An efficient Two-Layer wall model for accurate numerical simulations of aeronautical applications

European Conference for Aeronautics and AeroSpace Sciences (EUCASS) 2019, Madrid

J. Calafell, F.X. Trias and A. Oliva

3rd July, 2019

Figure 1: Lee et al., University of Melbourne (2013)

Figure 2: Iso-surfaces of the second invariant of the velocity gradient tensor, Q, at different wall distances of a turbulent Channel flow.

Wall shear stress modeling

Model	spatial ¹ considerations		spatial+temporal ² considerations	
Wall-Resolved	$T_{cc}^{WR} \sim Re_{L_x}^{1.85}$	\rightarrow	$T_{cc}^{WR} \sim Re_{L_{\chi}}^{3.09}$	
Wall-Modeled	$T^{WM}_{cc} \sim Re^{1.0}_{L_{x}}$	\rightarrow	$T_{cc}^{WM} \sim Re_{L_x}^{1.33}$	

¹H. Choi and P. Moin. "Grid-point requirements for large eddy simulation: Chapman's estimates revisited." In: *Phys. Fluids* 24 (2012), p. 011702.

²J. Calafell et al. "A time-average filtering technique to imporve the efficiency of two-layer wall models for large eddy simulation in complex geometries." In: *Comput. Fluids* 188 (2019), pp. 44–59.

Two-Layer wall models

• Momentum Equations: RANS

$$\frac{\partial \mathbf{U}}{\partial t} + (\mathbf{U} \cdot \nabla)\mathbf{U} = \nabla \cdot [2(\nu + \nu_{T,wm})S(\mathbf{U})] - \nabla P$$
$$\nabla \cdot \mathbf{U} = 0$$

• RANS Model: Algebraic Mixing-length-based ^{3, 4, 5}

$$v_{T,wm} = (\kappa y)^2 |S| [1 - exp(-y^+/A^+)]^2$$

³E. Balaras, C. Benocci, and U. Piomelli. AIAA J. 34 (6) (1996), pp. 1111–1119.

⁴S. Kawai and J. Larsson. *Phys. Fluids* 24 (2012), p. 015105.

⁵G. I. Park and P. Moin. *Phys. Fluids* 26 (2014), p. 015108.

Two-Layer Wall model errors

• Resolved Reynolds stresses inflow

Log-layer mismatch

Error sources:

• Numerical and subgrid errors at near-wall nodes

 Unphysical coupling between τ_w and u₁

Proposed solutions:

proposed solutions references⁶,⁷

⁶S. Kawai and J. Larsson. *Phys. Fluids* 24 (2012), p. 015105.
 ⁷X. I. A. Yang, G. I. Park, and P. Moin. *Phys. Rev. Fluids* 2 (2017), p. 104601.

Resolved Reynolds stresses inflow

$$\nu + \nu_{T,wm} \rightarrow \nu + \nu_{T,wm} + \nu_{ap}$$

Proposed solutions:

• Reducing the modeled contribution⁸:

$$\nu_{T,wm} = \left(\kappa y \right)^2 |S| \left[1 - \exp\left(-y^+ / A^+ \right) \right]^2$$

• Subtracting the apparent diffusion⁹:

$$-\nu_{ap} = \frac{R(\mathbf{U})S^d(\mathbf{U})}{2S^d(\mathbf{U})S^d(\mathbf{U})}$$

⁸S. Kawai and J. Larsson. *Phys. Fluids* 24 (2012), p. 015105.
 ⁹G. I. Park and P. Moin. *Phys. Fluids* 26 (2014), p. 015108.

Applied for the first time to a TLM model

• Filter behavior:

$$\frac{\partial \overline{\phi}}{\partial t} = \frac{\phi - \overline{\phi}}{T}$$

• Discrete solution:

$$\overline{\phi}^{n} = (1 - \epsilon)\overline{\phi}^{n-1} + \epsilon \phi'$$
$$\epsilon = \frac{\Delta t/T}{1 + \Delta t/T}$$

12/23

LES characteristic frequencies: Power spectrum

13/23

Filtering period setup

TAF Config.(n) f_n Filter length $T_n = 1/f_n$ Energy spectrum range no filter 0 no filter N/A 1 5.0 0.2 inertial/dissipation range limit 2 1.0 1.0 inertial/energy-containing range limit 0.4 2.5 within the energy-containing range 0.125 4 8.0 flow-through period, largest flow scales

• Wall model output assessment

Filter length T_n	Computed Re_{τ}	rel. err. [%]	Energy spectrum range
no filter	528.70	5.74	N/A
0.2	515.66	3.13	inertial/dissipation range limit
1.0	506.81	1.36	inertial/energy-containing range limit
2.5	502.06	0.41	within the energy-containing range
8.0	502.18	0.43	flow-through period

- No Filter.
- Output shear stress relative error: 5.74%

 $\nu + \nu_{Twm} + \nu_{ap}$

- Filter cut-off frequency: Intertial/dissipation range limit.
- Output shear stress relative error: 3.13%

 $\nu + \nu_{Twm} + \nu_{sp}$

- Filter cut-off frequency: Energy-containing/Inertial range limit.
- Output shear stress relative error: 1.36%

$$\nu + \nu_{Twm} + \nu_{Twm}$$

- Filter cut-off frequency: Within Energy-containing range.
- Output shear stress relative error: 0.41%

$$\nu + \nu_{Twm} + \nu_{Twp}$$

- Filter cut-off frequency: Laregest flow scale frequency.
- Output shear stress relative error: 0.43%

$$\nu + \nu_{Twm} + \nu_{Twp}$$

$$u_{T,wm} = (\kappa y)^2 \left| S \right| \left[1 - exp\left(-y^+ / A^+ \right) \right]^2$$

$$\nu_{T,wm} = (\kappa y)^2 \left| \mathbf{S} \right| \left[1 - \exp\left(-y^+ / \mathbf{A}^+ \right) \right]^2$$

$$\nu_{T,wm} = (\kappa y)^2 |S| [1 - exp(-y^+/A^+)]^2$$

$$|S| = \sqrt{2S_{ij}S_{ij}} \to S_{ij} = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right)$$

Equilibrium conditions: Pipe flow at $\textit{Re}_{\tau} \approx 3000$

LES domain parameters:

- Reynolds Number:
 - $\circ \ \textit{Re}_{\tau} \approx 3000$
- SGS model:
 - Dyn. Smagorinsky
- Domain size:
 - $\circ R = 1$
 - $\circ L_z = 10$
- Grid resolution:
 - $\circ \ \Delta r_w^+ \approx 60$ $\circ \ \Delta r \theta_w^+ \approx 198$ $\circ \ \Delta_r^+ \approx 236$
- First off-wall node:

 $\circ \Delta y^+_{1w} pprox 30$

Equilibrium conditions: Pipe flow at $Re_{\tau} \approx 3000$

WMLES parameters:

- Reynolds Number:
 - $\circ \ \textit{Re}_{\tau} \approx 3000$
- WM extrusion height:
 - $\circ h^+_{wm} \approx 30$ First off-wall node

Pipe flow at $Re_{\tau} \approx 3000$: **Temporal** filter setup

TAF Config.(*n*) $f_n = 1/T_n$ Filter length T_n Energy spectrum range

0	no wall model	no wall model	N/A
1	no filter	no filter	N/A
2	1.8	0.55	inertial/dissipation range limit
3	0.5	2.0	inertial/energy-containing range limit
4	0.25	4.0	within the energy-containing range
5	0.1	10.0	flow-through period, largest flow scales

Pipe flow at $Re_{\tau} \approx 3000$ results: Filter width effects

Pipe flow at $\textit{Re}_{\tau} \approx 3000$ results: Filter width effects

Pipe flow at $Re_{\tau} \approx 3000$ results: Filter width effects

Pipe flow at $Re_{\tau} \approx 3000$ results: Filter width effects

• Wall shear stress

Test (n)	Filter length T_n	Computed Re_{τ}	rel. err. [%]
0	no wall model	1923.6	36.40
1	no filter	3409.2	12.66
2	0.55	3201.1	5.78
3	2.0	3141.3	3.81
4	4.0	3138.0	3.70
5	10.0	3135.6	3.62

- A new Two-Layer wall model has been proposed.
- A time-averaging filter (TAF) is applied for the first time in the LES/WM interface.
- The TAF suppresses the log-layer mismatch and the Reynolds stresses inflow problems at once.
- The Reynolds stresses inflow not only causes an apparent diffusivity excess but also makes the RANS model to work out of range.
- A methodology based on the velocity power spectrum is proposed to determine an appropriate filter size.
- The frequencies higher than the Energy-containing/intertial range limit must be supressed.

Thank you for your attention!