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Abstract. In this work, we aim to shed light on the following research question: can we find
a subgrid-scale (SGS) heat flux model with good physical and numerical properties, such that we
can obtain satisfactory predictions for buoyancy-driven turbulence at high Rayleigh numbers?
This is motivated by our previous findings showing the limitations of existing SGS heat flux
models for LES. On one hand, the most popular models rely on the eddy-diffusivity assumption
despite their well-known lack of accuracy in a priori studies. On the other hand, the gradient
model, which is the leading term of the Taylor series of the SGS flux, is much more accurate a
priori but cannot be used as a standalone model since it produces a finite-time blow-up. In this
context, we firstly aim to reconcile accuracy and stability for the gradient model. To do so, it
is expressed as a linear combination of regularized (smoother) forms of the convective operator.
The new alternative form can indeed be viewed as an approximate deconvolution of the exact
SGS flux. Moreover, it facilitates the mathematical analysis of the gradient model, neatly
identifying those terms that may cause numerical instabilities, leading to a new unconditionally
stable non-linear model that can indeed be viewed as a stabilized version of the gradient model.
In this way, we expect to combine the good a priori accuracy of the gradient model with the
stability required in practical numerical simulations.

1. Introduction
In the last decades, many engineering/scientific applications have benefited from the advances
in the field of Computational Fluid Dynamics (CFD). Unfortunately, most of practical turbulent
flows cannot be directly computed from the Navier–Stokes equations because not enough
resolution is available to resolve all the relevant scales of motion. Therefore, practical numerical
simulations have to resort to turbulence modeling. We may therefore turn to large-eddy
simulation (LES) to predict the large-scale behavior of turbulent flows. In LES, the large scales
of motions are explicitly computed, whereas effects of small scale motions are modeled. Since the
advent of CFD many subgrid-scale models have been proposed and successfully applied to a wide
range of flows. Eddy-viscosity models for LES is probably the most popular example thereof.
Then, for problems with the presence of active/passive scalars (e.g. heat transfer problems,
transport of species in combustion, dispersion of contaminants,...) the (linear) eddy-diffusivity
assumption is usually chosen. However, this type of approximation systematically fails to provide
a reasonable approximation of the actual SGS flux because they are strongly misaligned [1, 2].
This was clearly shown in our previous works [3, 4] where SGS features were studied a priori
for a RBC at Ra-number up to 1011 (see qeddy in figure 1). This leads to the conclusion that
nonlinear (or tensorial) models are necessary to provide good approximations of the actual SGS
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Figure 1. Alignment trends of the actual SGS heat flux for an air-filled Rayleigh–Bénard
convection at Rayleigh 1010. For details the reader is referred to our work [3].

heat flux (see q in figure 1). In this regard, the nonlinear Leonard model [5] or gradient model,
which is the leading term of the Taylor series of the SGS flux, provides a very accurate a priori
approximation (see qnl in figure 1). However, the local dissipation introduced by the model
can take negative values; therefore, the Leonard model cannot be used as a standalone SGS
flux model, since it produces a finite-time blow-up. In this context, we aim to shed light to the
following research question: can we a simple approach to reconcile accuracy and stability for the
gradient model?

2. Deconstructing the gradient model
Let us firstly consider the following transport equation

∂tφ+ C(u, φ) = Dφ, (1)

where u denotes the advective velocity and φ represents a generic (transported) scalar field.
The non-linear convective term is given by C(u, φ) ≡ (u · ∇)φ whereas the diffusive terms reads

Dφ ≡ Γ∇2φ. Shortly, LES equations arises from applying a spatial commutative filter, (·), with
filter length, δ,

∂tφ+ C(u, φ) = Dφ−∇ · τφ, (2)

where τφ ≡ uφ−uφ is the subgrid scalar flux. Then, the gradient model follows from considering
a Taylor-series expansion of the filter

φ = φ− φ′ = φ+
δ2

24
∇2φ+O(δ4), (3)



where φ′ ≈ −(δ2/24)∇2φ is the filter residual. Then, applying this to uφ leads to

uφ ≈ uφ+
δ2

24
∇2(uφ)

= uφ+
δ2

24
(∇2u)φ+

δ2

12
∇u∇φ+

δ2

24
u∇2φ, (4)

and

uφ ≈
(
u+

δ2

24
∇2u

)(
φ+

δ2

24
∇2φ

)
= uφ+

δ2

24
u∇2φ+

δ2

24
(∇2u)φ+

δ4

242
∇2u∇2φ

≈ uφ+
δ2

24
u∇2φ+

δ2

24
(∇2u)φ+O(δ4). (5)

Notice that (δ2/24)a∇2b ≈ (δ2/24)a∇2b + O(δ4). Finally, combining eqs.(4) and (5) and
discarding high-order terms leads to the standard form of the gradient model

τφ ≈ τ gradφ =
δ2

12
∇u∇φ. (6)

Hereafter all the overbars, (·), are dropped for the sake of simplicity. Alternatively, τ gradφ can be

expressed in terms of regularized (smoother) forms of the convective operator as follows

∇ · τ gradφ = C(u, φ) + ˜C(u, φ)− C(ũ, φ)− C(u, φ̃), (7)

where

˜C(u, φ)− C(u, φ) =
δ̃2

24
∇2∇ · (uφ) =

δ̃2

24
∇ · (∇2(uφ)), (8)

C(ũ, φ)− C(u, φ) =
δ̃2

24
∇ · ((∇2u)φ), (9)

C(u, φ̃)− C(u, φ) =
δ̃2

24
∇ · (u∇2φ). (10)

Notice that (̃·) represents an explicit filter with filter length δ̃ that is not necessarily equal to

the filter length δ of the LES filter, (·). The alternative form given in eq.(7) is simply based
on the non-linear convective operator and the linear filter; therefore, its implementation is
straightforward. Moreover, it avoids the interpolations required if the standard gradient model
given in eq.(6) is directly implemented. Finally, it facilitates the analysis of the gradient model,
neatly identifying those terms that may cause numerical instabilities. This is addressed in the
next section.

3. Stabilizing the gradient model
Following the notation used in ref. [6], the novel form of the gradient model given in eq.(7) would
be discretized as follows

Mτ gradφ,h = C (us)φc + FC (us)φc − C (Fus)φc − C (us)Fφc, (11)

where us and φc are respectively the discrete velocity field defined at the faces and the
cell-centered scalar field. Moreover, M, C (us) and F are matrices representing the discrete



Figure 2. Location of the eigenvalues for the matrix CF− FC (left) and CUPF− FCUP (right). Results
correspond to a 4× 3 Cartesian with a random divergence-free velocity field.

divergence, convective and filter operators. For details, the reader is referred to ref. [6]. This

discrete form of τ gradφ can be expressed in matrix-vector form as follows

Mτ gradφ,h =

(
I
F

)T (
C (us)− C (Fus) −C (us)

C (us) 0

)(
I
F

)
φc. (12)

Recalling that the discrete convective and filter operator should be respectively represented by
a skew-symmetric matrix, C = −CT , and a symmetric matrix, F=FT , the contribution of the
gradient model to the time-evolution of the L2-norm of φc is given by

−φc ·Mτ gradφ,h = φc · (CF− FC)φc. (13)

For details regarding the construction of symmetric linear filter F, the reader is referred to our
previous works [7, 8].

Hereafter, for simplicity, C = C (us). Therefore, stability of the gradient model is determined
by the sign of the Rayleigh quotient of the matrix CF− FC. Therefore, if C = −CT , as it should
be from a physical point-of-view,

φc · CFφc = φc · (CF)Tφc = φc · FTCTφc = −φc · FCφc. (14)

In this case, there is no guarantee that the eigenvalues of the matrix CF− FC will lie on stable
half-side and, therefore, the gradient model will be eventually unstable. This is clearly shown
in figure 2 (left) where the locations of the eigenvalues is displayed for a 3 × 4 Cartesian mesh
with a random divergence-free velocity field.

Nevertheless, at this point, we have neatly identified the discrete operators that lead to
unstable modes. Hence, they must be modified if we aim to solve the problem. To do so, we
need firstly to re-write the expression given in eq.(11) as follows

Mτ gradφ,h = C (us)φc − RC (us)φc − C (Fus)φc + C (us)Rφc, (15)



Figure 3. DNS of the air-filled RBC at Ra = 108 (top) and Ra = 1010 (bottom) carried out on
the MareNostrum 4 supercomputer using 17M (400x206x206) and 600M (1024x766x766) grid
points, respectively.

where R is the filter residual, i.e. F = I − R. Previous analysis can be easily redone leading to
the following matrix-vector form

Mτ gradφ,h =

(
I
R

)T (
C (us)− C (Fus) C (us)
−C (us) 0

)(
I
R

)
φc. (16)

and the following contribution to the L2-norm of φc

−φc ·Mτ gradφ,h = φc · (RC− CR)φc. (17)

At this point, a very simple solution consists on using an upwind/downwind for the convective
terms in eq.(17); namely, replacing C by CUP and CDO in the off-diagonal terms in eq.(16),
leading to an overall contribution to the time-evolution of the L2-norm of φc given by

−φc ·Mτ gradφ,h = φc ·
(
RCUP − CDOR

)
φc, (18)

where CUP (CDO) corresponds to a first-order upwind (downwind) discretization of the convective
term. In this way, all the eigenvalues lie on the stable half-side (see figure 2, right). A formal
proof will be presented in the conference.



4. Concluding remarks
A new form of the standard gradient model has been proposed in eq.(7). Apart from being easier
to implement than its standard form (see eq.6), it facilitates the mathematical analysis of the
gradient model, neatly identifying those terms that may cause numerical instabilities leading to
(details will be presented in the conference) to a new unconditionally stable non-linear model
given by

Mτ gradφ,h = C (us)φc − RC (us)
UPφc − C (Fus)φc + C (us)

DO Rφc, (19)

where C (us)
UP and C (us)

DO correspond to a first-order upwind and downwind discretization
of the convective term, respectively. This new form can indeed be viewed as a stabilized version
of the gradient model than preserves good alignment trends (see figure 1, left). We plan to
study a posteriori the performance of these models. In this case, LES simulations will be carried
out with the same code (for details see refs.[9, 10]) and results compared with the DNS data
corresponding to an air-filled (Pr = 0.7) RBC at Rayleigh number up to 1010 (see figure 3).
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