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Introduction

Given a 1D domain discretized with N cells, a second-order FV discretization leads to...

Fidelity Accuracy

High-order symmetry-preserving


D11 D12 0 · · · · · · 0 D1N

D21 D22 D23 · · · · · · 0 0
0 D32 D33 D34 · · · 0 0
...

...
...

...
...

...
...

DN1 0 · · · · · · 0 DN,N−1 DN,N



High-order discretizations lead to denser matrices

For a given mesh, more expensive linear algebra operations.

Is there any way to exploit this?
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Introduction

Given a 1D domain discretized with N cells, a fourth-order FV discretization leads to...

Fidelity Accuracy

High-order symmetry-preserving
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Towards high-order symmetry-preserving discretizations
Second-order symmetry-preserving discretizations

The second-order symmetry-preserving discretization of the 1D diffusion operator is
constructed as:

∂2ϕ

∂x2

∣∣∣∣
xi

=
1

h

(
∂ϕ

∂x

∣∣∣∣
xi+1/2

− ∂ϕ

∂x

∣∣∣∣
xi−1/2

)
+O(h2) =

∂2ϕ̄

∂x2

∣∣∣∣
xi

+O(h2)

Interpretation

The second-order approximation of the second derivative can be interpreted as applying a box
filter to the second derivative.

Box filter with length h

ϕ =
1

h

∫ x+h/2

x−h/2

ϕ dx ϕ = ϕ̄+
h2

24

∂2ϕ

∂x2
+O(h4)
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Towards high-order symmetry-preserving discretizations
Fourth-order symmetry-preserving discretizations

According to Trias et al. 1, this box filter can be applied in such a way that

∂2ϕ

∂x2
≈ ∂2ϕ̄

∂x2
+

∂2ϕ′

∂x2
+

(
∂2ϕ̄

∂x2

)′

+

(
∂2ϕ′

∂x2

)′

+O(h4)

Extension to multiple dimensions

∇2ϕ ≈ ∇2ϕ̄+∇2ϕ′ +
(
∇2ϕ̄

)′
+
(
∇2ϕ′)′ +O(h4)

Extension to discrete formulation

L̃ = L+ LR + RL+ RLR = (I + R)L(I + R)

1Trias et al., 2024, Symmetry-preserving approximate deconvolutions. On: 9th European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS
2024), Lisbon, Portugal, 3-7 June 2024.
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Higher-order symmetry-preserving discretizations
Obtention of M, G, Π, C

Second-order diffusive operator

L = MG

With this definition, M̃ and G̃ can be obtained
from L̃ as:

Fourth-order diffusive operator

L̃ = M̃G̃

M̃ = (I + R)M

G̃ = G (I + R)

Second-order convective operator

C = MUsΠ

Similarly, C̃ = (I + R)C (I + R). With this
definition, M̃, Π̃ can be obtained from C̃ as:

Fourth-order convective operator

C̃ = M̃UsΠ̃

M̃ = (I + R)M

Π̃ = Π(I + R)
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Higher-order symmetry-preserving discretizations

××
×
×

M: 6 entries

× ×

G ,Π: 2 entries
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Higher-order symmetry-preserving discretizations

××
×
×

M̃: ? entries

× ×

G̃ , Π̃: ? entries
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Higher-order symmetry-preserving discretizations

××
×
×

×
×
×

×
×
×

×
×

×
×

×

×

M̃: 16 entries

× × ××
×

×

×

×

G̃ , Π̃: 8 entries
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Higher-order symmetry-preserving discretizations

M M̃ G ,Π G̃ , Π̃ L L̃ C C̃

1D 2 4 2 4 3 5 2 4

2Dtri 3 9 2 6 4 19 3 18
2Dquad 4 16 2 8 5 25 4 24

3Dhex 6 36 2 12 7 63 6 62
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Application to a projection method

Incompressibility constraint in projection methods

Lpc = Mupc

Extending to fourth-order symmetry-preserving discretizations

L̃p̃c = M̃ũpc

where x̃ approximates x with fourth-order accuracy: x = (I + R)x̃.
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Application to a projection method

Incompressibility constraint in projection methods

Lpc = Mupc

Extending to fourth-order symmetry-preserving discretizations

L̃p̃c = M̃ũpc

where x̃ approximates x with fourth-order accuracy: x = (I + R)x̃.

Lpc = Mũpc

Outcome:

The Poisson equation does not change when using fourth-order symmetry-preserving
discretizations.
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Exploiting repeated matrix-block structures

Roofline model2

π = βI

π: performance

β: memory bandwidth

I : arithmetic intensity, flops per byte

Ax =︸︷︷︸
A=I2⊗Ã

(
Ã 0

0 Ã

)(
x1
x2

)
︸ ︷︷ ︸

SpMV

I

π
β

2Williams et al., 2009, Roofline: an insightful visual performance model for multicore architectures, Communications of the ACM 52
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Exploiting repeated matrix-block structures

Roofline model2

π = βI

π: performance

β: memory bandwidth

I : arithmetic intensity, flops per byte

Ax =︸︷︷︸
A=I2⊗Ã

(
Ã 0

0 Ã

)(
x1
x2

)
︸ ︷︷ ︸

SpMV

≡ Ã
(
x1 x2

)︸ ︷︷ ︸
SpMM

I

π

SpMV SpMM

β

2Williams et al., 2009, Roofline: an insightful visual performance model for multicore architectures, Communications of the ACM 52
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Exploiting repeated matrix-block structures

Defining the optimal (upper-bound) speed-up as:

Pm =
πm

π1
=

ISpMM(m)

ISpMV

By definition,

ISpMM(m) =
(2nnz(A) + 1)m

12nnz(A) + 4(nr/m + 1) + 8(nr + nc +m)
,

Then,

Pm =
m[3(nnz(A) + nr + 1) + 2nc ]

3nnz(A) + (1 + 2m)(nr + 1) + 2mnc
.

What happens when m → ∞?

Assuming nr ≫ 1 and nc = nr ,

Upper-bound speed-up depends
on density of the matrix.

M M̃ G ,Π G̃ , Π̃

2Dquad 4 16 2 8

3Dhex 6 36 2 12
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Exploiting repeated matrix-block structures
Reformulating the Navier-Stokes equations

Semi-discrete incompressible Navier-Stokes equations

Mus = 0s , Ω
duc
dt

+MUsΠuc = Duc − ΩGcpc

Let Uc = [uc,1,uc,2, . . . ,uc,m] and Pc = [pc,1,pc,2, . . . ,pc,m]

(Block-structure) semi-discrete incompressible Navier-Stokes equations

MUs = 0s , Ω
dUc

dt
+MUsΠUc = DUc − ΩGcPc

e.g. domains with symmetries or repeated geometries3, parallel-in-time4 simulations, etc.

3Alsalti-Baldellou et al., 2024, A multigrid reduction framework for domains with symmetries, SIAM Journal on Scientific Computing 46

4Plana-Riu et al., 2025, Exploting repeated matrix-block strucutres for more efficient CFD on modern supercomputers, arXiv:2508.06710 [preprint]
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Exploiting repeated matrix-block structures
Ensemble averaging of multiple flow states

Required condition5

Ergodicity: time average = Ensemble average

Let ϕ be the variable of interest, then:

⟨ϕ⟩ = 1

TA

∫ TT+TA

TT

ϕ dt ≡ 1

m

m∑
i=1

1

TA/m

∫ TT+TA/m

TT

ϕi dt

0 50000 100000 150000 200000 250000 300000 350000

Iteration count

0

50

100

u
x

TATA/mTT

5Tosi et al., 2022, On the use of ensemble averaging techniques to accelerate the Uncertainty Quantification of CFD predictions in wind engineering, Journal of Wind
Engineering and Industrial Aerodynamics 228
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Numerical experiments
Turbulent planar channel flow: numerical setup

Domain: Lx × Ly × Lz = 4πδ × 2δ × 4πδ/3

Grid: Nx × Ny × Nz = 128× 128× 128 (2.1 million nodes)

Reτ = uτδ/ν = 180

Time integration: RK3 + AlgEigCD

Initial condition: parabolic profile + random perturbation

Boundary conditions: periodic in x and z , no-slip in y

Code: tfa+hpc2

Discretization strategies:

Second-order symmetry-preserving (SP2)
Fourth-order symmetry-preserving (SP4)

Objective of the test

Assess the speed-up improvements for the SP4 discretization compared to SP2 when exploiting
repeated matrix-block structures.
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Numerical experiments
Turbulent planar channel flow: M, G, Π results
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Numerical experiments
Turbulent planar channel flow: C, D results

2 4 6 8
Number of right-hand sides, m

1.0

1.2

1.4

1.6

1.8

2.0

P
m
,o

p
er

at
or

s

Duc

C(us)uc

2 4 6 8
Number of right-hand sides, m

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

P
m
,o

p
er

at
or

s

D̃uc

C̃(us)uc

16 / 19



Introduction High-order symmetry-preserving discretizations Exploiting repeated matrix-block structures Numerical experiments Conclusions

Numerical experiments
Turbulent planar channel flow: speed-up in the Poisson equation

Reminder

Using SP4 does not affect the definition of the Poisson equation
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Conclusions

High-order symmetry-preserving discretizations for collocated grids are presented.

Its construction does not require addition operators to those of a second-order
discretization.

Higher-order discretizations lead to denser matrices.

Additional costs of higher-order discretizations can be mitigated by exploiting repeated
matrix-block structures.

The diffusive operator obtains a 30% improvement in performance for m = 8 (compared
to SP2).

The convective operator obtains a 5% improvement in performance for m = 8 (compared
to SP2).

Repeated matrix-block structures can be exploited for the Poisson equation, with great
speed-ups.
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19 / 19


	Introduction
	High-order symmetry-preserving discretizations
	Exploiting repeated matrix-block structures
	Numerical experiments
	Conclusions

