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@ Given a 1D domain discretized with N cells, a second-order FV discretization leads to...
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Introduction

@ Given a 1D domain discretized with N cells, a fourth-order FV discretization leads to...
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High-order discretizations lead to denser matrices

@ For a given mesh, more expensive linear algebra operations.

@ Is there any way to exploit this?
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Towards high-order symmetry-preserving discretizations

Second-order symmetry-preserving discretizations

The second-order symmetry-preserving discretization of the 1D diffusion operator is

constructed as:
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Interpretation

The second-order approximation of the second derivative can be interpreted as applying a box
filter to the second derivative.

4/19



High-order symmetry-preserving discretizations
@00000

Towards high-order symmetry-preserving discretizations

Second-order symmetry-preserving discretizations

The second-order symmetry-preserving discretization of the 1D diffusion operator is
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Interpretation
The second-order approximation of the second derivative can be interpreted as applying a box
filter to the second derivative. )
Box filter with length h
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Towards high-order symmetry-preserving discretizations

Fourth-order symmetry-preserving discretizations

According to Trias et al. !, this box filter can be applied in such a way that

P ¢ Py (%6 | (P
5o~ e (50) + () o)

Extension to multiple dimensions

V26 = V26 + V2§ + (V20) + (V2¢') + O(h*)

Extension to discrete formulation

[=L+LR+RL+RLR=(I+R)L(I+R)

Trias et al., 2024, Symmetry-preserving approximate deconvolutions. On: Oth European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS
2024), Lisbon, Portugal, 3-7 June 2024.
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Higher-order symmetry-preserving discretizations

Obtention of M, G, I, C

Second-order diffusive operator
L= MG

With this definition, M and G can be obtained

from [ as:
Fourth-order diffusive operator
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Higher-order symmetry-preserving discretizations

Obtention of M, G, I, C

Second-order convective operator

Second-order diffusive operator
L= MG C = MU
Similarly, C = (/ + R)C(I + R). With this
definition, M, I1 can be obtained from C as:

With this definition, M and G can be obtained

from [ as:
Fourth-order convective operator

Fourth-order diffusive operator
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Higher-order symmetry-preserving discretizations

M: 6 entries G,I1: 2 entries
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Higher-order symmetry-preserving discretizations
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Higher-order symmetry-preserving discretizations

x | x
. X | X ex | x
X | x
M: 16 entries G,I1: 8 entries
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Higher-order symmetry-preserving discretizations

M M 6n 6 L [ ¢ €

1D 2 4 2 4 3 5 2 4
2D 3 9 2 6 4 19 3 18
2D 4 16 2 8 5 25 4 24
3D"* 6 36 2 12 7 63 6 62
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Application to a projection method

Incompressibility constraint in projection methods
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Application to a projection method

Incompressibility constraint in projection methods

Lp. = Mu?

Extending to fourth-order symmetry-preserving discretizations
[p. = MaP

where X approximates x with fourth-order accuracy: x = (/ + R)X.

9/19



High-order symmetry-preserving discretizations
[eYeleYelol )

Application to a projection method

Incompressibility constraint in projection methods

Lp. = Mu?

Extending to fourth-order symmetry-preserving discretizations
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where X approximates x with fourth-order accuracy: x = (/ + R)%.

(I + R)L(I + R)pe = (I + R)Mii®

9/19



High-order symmetry-preserving discretizations
[eYeleYelol )

Application to a projection method

Incompressibility constraint in projection methods

Lp. = Mu?

Extending to fourth-order symmetry-preserving discretizations
[p. = MaP
where X approximates x with fourth-order accuracy: x = (/ + R)%.

L(I + R)pe = Mii?

9/19



High-order symmetry-preserving discretizations
[eYeleYelol )

Application to a projection method

Incompressibility constraint in projection methods

Lp. = Mu?

Extending to fourth-order symmetry-preserving discretizations
Lp. = MaP
where X approximates x with fourth-order accuracy: x = (/ + R)%.

Lp. = MiP
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High-order symmetry-preserving discretizations
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Application to a projection method

Incompressibility constraint in projection methods

Lp. = Mu?

Extending to fourth-order symmetry-preserving discretizations
[p. = MaP

where X approximates x with fourth-order accuracy: x = (/ + R)X.

Lp. = MiiP

The Poisson equation does not change when using fourth-order symmetry-preserving
discretizations.
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Exploiting repeated matrix-block structures

Roofline model?

AN
=l
o 7: performance %
@ 3: memory bandwidth T
@ [: arithmetic intensity, flops per byte

Ax  — A 0 X1
\_/" O A X2 I

A=hQA

L 2

SpMv

2Williams et al., 2009, Roofline: an insightful visual performance model for multicore architectures, Communications of the ACM 52
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Exploiting repeated matrix-block structures

Roofline model?

r= Bl S
SpMV SpMM

e m: performance \ 'é

@ 3: memory bandwidth m :

@ [: arithmetic intensity, flops per byte I

o (5 3 () =20 x)

A=h®A SpMM

L 2

SpMv

2Williams et al., 2009, Roofline: an insightful visual performance model for multicore architectures, Communications of the ACM 52
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Exploiting repeated matrix-block structures

Defining the optimal (upper-bound) speed-up as:

Tm /SpMM(m)

Pm = =
m Ispmy
By definition,
(2nnz(A) + 1)m

/SpMM(m) = s

12nnz(A) + 4(n,/m + 1) + 8(n, + nc + m)
Then,

p m[3(nnz(A) + n, + 1) + 2n(]

™~ 3nnz(A) + (1 + 2m)(n, + 1) + 2mn,’

11/19



Exploiting repeated matrix-block structures

[o] YeYe}

Exploiting repeated matrix-block structures

Defining the optimal (upper-bound) speed-up as: What happens when m — 0o?
b Tm _ /SPMM(m) Assuming n, > 1 and n. = n,,
! Ispm e B e 12nnz(A)/n, + 20
By definition, m—oo " " 16
(2nnz(A) + 1)m

ISpMM(m) = >

12nnz(A) + 4(n,/m + 1) + 8(n, + n. + m)
Then,

p m[3(nnz(A) + n, + 1) + 2n.]

m= 3nnz(A) + (1 +2m)(n, + 1) + 2mn.’
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Exploiting repeated matrix-block structures

Defining the optimal (upper-bound) speed-up as: What happens when m — 0o?

Pn= Tm _ /SPIMM('") Assuming n, > 1 and n. = n,,

1 SpMV
lim P, ~ 12nnz(A)/n, + 20
By definition, =e? 16
P (2nnz(A) + 1)m @ Upper-bound speed-up depends
spn(m) = 1200z(A) + 4(n,/m + 1) + 8(n, + nc + m)’ on density of the matrix.
Then, M M Gn G
quad
, m[3(unz(A) + n, + 1) + 2n.] 20" 4 16 2 8

™7 3unz(A) + (1 + 2m)(n, + 1) + 2mn,’ 3D 6 36 2 12
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Exploiting repeated matrix-block structures

Reformulating the Navier-Stokes equations

Semi-discrete incompressible Navier-Stokes equations
du,

Mug = 0, Q

p + MUsMu. = Du. — QGpc

3 Alsalti-Baldellou et al., 2024, A multigrid reduction framework for domains with symmetries, SIAM Journal on Scientific Computing 46
4Plana-Riu et al., 2025, Exploting repeated matrix-block strucutres for more efficient CFD on modern supercomputers, arXiv:2508.06710 [preprint]
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Exploiting repeated matrix-block structures

Reformulating the Navier-Stokes equations

Semi-discrete incompressible Navier-Stokes equations

du,

Mug = 0, Q p

+ MUsMue = Du, — QG.pc

Let U, = [uc,la Uc2,..., uc,m] and P, = [pc,la Pc,2,-- -, pc,m]

semi-discrete incompressible Navier-Stokes equations

MU, = 0, Q% + MU,TNMU,. = DU, — QGP.

e.g. domains with symmetries or repeated geometries3, parallel-in-time* simulations, etc.

3 Alsalti-Baldellou et al., 2024, A multigrid reduction framework for domains with symmetries, SIAM Journal on Scientific Computing 46
4Plana-Riu et al., 2025, Exploting repeated matrix-block strucutres for more efficient CFD on modern supercomputers, arXiv:2508.06710 [preprint]
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Exploiting repeated matrix-block structures

Ensemble averaging of multiple flow states

Required condition®

Ergodicity: time average = Ensemble average

5Tosi et al., 2022, On the use of ensemble averaging techniques to accelerate the Uncertainty Quantification of CFD predictions in wind engineering, Journal of Wind
Engineering and Industrial Aerodynamics 228
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Exploiting repeated matrix-block structures

Ensemble averaging of multiple flow states

Required condition®

Ergodicity: time average = Ensemble average

Let ¢ be the variable of interest, then:

1 Tr+Ta 1 1 Tr+Ta/m
= — dt = — _ i
W=7 [T m;TA/m/T o dt

Tr T

100

T T, T,
N T A/m A

\ |
i i
| |
4 &
| |
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5Tosi et al., 2022, On the use of ensemble averaging techniques to accelerate the Uncertainty Quantification of CFD predictions in wind engineering, Journal of Wind
Engineering and Industrial Aerodynamics 228
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Numerical experiments

Turbulent planar channel flow: numerical setup

Domain: Ly x L, x L, = 4md x 26 x 47§ /3

Grid: N, x N, x N, =128 x 128 x 128 (2.1 million nodes)
Re; = u;6/v =180

Time integration: RK3 + AlgEigCD

Initial condition: parabolic profile + random perturbation
Boundary conditions: periodic in x and z, no-slip in y
Code: tfa+hpc?2

Discretization strategies:

o Second-order symmetry-preserving (SP2)
o Fourth-order symmetry-preserving (SP4)
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Numerical experiments

Turbulent planar channel flow: numerical setup

Domain: Ly x L, x L, = 4md x 26 x 47§ /3

Grid: N, x N, x N, =128 x 128 x 128 (2.1 million nodes)
Re; = u;6/v =180

Time integration: RK3 + AlgEigCD

Initial condition: parabolic profile + random perturbation
Boundary conditions: periodic in x and z, no-slip in y
Code: tfa+hpc?2

Discretization strategies:

o Second-order symmetry-preserving (SP2)
o Fourth-order symmetry-preserving (SP4)

Objective of the test

Assess the speed-up improvements for the SP4 discretization compared to SP2 when exploiting
repeated matrix-block structures.
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Numerical experiments

Turbulent planar channel flow: M, G, IN results

19|

1 6 4 [§
Number of right-hand sides, m Number of right-hand sides, m
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Numerical experiments

Turbulent planar channel flow: C, D results

275 —e— Pu
—s— (C(u,)u,

2.50

2.25

1.50]
1.25]
1.00]
3 2 1 G B
Number of right-hand sides, m

o

4
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Numerical experiments
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Numerical experiments

Turbulent planar channel flow: speed-up in the Poisson equation

Reminder

Using SP4 does not affect the definition of the Poisson equation

2 4 6 8 2 4

6
Number of right-hand sides, m Number of right-hand sides, m
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Conclusions

@ High-order symmetry-preserving discretizations for collocated grids are presented.

@ lts construction does not require addition operators to those of a second-order
discretization.

@ Higher-order discretizations lead to denser matrices.
o Additional costs of higher-order discretizations can be mitigated by exploiting repeated
matrix-block structures.

@ The diffusive operator obtains a 30% improvement in performance for m = 8 (compared
to SP2).

@ The convective operator obtains a 5% improvement in performance for m = 8 (compared
to SP2).

@ Repeated matrix-block structures can be exploited for the Poisson equation, with great
speed-ups.
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