A checkerboard-free, symmetry-preserving, conservative method, for magnetohydrodynamic flows

J.A. Hopman, F.X. Trias, J. Rigola

Motivation

MagnetoHydroDynamic (MHD) flows for Nuclear Fusion

Motivation

MagnetoHydroDynamic (MHD) flows for Nuclear Fusion

-High Hartmann number,

 $Ha = LB_0 \sqrt{\frac{\sigma_0}{\rho_0 \nu}}$

Motivation

MagnetoHydroDynamic (MHD) flows for Nuclear Fusion

- -High Hartmann number,
- -Low magnetic Reynolds number,

 $Ha = LB_0 \sqrt{\frac{\sigma_0}{\rho_0 \nu}}$ $Re_m = \sigma \mu Lu_0 \ll 1$

Challenges

Complex geometries

Balancing Lorentz force & pressure drop

Challenges

Complex geometries

→ Collocated grids

Balancing Lorentz force & pressure drop

Challenges

Complex geometries

 \rightarrow Collocated grids

Balancing Lorentz force & pressure drop

1. Projected gradient distances

- 1. Projected gradient distances
- 2. Consistent Div, Grad, Lap

- 1. Projected gradient distances
- 2. Consistent Div, Grad, Lap
- 3. Midpoint interpolation in $C(\mathbf{u}_s)$

- 1. Projected gradient distances
- 2. Consistent Div, Grad, Lap
- 3. Midpoint interpolation in $C(\mathbf{u}_s)$
- 4. Volumetric interpolation

- 1. Projected gradient distances
- 2. Consistent Div, Grad, Lap
- 3. Midpoint interpolation in $C(\mathbf{u}_s)$
- 4. Volumetric interpolation
 - Flux term of Poisson equation

- 1. Projected gradient distances
- 2. Consistent Div, Grad, Lap
- 3. Midpoint interpolation in $C(\mathbf{u}_s)$
- 4. Volumetric interpolation
 - Flux term of Poisson equation
 - Correction term after Poisson

$$\mathbf{u}_c^{p*} = \mathbf{u}_c^p - G_c \tilde{\mathbf{p}}_c^p$$

$$\mathbf{u}_{c}^{p*} = \mathbf{u}_{c}^{p} - G_{c} \tilde{\mathbf{p}}_{c}^{p}$$
$$L \tilde{\mathbf{p}}_{c}' = M_{c} \mathbf{u}_{c}^{p*} = M_{c} \mathbf{u}_{c}^{p} - L_{c} \tilde{\mathbf{p}}_{c}^{p}$$

$$\mathbf{u}_{c}^{p*} = \mathbf{u}_{c}^{p} - G_{c} \tilde{\mathbf{p}}_{c}^{p}$$

$$L \tilde{\mathbf{p}}_{c}' = M_{c} \mathbf{u}_{c}^{p*} = M_{c} \mathbf{u}_{c}^{p} - L_{c} \tilde{\mathbf{p}}_{c}^{p}$$

$$\tilde{\mathbf{p}}_{c}^{n+1} = \tilde{\mathbf{p}}_{c}^{p} + \tilde{\mathbf{p}}_{c}'$$

$$\mathbf{u}_{c}^{p*} = \mathbf{u}_{c}^{p} - G_{c} \tilde{\mathbf{p}}_{c}^{p}$$

$$L \tilde{\mathbf{p}}_{c}' = M_{c} \mathbf{u}_{c}^{p*} = M_{c} \mathbf{u}_{c}^{p} - L_{c} \tilde{\mathbf{p}}_{c}^{p}$$

$$\tilde{\mathbf{p}}_{c}^{n+1} = \tilde{\mathbf{p}}_{c}^{p} + \tilde{\mathbf{p}}_{c}'$$

Lowering pressure error $\sim (L - L_c) \tilde{\mathbf{p}}'_c$

$$\mathbf{u}_{c}^{p*} = \mathbf{u}_{c}^{p} - G_{c}\tilde{\mathbf{p}}_{c}^{p}$$

$$L\tilde{\mathbf{p}}_{c}' = M_{c}\mathbf{u}_{c}^{p*} = M_{c}\mathbf{u}_{c}^{p} - L_{c}\tilde{\mathbf{p}}_{c}^{p}$$

$$\tilde{\mathbf{p}}_{c}^{n+1} = \tilde{\mathbf{p}}_{c}^{p} + \tilde{\mathbf{p}}_{c}'$$

Lowering pressure error $\sim (L - L_c) \tilde{\mathbf{p}}'_c$

Larger part on $L_c \rightarrow More$ prone to checkerboarding

Induction-less approximation

Formulation of second Poisson equation

$$\begin{aligned} \frac{\partial \mathbf{u}}{\partial t} + \left(\mathbf{u} \cdot \nabla\right) \mathbf{u} &= \nu \nabla^2 \mathbf{u} - \nabla \left(p/\rho\right) + \left(\mathbf{J} \times \mathbf{B}\right)/\rho, & \nabla \cdot \mathbf{u} &= 0, \\ \mathbf{J} &= \sigma \left(-\nabla \phi + \mathbf{u} \times \mathbf{B}\right), & \nabla \cdot \mathbf{J} &= 0. \end{aligned}$$

Starting from the pressure budget term:

Starting from the pressure budget term:

 $-\mathbf{u}_{c}^{T}\Omega G_{c}\mathbf{p}_{c}$

Starting from the pressure budget term:

 $-\mathbf{u}_c^T \Omega G_c \mathbf{p}_c = \mathbf{p}_c^T M_c \mathbf{u}_c$

Starting from the pressure budget term:

$$-\mathbf{u}_{c}^{T}\Omega G_{c}\mathbf{p}_{c} = \mathbf{p}_{c}^{T}M_{c}\mathbf{u}_{c} = \Delta t\mathbf{p}_{c}^{T}(L-L_{c})\mathbf{p}_{c}$$

Starting from the pressure budget term:

$$-\mathbf{u}_{c}^{T}\Omega G_{c}\mathbf{p}_{c} = \mathbf{p}_{c}^{T}M_{c}\mathbf{u}_{c} = \Delta t\mathbf{p}_{c}^{T}(L-L_{c})\mathbf{p}_{c} \in [\Delta t\mathbf{p}_{c}^{T}L\mathbf{p}_{c}, 0]$$

Starting from the pressure budget term:

$$-\mathbf{u}_{c}^{T}\Omega G_{c}\mathbf{p}_{c} = \mathbf{p}_{c}^{T}M_{c}\mathbf{u}_{c} = \Delta t\mathbf{p}_{c}^{T}(L-L_{c})\mathbf{p}_{c} \in [\Delta t\mathbf{p}_{c}^{T}L\mathbf{p}_{c}, 0]$$

$$C_{cb} = 1 - \frac{\mathbf{p}_c^T L_c \mathbf{p}_c}{\mathbf{p}_c^T L \mathbf{p}_c}$$

Starting from the pressure budget term:

$$-\mathbf{u}_{c}^{T}\Omega G_{c}\mathbf{p}_{c} = \mathbf{p}_{c}^{T}M_{c}\mathbf{u}_{c} = \Delta t\mathbf{p}_{c}^{T}(L-L_{c})\mathbf{p}_{c} \in [\Delta t\mathbf{p}_{c}^{T}L\mathbf{p}_{c},0]$$

$$C_{cb} = 1 - \frac{\mathbf{p}_c^T L_c \mathbf{p}_c}{\mathbf{p}_c^T L \mathbf{p}_c} = 1 - \frac{\mathbf{p}_c^T G_c^T \Omega G_c \mathbf{p}_c}{\mathbf{p}_c^T G^T \Omega_s G \mathbf{p}_c}$$

Starting from the pressure budget term:

$$-\mathbf{u}_{c}^{T}\Omega G_{c}\mathbf{p}_{c} = \mathbf{p}_{c}^{T}M_{c}\mathbf{u}_{c} = \Delta t\mathbf{p}_{c}^{T}(L-L_{c})\mathbf{p}_{c} \in [\Delta t\mathbf{p}_{c}^{T}L\mathbf{p}_{c},0]$$

$$C_{cb} = 1 - \frac{\mathbf{p}_c^T L_c \mathbf{p}_c}{\mathbf{p}_c^T L \mathbf{p}_c} = 1 - \frac{\mathbf{p}_c^T G_c^T \Omega G_c \mathbf{p}_c}{\mathbf{p}_c^T G^T \Omega_s G \mathbf{p}_c} = 1 - \frac{||G_c \mathbf{p}_c||}{||G \mathbf{p}_c||}$$

Starting from the pressure budget term:

$$-\mathbf{u}_{c}^{T}\Omega G_{c}\mathbf{p}_{c} = \mathbf{p}_{c}^{T}M_{c}\mathbf{u}_{c} = \Delta t\mathbf{p}_{c}^{T}(L-L_{c})\mathbf{p}_{c} \in [\Delta t\mathbf{p}_{c}^{T}L\mathbf{p}_{c}, 0]$$

$$C_{cb} = 1 - \frac{\mathbf{p}_c^T L_c \mathbf{p}_c}{\mathbf{p}_c^T L \mathbf{p}_c} = 1 - \frac{\mathbf{p}_c^T G_c^T \Omega G_c \mathbf{p}_c}{\mathbf{p}_c^T G^T \Omega_s G \mathbf{p}_c} = 1 - \frac{||G_c \mathbf{p}_c||}{||G \mathbf{p}_c||} \in [0, 1] \begin{cases} 0, & \text{smooth} \\ 1, & \text{fully in } Ker(L_c) \end{cases}$$

General predictor coefficient:

$$\theta_a = \frac{a_c^T L_c a_c}{a_c^T L a_c}$$

General predictor coefficient:

$$\theta_a = \frac{a_c^T L_c a_c}{a_c^T L a_c}$$

$$\mathbf{u}_{c}^{p*} = \mathbf{u}_{c}^{p} - \theta_{p}G_{c}\tilde{\mathbf{p}}_{c}^{p}$$
$$\phi_{c}^{p*} = \phi_{c}^{p} - \theta_{\phi}G_{c}\phi_{c}^{p}$$

General predictor coefficient:

$$\theta_a = \frac{a_c^T L_c a_c}{a_c^T L a_c}$$

Adjusted prediction equations:

$$\mathbf{u}_{c}^{p*} = \mathbf{u}_{c}^{p} - \theta_{p} G_{c} \tilde{\mathbf{p}}_{c}^{p}$$
$$\phi_{c}^{p*} = \phi_{c}^{p} - \theta_{\phi} G_{c} \phi_{c}^{p}$$

Low Cb

General predictor coefficient:

$$\theta_a = \frac{a_c^T L_c a_c}{a_c^T L a_c}$$

$$\mathbf{u}_{c}^{p*} = \mathbf{u}_{c}^{p} - \theta_{p} G_{c} \tilde{\mathbf{p}}_{c}^{p}$$
$$\phi_{c}^{p*} = \phi_{c}^{p} - \theta_{\phi} G_{c} \phi_{c}^{p}$$

Low Cb	
	4
	Use more predictor

General predictor coefficient:

$$\theta_a = \frac{a_c^T L_c a_c}{a_c^T L a_c}$$

$$\mathbf{u}_{c}^{p*} = \mathbf{u}_{c}^{p} - \theta_{p} G_{c} \tilde{\mathbf{p}}_{c}^{p}$$
$$\phi_{c}^{p*} = \phi_{c}^{p} - \theta_{\phi} G_{c} \phi_{c}^{p}$$

General predictor coefficient:

$$\theta_a = \frac{a_c^T L_c a_c}{a_c^T L a_c}$$

$$\mathbf{u}_{c}^{p*} = \mathbf{u}_{c}^{p} - \theta_{p} G_{c} \tilde{\mathbf{p}}_{c}^{p}$$
$$\phi_{c}^{p*} = \phi_{c}^{p} - \theta_{\phi} G_{c} \phi_{c}^{p}$$

Solvers: $SP-\theta_0$ $SP-\theta_1$ $SP-\theta_{dy}$ Ni

Ni M J, Munipalli R, Morley N B, Huang P and Abdou M A 2007 J. Comput. Phys. 227 174–204 Ni M J, Munipalli R, Huang P, Morley N B and Abdou M A 2007 J. Comput. Phys. 227 205–228

Ni M J, Munipalli R, Morley N B, Huang P and Abdou M A 2007 J. Comput. Phys. 227 174–204 Ni M J, Munipalli R, Huang P, Morley N B and Abdou M A 2007 J. Comput. Phys. 227 205–228

Error analysis

Kinetic energy budgets

 $\partial_t E_k$ = $- \mathbf{u} \cdot ((\mathbf{u} \cdot \nabla) \mathbf{u})$ $- \mathbf{u} \cdot (\nabla p) / \rho$ $+ \nu \nabla^2 E_k$ $- \nu (\nabla \mathbf{u}) : (\nabla \mathbf{u})$ $+ \mathbf{u} \cdot (\mathbf{J} \times \mathbf{B}) / \rho,$ Evolution Transport Pressure diffusion Viscous diffusion Dissipation Lorentz force term

Error analysis

Kinetic energy budgets

 $\partial_t E_k$ = $- \mathbf{u} \cdot ((\mathbf{u} \cdot \nabla) \mathbf{u})$ $- \mathbf{u} \cdot (\nabla p) / \rho$ $+ \nu \nabla^2 E_k$ $- \nu (\nabla \mathbf{u}) : (\nabla \mathbf{u})$ $+ \mathbf{u} \cdot (\mathbf{J} \times \mathbf{B}) / \rho,$ Evolution Transport Pressure diffusion Viscous diffusion Dissipation Lorentz force term $\epsilon_{num} = \frac{B_{num} - B_{ana}}{E_k}$

(a) Inviscid, Ha = 0, uniform mesh

1e-4

(b) Re = 100, Ha = 0, uniform mesh.

(c) Re = 100, Ha = 100, uniform mesh

 Σ_{tot}

 Σ_{tot}

			$SP-\theta_0$		SF	$SP-\theta_1$		$SP-\theta_{dy}$		Ni	
Re	Ha	Mesh	p_{cb}	ϕ_{cb}	p_{cb}	ϕ_{cb}	p_{cb}	ϕ_{cb}	p_{cb}	ϕ_{cb}	
Inviscid	0	uniform	0.04	-	0.04	-	0.04	-	0.04	-	
100	0	uniform	0.04	-	0.04	-	0.04	-	0.04	-	
100	100	uniform	0.04	0.01	0.04	0.01	0.04	0.01	0.04	0.01	
100	100	perturbed	0.83	0.01	1.00	0.89	0.85	0.01	1.00	0.05	

			$ ext{SP-} heta_0$		SF	$SP-\theta_1$		$ ext{SP-} heta_{dy}$		Ni	
Re	Ha	Mesh	p_{cb}	ϕ_{cb}	p_{cb}	ϕ_{cb}	p_{cb}	ϕ_{cb}	p_{cb}	ϕ_{cb}	
Inviscid	0	uniform	0.04	-	0.04	-	0.04	-	0.04	-	
100	0	uniform	0.04	-	0.04	-	0.04	-	0.04	-	
100	100	uniform	0.04	0.01	0.04	0.01	0.04	0.01	0.04	0.01	
100	100	$\operatorname{perturbed}$	0.83	0.01	1.00	0.89	0.85	0.01	1.00	0.05	

			$SP-\theta_0$		SF	$SP-\theta_1$		$SP-\theta_{dy}$		Ni	
Re	Ha	Mesh	p_{cb}	ϕ_{cb}	p_{cb}	ϕ_{cb}	p_{cb}	ϕ_{cb}	p_{cb}	ϕ_{cb}	
Inviscid	0	uniform	0.04	-	0.04	-	0.04	-	0.04	-	
100	0	uniform	0.04	-	0.04	-	0.04	-	0.04	-	
100	100	uniform	0.04	0.01	0.04	0.01	0.04	0.01	0.04	0.01	
100	100	perturbed	0.83	0.01	1.00	0.89	0.85	0.01	1.00	0.05	

			$SP-\theta_0$		SF	$SP-\theta_1$		$ ext{SP-} heta_{dy}$		Ni	
Re	Ha	Mesh	p_{cb}	ϕ_{cb}	p_{cb}	ϕ_{cb}	p_{cb}	ϕ_{cb}	p_{cb}	ϕ_{cb}	
Inviscid	0	uniform	0.04	-	0.04	-	0.04	-	0.04	-	
100	0	uniform	0.04	-	0.04	-	0.04	-	0.04	-	
100	100	uniform	0.04	0.01	0.04	0.01	0.04	0.01	0.04	0.01	
100	100	perturbed	0.83	0.01	1.00	0.89	0.85	0.01	1.00	0.05	

			$SP-\theta_0$		SF	$SP-\theta_1$		$ ext{SP-} heta_{dy}$		Ni	
Re	Ha	Mesh	p_{cb}	ϕ_{cb}	p_{cb}	ϕ_{cb}	p_{cb}	ϕ_{cb}	p_{cb}	ϕ_{cb}	
Inviscid	0	uniform	0.04	-	0.04	-	0.04	-	0.04	-	
100	0	uniform	0.04	-	0.04	-	0.04	-	0.04	-	
100	100	uniform	0.04	0.01	0.04	0.01	0.04	0.01	0.04	0.01	
100	100	perturbed	0.83	0.01	1.00	0.89	0.85	0.01	1.00	0.05	

			$SP-\theta_0$		SF	$SP-\theta_1$		$SP-\theta_{dy}$		Ni
Re	Ha	Mesh	p_{cb}	ϕ_{cb}	p_{cb}	ϕ_{cb}	p_{cb}	ϕ_{cb}	p_{cb}	ϕ_{cb}
Inviscid	0	uniform	0.04	-	0.04	-	0.04	-	0.04	-
100	0	uniform	0.04	-	0.04	-	0.04	-	0.04	-
100	100	uniform	0.04	0.01	0.04	0.01	0.04	0.01	0.04	0.01
100	100	perturbed	0.83	0.01	1.00	0.89	0.85	0.01	1.00	0.05

Stability

-Effective method to quantify checkerboarding

- -Effective method to quantify checkerboarding
- -Balances checkerboarding and numerical dissipation

- -Effective method to quantify checkerboarding
- -Balances checkerboarding and numerical dissipation
 - -Turns "off" on uniform meshes \rightarrow eliminate dissipation

- -Effective method to quantify checkerboarding
- -Balances checkerboarding and numerical dissipation
 - -Turns "off" on uniform meshes \rightarrow eliminate dissipation
 - -Turns "on" on perturbed meshes ightarrow eliminate checkerboard

- -Effective method to quantify checkerboarding
- -Balances checkerboarding and numerical dissipation

-Turns "off" on uniform meshes \rightarrow eliminate dissipation

-Turns "on" on perturbed meshes ightarrow eliminate checkerboard

-Symmetry-preserving method is robust