
Ensemble averaging parallel-in-time approach for

industrial LES

Josep Plana-Riu 1, F Xavier Trias 1, Àdel Alsalti-Baldellou 1,2,
Guillem Colomer 1 and Asensio Oliva 1

1Heat and Mass Transfer Technological Centre
Technical University of Catalonia, ESEIAAT
Carrer de Colom 11, 08222 Terrassa (Barcelona), Spain
2 Termo Fluids S.L.
Carrer de Maǵı Colet 8, 08204 Sabadell (Barcelona), Spain

E-mail: josep.plana.riu@upc.edu

Abstract. Computational Fluid Dynamics for industrial applications usually relies on RANS
modeling instead of LES, as the latter is more expensive and requires much longer simulation
times. In order to reduce the computational cost of the simulation, an ensemble averaging
parallel-in-time approach is presented so that the simulation time of LES simulations can
be reduced up to overnight lengths by exploting the benefits of using sparse matrix-matrix
products, SpMM, instead of the classic sparse matrix-vector products, SpMV, or SpMV-like stencil-
based kernels, as it might lead to a speed-up given the proper conditions. These conditions are
tested for a classical differentially heated cavity benchmark, to apply later on to the simulation
of a CSP collector, as it is a well-known academic case that resembles the final geometry.

1. Introduction
When Computational Fluid Dynamics (CFD) is applied in real-world situations, the user expects
robust and stable methods, as failure would lead to increased costs, and a rather short completion
time. Combining these parameters is why RANS modeling is the most common technique for
industrial applications. However, RANS has some remarkable limitations which could be solved
by using Large Eddy Simulations (LES), even though the latter has much higher computational
costs.

Current CFD simulations are usually memory-bound [1]. This means that the performance
of the simulations is bounded by the maximum data transfer rate, instead of the number of
flops. Hence, one way of improving the performance would be reducing the amount of data to
be transferred. This concept is measured with the so-called arithmetic intensity (AI), which
is defined as the ratio between the number of floating point operations and the data to be
transferred.

In order to improve the AI, Krasnopolsky [2] generalized the computation of sparse matrix-
vector products (SpMV) within the solution to the Poisson equation, to consider a greater number
of right-hand-side (RHS) vectors, leading to what was called generalized sparse matrix-vector
product (GSpMV), as seen in figure 1, for the case of two RHS.

This generalization implied that, if all RHS vectors were sent together as a dense matrix, the
number of communications required was reduced, leading to an increase of the AI. With this



(
A

A

)(
u1

u2

)
A(u1 u2)

Figure 1. Left: structure in which two SpMV are done ”simultaneouslly” as two different
products. Right: structure in which these two SpMV are performed with only one call of matrix
A, in a GSpMV or SpMM. In this way, the left setup performs two products with 2 calls of A, while
for the right setup, even though two operations are performed, A is only called once, which
increases the arithmetic intensity of the operation.

concept, an ensemble averaging approach was considered so that, instead of running a single
long simulation for e.g. a channel flow, multiple shorter simulations were ran simultaneously,
to ensemble average the results of those different runs. In this study, Krasnopolsky found that
given the proper conditions of weight of the Poisson equation solution in the total iteration
time, as well as the ratio between the averaging and transition times, there was some significant
speed-up compared to the single simulation case.

Very recently, Alsalti-Baldellou et al. [3] introduced a similar concept in which symmetries in
the domain were exploited so that the SpMV could be transformed into, as it was called, sparse
matrix-matrix products, SpMM. By doing so, as Krasnopolsky, the AI was increased notably,
leading to speed-up even with the same number of compute units. Opposite to Krasnopolsky,
Alsalti-Baldellou et al. [3] applied this technique to all SpMV-like operations, thus leading to
bigger speed-ups than the original work. Moreover, this method was developed within the
HPC2 framework [4], in which its algebra-based approach allows the code to be portable to
both CPU- and GPU-accelerated nodes, making it flexible for modern supercomputers. Thus,
it could be applied to speed up CFD simulations to fulfill the goal of overnight LES, defined
as a fully-resolved LES simulation with a maximum wall clock time of 16 hours, given several
symmetries exploited.

In this conference paper, the latter approach from Alsalti-Baldellou et al. [3] will be applied
in the ensemble averaging parallel-in-time method from Krasnopolsky in a differentially heated
cavity as well as in a model of a CSP tower to test the possibility of performing industrial LES
simulations.

2. Methodology
The numerical solution to the incompressible Navier-Stokes equations is done with the following
semi-discrete set of equations, using the notation from Trias et al. [5],

Mus = 0c, (1a)

Ω
duc

dt
+ C(us)uc −

1

Re
Duc + ΩGcpc = 0c, (1b)

where M is the face-to-cell divergence operator, Ωc is a diagonal matrix containing the cell
volumes so that Ω = I3⊗Ωc; Cc is the cell-to-cell convective operator, so that C = I3⊗Cc; Dc is
the cell-to-cell diffusive operator, so that D = I3⊗Dc, Gc is the cell-to-cell gradient operator, us

is the velocity field defined at the faces, and I3 is the identity matrix of size 3. All the operators
are built to preserve the symmetries from the continuous operators, according to Trias et al. [5].
In order to integrate the set of equations in time, the standard fourth-order Runge-Kutta scheme
(RK4) will be used within the framework of the projection method of Sanderse and Koren [6],
given its improved stability properties compared to his lower-order counterparts.

This set of equations will be solved, thus, simultaneouslly for m simulations of identical
geometry and conditions in a parallel-in-time approach. By doing this, all simulations will be



run on the same device, which will replace automatically the SpMV operations by their SpMM

counterparts for all operators as well as products in the Poisson equation solution. This will be
implemented within the framework of the in-house code TermoFluids Algebraic (TFA), which
allows performing these SpMM operations, as it is built around HPC2.

As detailed by Krasnopolsky [2], starting from a simulation with m = 1, i.e. the usual way
of running a simulation, the time evolution of the run can be split into a transition time TT and
an averaging time TA, so that the total simulation time T1, with 1 referring to m = 1, can be
defined as,

T1 = TT + TA. (2)

From this point, a parallel-in-time simulation consisting of m simulations will have a total
simulation time of,

Tm = TT +
TA
m
, (3)

so that the transition time is preserved, as it is required for the development of the turbulence
and to obtain statistically independent seeds, yet the averaging time will be evenly split among
the different cases. From the definition of these magnitudes, the ratio between the averaging
and transition time can be defined as β = TA/TT .

In single-simulation setups, TT would correspond to the time that the flow, from the initial
state takes to fully develop into a turbulent flow. However, in this parallel-in-time setup, the
transition time will need to account for the time that the different simultaneous simulations take
to be statistically independent.

3. Performance improvements with SpMM

According to Alsalti-Baldellou et al. [3], the AI of a SpMM with d RHS, with the sparse matrix
A ∈ Rm×n, consisting of nnz(A) non-zero entries, can be expressed as

AISpMM(A, d) =
(2nnz(A) + 1)d

12nnz(A) + 4(m+ 1) + 8(m+ n+ 1)d
, (4)

so that, for instance, the arithmetic intensity of a SpMV can be stated as AISpMV(A) =
AISpMM(A, 1). Hence, the speed-up due to using a single SpMM instead of multiple SpMV finds
its upper bound as the ratio of both variables,

PSpMM,ub =
AISpMM(d)

AISpMV
, (5)

while the lower bound, PSpMM,lb, is obtained with the same ratio, yet computing the AI by
replacing nnz(A) by n in Eq.(4). For a rather dense case, where nnz(A)/m = 17, and n = d,
the representation of the bounds can be found in figure 2.

According to Krasnopolsky, the speed-up of m simultaneous runs in a parallel-in-time
simulation, Pm can be estimated with

Pm = m
1 + β

m+ β

t1
tm
, (6)

where tm is the wall clock time per iteration in a simulation with m RHS. From Eq. (6), it

can be split into two different parts. First of all, the term
1 + β

m+ β
only depends on parameters

that are user inputs and thus can be stated to be case-dependent, and does not depend at all



1 16 32 48 64 80 96 112 128
d

2.5

5.0

7.5

10.0

12.5

S
p

ee
d

-u
p

upper-bound

lower-bound

Figure 2. Theoretical speed-up bounds for a sparse matrix A with nnz(A)/m = 17.

on the architecture or code used. On the contrary, the second term
mt1
tm

is implementation

dependent, as it will depend both on the code as well as on m.
According to the implementation for a Runge-Kutta integration with s stages, the wall clock

time per iteration, with m RHS can be stated as

tm(s) = s

[
tPoisson(m) + 33tSpMM(m) +m

[
10taxty +

(
24 + 3

s− 1

2

)
taxpy

]]
, (7)

so that, if γ is the ratio between tm and tSpMM, and θ is the SpMM fraction within the Poisson

solver, the ratio
mt1
tm

can be rewritten as

s(θ + 33)

γ
(PSpMM − 1) + 1. (8)

Introducing Eq. (8) into Eq. (6), the expected speed-up for the parallel-in-time simulation
will be

Pm =
1 + β

m+ β

[
s(θ + 33)

γ
(PSpMM − 1) + 1

]
. (9)

4. Numerical results
In order to test the methodology, the case has been run in a differentially heated cavity with an
aspect ratio of 4, following the work from Trias et al. [7] for both laminar and turbulent cases.
In the case of this heat transfer problem, the governing equations have to be rewritten as

Mus = 0c, (10a)

Ω
duc

dt
+ C(us)uc −

Pr

Ra1/2
Duc + ΩGcpc + Ωfc = 0c, (10b)

Ω
dθc
dt

+ C(us)θc −
1

Ra1/2
Dθc = 0, (10c)

where Pr is the Prandtl number, Ra is the Rayleigh number, θ is the dimensionless
temperature, θ = (T − (TH + TC)/2)(TH − TC), being TH the temperature of the hot wall,
and TC the temperature of the cold wall, and fc the Boussinesq approximation, which is non-
zero in the direction of gravity and takes a value of fc · g/g = Prθ.

Hence, a domain of size 1.0×4.0×1.0 has been discretized using a 256×256×64 mesh, with
Ra=2×109 and Pr=0.71, being y the vertical direction. The grid is periodic in the z direction to



model an infinite domain so that the flow becomes statistically homogeneous in this direction.
The cavity will be then subjected to a hot wall, at temperature TH placed at x = 0; and a
cold wall, at TC placed at x = 1. Hence, applying the dimensionless temperature definition,
θ(0, y, z) = 0.5, and θ(1, y, z) = −0.5. All the walls will be considered as stationary and non-slip.
With regards to the timestep, it will be adapted with the maximum stable timestep from its
stability region, adapting the works from Trias and Lehmkuhl [8] to a standard fourth-order
explicit Runge-Kutta integration.

For the baseline case of 1 RHS, the simulation is run for 100000 iterations, as the time
averaging starts after 10000, which leads to β = 9. By doing so, the obtained fields (u, v, θ) are
presented in figure 3. The simulation was run in 1 JFF fourth-generation compute node (2x
Intel Xeon 6230, 38 computing CPUs + 2 halo update CPUs), in a time per iteration of 2.539 s.

Figure 3. Average fields after 100000 iterations of dimensionless temperature (left), horizontal
velocity (centre), and vertical velocity (right), for a differentially heated cavity of aspect ratio
4, full of air, with Ra = 2× 109, simulated with 1 RHS.

On the other hand, the same case has been run with 2 RHS, for a total of 55000 iterations. In
this case, the time per iteration is 5.807 s, which does not lead to eventual speed-up at the end
of the simulation. For 4 RHS, and a total of 33500 iterations, the time per iteration obtained
was of 14.840 s, which is still worse than the 2 RHS case. The results are summarized in Tab.
1. This lack of speed-up could be explained by the fact that the original 1 RHS case fits in the
cache memory of the system used to run the case and, thus, it is not more efficient to run a
shorter, and more compute-intense case, than a longer, less compute-intense case.

5. Conclusion
In this conference paper, the methodology used to extend the work from Krasnopolsky [2], in
which he generalized the SpMV kernel to a SpMM for the solution of the Poisson equation; to the
rest of the operators (gradient, divergence) of the whole simulation so that the improved AI of
the operation can be completely exploited, as in the work from Alsalti-Baldellou et al. [3]. This



Table 1. Performance figures obtained after the test runs for 1, 2, and 4 RHS in a differentially
heated cavity filled with air, with Ra = 2× 109.

Number of RHS Time per iteration [s] Total wall clock time [s] Speed-up

1 2.539 253900 1.0
2 5.807 319385 0.795
4 14.840 497130 0.511

inherent speed-up to the simulations just by simulating multiple cases simultaneously might as
well be exploited to reduce the wall clock time required in LES simulations so that they run
in 16 hours. This would thus increase the accuracy of the industrial simulations, which could
benefit the design process while keeping a reasonable wall clock time.

The method has been tested for a differentially heated cavity filled with air with Ra = 2×109,
and Pr = 0.71, as it requires using the methodology not only for the classical mass and
momentum equations but also extending it to the energy equation. This is relevant as the
case will be applied to a CSP collector characterized by a similar geometry.

These numerical experiments show that, for meshes that are not big enough, i.e. 256×256×64
for one JFF fourth-generation compute node, there is no speed-up as the operators fit in cache
memory, which has a faster access. Thus, it is more efficient to run a longer and lighter simulation
instead of a short, more compute-intense simulation. This will also be applied for a differentially
heated cavity case with a larger mesh, more suitable for DNS or LES simulations, in order to
check the existence of speed-up or not. Hence, the load per CPU should be increased from the
current 110k control volumes per CPU, since this mesh will most likely fit in the cache memory.

Acknowledgements
The investigations presented in this abstract are supported by the Ministerio de Economı́a y
Competitividad, Spain, SIMEX project (PID2022-142174OB-I00). J. P-R. is also supported by
the Catalan Agency for Management of University and Research Grants (AGAUR). The authors
thankfully acknowledge these institutions.

References
[1] Williams S et al 2009 Commun. ACM 52 65-76
[2] Krasnopolsky B 2018 Comp. Phys. Comm. 229 8-19
[3] Alsalti-Baldellou A et al 2023 J. Comp. Phys. 486 112133
[4] Álvarez X et al 2018 Comp. and Fl. 173 285-92
[5] Trias F X et al 2014 J. Comp. Phys. 258 246-67
[6] Sanderse B and Koren B 2012 J. Comp. Phys. 231 3041-63
[7] Trias F X et al 2010 Int. J. Heat Mass Transfer 53 665-73
[8] Trias F X and Lehmkuhl O 2011 Numer. Heat Transfer B 60 116-34


