terms
as shown in Figure 2 (bottom), which will have a
greater weight in the overall profiling of the projec-
tion method, as the high-order discretization will al-
low having a coarser grid for the Poisson equation.
Therefore, increasing the performance in these terms
will lead to a greater performance benefit in the over-
all simulation.

The obtained results align with the theoretical ex-
pectations from Eq. (22), which states that the denser
the sparse matrix, the greater the potential speed-up
that can be obtained from the conversion of the SpMV
into SpMM.
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and Verstappen, R. W. C. P. (2014). Symmetry-preserving
discretization of Navier-Stokes equations on collocated un-
structured grids. Journal of Computational Physics, 258,
246–267.

Verstappen, R. W. C. P., and Veldman, A. E. P. (2003).
Symmetry-preserving discretization of turbulent flow. Jour-
nal of Computational Physics, 187(1), 343–368.

Williams, S., Waterman, A., and Patterson, D. (2009).
Roofline: An insightful visual performance model for mul-
ticore architectures. Communications of the ACM, 52(4),
65–76.


