
A checkerboard-free symmetry-preserving

conservative method for magnetohydrodynamic flows

J A Hopman, F X Trias and J Rigola

Heat and Mass Transfer Technological Center, Technical University of Catalonia, ESEIAAT,
c/Colom 11, 08222 Terrassa, Spain,

E-mail: jannes.hopman@upc.edu

Abstract. Simulating MHD flows at high Hartmann numbers and low magnetic Reynolds
numbers is of high interest for the design of a nuclear fusion breeding blanket, for which high
accuracy and conservation of physical properties are of great importance. In this work, a solver
is developed that offers these properties through the symmetry-preserving method, while at the
same time warranting unconditional stability. Since this method uses predictor values for the
pressure and electric potential fields, it can be prone to checkerboarding. Therefore it is extended
to include a dynamical checkerboarding solution, which balances this problem with numerical
dissipation. This is done through run-time measurements of the intensity of checkerboarding,
which is then used as a negative feedback onto the predictor values. The symmetry-preserving
discretisation and the dynamical solution to checkerboarding were successfully tested using
an magnetohydrodynamic Taylor-Green vortex. The newly introduced method shows results
free from numerical dissipation in smooth cases, whereas it avoids checkerboarding in more
challenging cases. Finally, the method shows to be unconditionally stable, even on highly
distorted meshes.

1. Introduction
Studying magnetohydrodynamic (MHD) flows is of great interest in the development of a nuclear
fusion reactor, since the required tritium is obtained through liquid metal breeding blankets
inside the reactor. The strong magnetic field which contains the reaction plasma inside the
core interacts with this liquid metal creating complex flow phenomena [1]. Some of the main
challenges in simulating MHD flows concern [2]: (i) Properly discretising the flow variables and
operators, to accurately depict the delicate balance between the pressure drop and the opposing
generated Lorentz force, which is especially difficult in complex geometries. (ii) In fusion reactor
settings, the induction-less approximation can be made leading to a second Poisson equation,
increasing computational cost of the simulation. (iii) Code validation can be difficult, since
experimental set-up and measurement are often impossible.

Applying the symmetry-preserving method, in which properties of the discrete operators
reflect their continuous counterparts, ensures conservation of physical properties, such as mass,
momentum, kinetic energy and current density [3]. With this method, the delicate force balance
is not disrupted by numerical dissipation and neither is the transition from laminar to turbulent
regions, while unconditional stability is warranted simultaneously. This method was extended
to collocated grid arrangements by [4], and the electromagnetic terms were added by [5].



For collocated grid arrangements, the checkerboard problem can arise, caused by a pressure
decoupling between neighbouring cells if they are calculated using central differencing schemes
for the discrete operators. A common way to avoid this problem is by employing a weighted
interpolation method (WIM) of which the pressure-weighted interpolation is the most well-
known [6]. This method can be combined with the use of a compact-stencil Laplacian, which
reduces computational complexity and is therefore often favoured by industrial codes. The
WIM has been extended to include other terms such as relaxation factors and transient terms
[7], but it inadvertently introduces a numerical error. The order of the pressure error that is
introduced by employing a WIM and a compact-stencil Laplacian can be reduced by adding
a pressure gradient in the momentum predictor [8]. Although this method reduces numerical
dissipation, it can reintroduce checkerboarding to the results, even while using the WIM and
a compact-stencil Laplacian [9]. By quantifying the checkerboarding intensity during run-time,
and using it as a negative feedback on the use of a pressure predictor, numerical dissipation and
checkerboarding were succesfully balanced by [10].

Since the method of [5] includes a second Poisson equation for the electric potential, which
can lead to checkerboarding as well, it is of interest to apply the same method to both the
hydrodynamic and the electromagnetic parts of the algorithm. This method was implemented
in OpenFOAM as an extension of the RKSymFoam code of [9, 11]. This method is described
in section 2 and tested using an MHD Taylor-Green vortex in section 3. Finally, conclusions of
the work are drawn and future considerations are given in section 4.

2. Numerical methods
In fusion reactor settings, flows have a small magnetic Reynolds number, Rem = σµLu0 ≪ 1,
with σ, µ, L and u0 indicating the conductivity, magnetic permeability, characteristic length
and characteristic velocity, respectively. In this case, the induction-less approximation can be
made, which states that the imposed magnetic field is not affected by the flow. The following
set of equations then govern the MHD flow:

∂u

∂t
+ (u · ∇)u = ν∇2u−∇ (p/ρ) + (J×B) /ρ, ∇ · u = 0, (1)

J = σ (−∇ϕ+ u×B) , ∇ · J = 0. (2)

with velocity (u), time (t), kinematic viscosity (ν), pressure (p), density (ρ), current density
(J), magnetic field (B) and electric potential (ϕ). The hydrodynamic part is treated using the
classical projection method, and for the electromagnetic part a second Poisson equation can be
derived from equation (2) as:

∇2ϕ = ∇ · (u×B) . (3)

These equations are implemented in an algorithm, based on the work of [12, 13], adjusted to the
symmetry-preserving method and notation of [4], as follows:
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with interaction parameter N = Ha2

Re =
B2

0Lσ0

u0ρ0
, giving a ratio between the Reynolds number,

Re = u0L
ν , and the Hartmann number, Ha = LB0

√
σ0
ρ0ν

, in which subscript 0 indicates a

characteristic value. θp and θϕ are scalar values to control use of a gradient value in the predictor
equations. [A]× denotes the cross-product form of vector A.

One notable difference with the algorithm by [12, 13] is the use of a volumetric cell-to-
face interpolator, Γcs, throughout the algorithm, which has been shown to be conservative and
unconditionally stable [14]. Its symmetry-preserving counterpart, the face-to-cell interpolator,
is expressed as:

Γsc = Ω−1ΓT
csΩs, (5)

which is a necessary property of the symmetry-preserving method. In contrast, the interpolator
of equation (4j) in the method of [12, 13] is given by:
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which is not strictly dissipative on non-circumcenter meshes, as equation (5) does not hold.
The other novelty in the algorithm of equation (4), is the addition of θp and θϕ. By

quantifying the checkerboarding of the pc and ϕϕϕc fields, these scalar coefficients can be used
to enforce the negative feedback on the usage of predictor values for the respective equations.
This quantification method was derived by [10] as:

θa =
aTc Lcac
aTc Lac

, (7)

in which Lc = McGc = MΓcsΓscG and L give the wide-stencil and compact-stencil Laplacian
operators, respectively. θa ∈ [0, 1] gives a global, normalised, non-dimensional, time-step
independent coefficient for the intensity of checkerboarding of field ac.

A symmetry-preserving algorithm with the interpolation of equation (4j) given by equation
(6) is compared to the algorithm of equation (4), using static and dynamic values for θp and θϕ.
An overview of the solvers is given below:

Table 1. Settings of the tested solvers

SP-θ0 SP-θ1 SP-θdy Ni

Γsc Eq.(5) Eq.(5) Eq.(5) Eq.(6)
θp 0 1 Eq.(7) 1
θϕ 0 1 Eq.(7) 0

3. Results
An MHD Taylor-Green vortex was designed from the hydrodynamic case which consists of four
vortices on a square domain with 0 ≤ x ≤ 2π, 0 ≤ y ≤ 2π and cyclic boundaries, to which
non-zero conductivity σ0 and a magnetic field B = (0, 0, Bz) are introduced. The analytical
solutions of the main solution variables, in non-dimensional units, are given by:

ux(x, y, t) = sin(x) cos(y)e−2νt, (8)

uy(x, y, t) = − cos(x) sin(y)e−2νt, (9)

p(x, y, t) =
1

4
(cos(2x) + cos(2y))e−4νt, (10)

ϕ = − cos(x) cos(y)Bze
−2νt. (11)



The additional electric potential field generates a current which exactly cancels the current
induced by the magnetic field, such that u×B = ∇ϕ:

u×B =

− cos(x) sin(y)Bze
−2νt

− sin(x) cos(y)Bze
−2νt

0

 = ∇ϕ. (12)

The levels of checkerboarding were monitored using equation (7). Additionally, the accuracy of
the methods was measured using the kinetic energy budgets, given by [15]:

∂tEk Evolution,

=− u · ((u · ∇)u) Transport,

− u · (∇p) /ρ Pressure diffusion,

+ ν∇2Ek Viscous diffusion,

− ν (∇u) : (∇u) Dissipation,

+ u · (J×B) /ρ, Lorentz force term,

where Ek(t) = u·u
2 , which for the analytical case is given by Eana(t) = Ek(0)e

−4νt. Since the
induced currents should cancel out, all terms should equal zero globally, except the dissipation
term which depends on ν, given analytically by −4νEk(0)e

−4νt. In practice, the transport term
equals zero due to skew symmetry of the convective operator and the viscous diffusion term
equals zero since each face term cancels itself in a global divergence calculation, therefore they
are no further considered. For budget term Bnum, the numerical error is then expressed as:

ϵnum =
Bnum −Bana

Ek
. (13)

This set-up was tested for the solvers given in table 1, on meshes with different levels of
deformation, as seen in figure 1. The case was run with zero viscosity and with Re = u0L

2πν = 100,

and for the latter case, the Hartmann number was set to Ha = L
2πBz

√
σ0
ρν ∈ {0, 100}.

Figure 1. Mesh deformation levels. Left: Uniform. Center: Perturbed. Right: Distorted.

Figure 2a shows that for the inviscid case on a uniform grid, the numerical dissipation is
very low. SP-θ0 shows the pressure error which remains. The lack of checkerboarding, seen
in table 2, causes SP-θdy to converge to SP-θ1. Figure 2b shows that introduction of viscosity
causes a numerical error in each case, because of under-estimation of the dissipation term. These
errors do not cause any problems, due to their magnitude and the fact that, overall, energy is
still dissipated. Introduction of the magnetic field, as seen in figure 2c shows that for all cases
on a uniform mesh, the current density is conserved, with a small deviation in SP-θ0, caused
most probably by similar mechanisms as the pressure error in figure 2a. Up until this point,
no significant checkerboarding has been measured in any of the cases or fields, and SP-θdy has



converged to SP-θ1 every time. When the mesh gets perturbed, however, the SP-θ1 method
becomes prone to checkerboarding and as a result, SP-θdy removes the pressure prediction in
equation 4a and converges to SP-θ0 instead, favouring a smooth solution at the cost of some
numerical dissipation. At the same time, it can be seen that the Ni interpolation method loses
its conservative properties, as was predicted in section 2.
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Figure 2. Kinetic energy budgets in a Taylor-Green vortex.

Moreover, if the deformation of the mesh is pushed to an extreme, it can be seen from figure
3 that this method quickly diverges. Methods SP-θ0 and SP-θdy show severe over-dissipation,
however they remain stable, whereas SP-θ1 also shows a slow divergence due to accumulation
of kinetic energy. These results show that SP-θdy benefits from the low order pressure error in
smooth cases, but does not have the drawback of SP-θ1 when a field is prone to checkerboarding.
At the same time, the combination with the interpolation of (5) provides unconditional stability.

Table 2. Checkerboard coefficients for pressure and electric potential in a Taylor-Green vortex

SP-θ0 SP-θ1 SP-θdy Ni

Re Ha Mesh pcb ϕcb pcb ϕcb pcb ϕcb pcb ϕcb

Inviscid 0 uniform 0.04 - 0.04 - 0.04 - 0.04 -
100 0 uniform 0.04 - 0.04 - 0.04 - 0.04 -
100 100 uniform 0.04 0.01 0.04 0.01 0.04 0.01 0.04 0.01
100 100 perturbed 0.83 0.01 1.00 0.89 0.85 0.01 1.00 0.05

4. Conclusions and outlook
A checkerboard-free symmetry-preserving method for MHD flows has been introduced in this
work and the initial tests show promising results. Integrating the dynamic predictor values
for the pressure and electric potential fields, by quantifying checkerboarding and using it as
negative feedback, shows that the solver can be free from numerical dissipation in smooth cases,
while at the same time free from checkerboarding in cases that are prone to this problem.
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Figure 3. Kinetic energy over time in a Taylor-Green vortex on the distorted mesh.

This method is proven to be even more useful in MHD setting where an additional Poisson
equation has to be solved. Moreover, the symmetry-preserving discretisation eliminates any
significant numerical dissipation, and, when combined with the dynamic predictor values, shows
unconditional stability.

To further validate this method, additional laminar benchmark tests will be performed
to demonstrate its high accuracy and stability, while simultaneously avoiding solutions with
checkerboarding, even on unstructured meshes. In addition to this, turbulent MHD cases will
be used to show that the energy-preserving properties should accurately predict higher-order
statistics and transition regimes.
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[15] Durbin P A and Reif B P 2011 Statistical theory and modeling for turbulent flows (John Wiley & Sons)


