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Abstract. In the last decades, computational fluid dynamics (CFD) has become a standard
design tool in many fields, such as the automotive, aeronautical, and renewable energy industries.
The driving force behind this is the development of numerical techniques in conjunction with the
progress of high-performance computing (HPC) systems. However, simulation time remains the
most limiting factor for large-eddy simulations (LES) to be adopted in the industry. A consensus
exists that, to be feasible, LES simulations should be completed overnight In this context, this
work assesses the feasibility of overnight LES simulations on GPU-accelerated supercomputers
with TFA, our novel in-house code, which relies on a symmetry-preserving discretisation for
unstructured collocated grids that, apart from being virtually free of artificial dissipation, is
shown to be unconditionally stable. The study cases will be taken from central receivers used
in concentrated solar power (CSP) plants, and a comparison with open-source CFD codes will
be made.

1. Introduction
In the last decades, CFD has become a standard design tool in many fields, such as the
automotive, aeronautical, and renewable energy industries. The driving force behind this is
the development of numerical techniques in conjunction with the progress of high-performance
computing (HPC) systems. However, progress is nowadays hindered by its legacy from the 90-
2000s. The reasons are two-fold. Firstly, the design of digital processors constantly evolves to
overcome limitations and bottlenecks. The formerly compute-bound nature of processors led
to compute-centric programming languages and simulation codes. However, raw computing
power grows faster than the memory bandwidth, turning around the problem and leading
to increasingly complex memory hierarchies that make optimising traditional applications a
cumbersome task. Moreover, new parallel programming languages emerged to target modern
hardware, e.g., CUDA, HIP and oneAPI, and porting algorithms and applications has become
restrictive. For this reason, designing more abstract modular codes kept gaining interest.
For instance, the PyFR framework (see [1]) is mostly based on matrix multiplications and



point-wise operations. Other examples are Kokkos and RAJA libraries (see [2, 3]), which
provide an abstraction layer aiming at providing performance portability. Remarkably enough,
implementing modular codes allow linking to standard libraries optimized for particular
architectures, in addition to specialized in-house implementations. Examples of this include
cuSPARSE and clSPARSE (see [4, 5]).

Secondly, legacy numerical methods chosen to solve (quasi)steady problems using RANS
models are inappropriate for more accurate (and expensive) techniques such as large-eddy
simulation (LES) or direct numerical simulation (DNS). We aim to interlace these two pillars
with the final goal of enabling LES and DNS of industrial applications to be efficiently carried
out on modern HPC systems while keeping codes easy to port, optimise, and maintain. In this
regard, TermoFluids Algebraic (TFA), our novel in-house code, adopts the fully-conservative
discretisation for collocated unstructured grids proposed in [6]: it constitutes a very robust
approach that can be easily implemented in existing codes such as OpenFOAM in [7].

The main recognised limitations of LES in the industry are their computational cost and
the wall-clock simulation time. Thanks to the above-explained advent of new computational
architectures, the former is becoming less and less critical, whereas the latter is still the most
limiting factor precluding LES from being routinely used in the industry. For that to be possible,
the consensus is that widespread adoption in the industry begins when a run can be carried out
overnight, see, for instance, [8]. Namely, the industry is governed by shortening design cycles,
faster time-to-market, and increased expectations of operability and reliability for established
product lines. Therefore, it is willing to spend on hardware and software as long as analysts
can obtain meaningful insights in a time commensurate with design cycles. Overnight runs
fit this timescale, and in this context, we aim to answer the following question: can we use
LES modelling to simulate complex industrial flows with overnight simulations accurately?

2. Rethinking CFD for present and future portability
Building codes on top of a minimal set of kernels is the cornerstone for portability and
optimisation, which became crucial after the increasing variety of computational architectures
and vendors competing in the exascale race. Moreover, the hybridisation of HPC systems
imposes additional constraints since heterogeneous computations are usually needed to engage
processors and massively parallel accelerators efficiently. This involves different parallel
paradigms and computing frameworks and requires complex data exchanges between computing
units. However, legacy CFD codes usually rely on sophisticated data structures and computing
subroutines, making portability extremely complex. In this context, we proposed a completely
different approach [9]. That is, making CFD algorithms rely on a very reduced set of algebraic
kernels, e.g., the sparse matrix-vector product (SpMV), the dot product (dot) and the linear
combination of vectors (axpy).

Relying on a minimal set of algebraic kernels enables code portability and facilitates its
maintenance and optimisation. However, it comes together with two types of challenges and
restrictions. Firstly, computational challenges like the low arithmetic intensity of the SpMV, which
can be alleviated by using the more compute-intensive sparse matrix-matrix product (SpMM).
This is possible in a great variety of situations, such as with multiple transport equations, in
cases with spatial reflection symmetries, parallel-in-time simulations and, in general, whenever
dealing with matrices, Â ∈ RN×N , decomposable as the Kronecker product of a diagonal matrix,
C ≡ diag(c) ∈ RK×K , and a sparse matrix, A ∈ RN/K×N/K , i.e., Â = C⊗A. Indeed, under such
circumstances, the standard SpMV can be replaced with the SpMM:

y = Âx =⇒ (y1, . . . ,yK) = A (c1x1, . . . , cKxK) , (1)

where xi,yi ∈ RN/K . By doing so, matrix coefficients are recycled, thus significantly reducing
the memory accesses and the memory footprint of the operators.



Secondly, algorithmic challenges such as reformulating classical flux limiters [10] or the
boundary conditions must also be addressed. The latter can be naturally solved by casting
boundary conditions into an affine transformation:

φh → Aφh + bh, (2)

allowing a purely algebraic treatment of virtually all existing boundary conditions both for
explicit and implicit time-integration methods. Furthermore, an accurate and portable approach
solely relying on the above-mentioned algebraic kernels for bounding the eigenvalues of the
convective and diffusive operators has also been proposed.

3. Performance analysis and application to CSP technologies
The performance analysis of the code will be done in two stages. Firstly, we will focus on
the performance analysis for a given mesh without considering the results’ accuracy. The
comparison will be made with the open-source CFD code OpenFOAM. Several factors will
be analysed separately and compared, such as exploiting the shared-memory paradigm with
OpenMP, increasing the arithmetic intensity through the strategies mentioned above, and the
effect of GPUs. In the second stage, a relevant case from the CSP industry (see figure 1) will be
studied as a demonstrative test case to assess the feasibility of overnight industrial simulations.

Figure 1. CSP simulation of a central tower receiver.

All the numerical experiments were conducted on the Snellius supercomputer at SURF. The
CPU executions were run on nodes equipped with two AMD Rome 7H12 (64 cores, 2.6 GHz, 256
MB L3 cache and 204.8 GB/s memory bandwidth) linked to 256 GB of RAM and interconnected
through HDR100 ConnectX-6. On the other hand, GPU executions were run on nodes equipped
with two Intel Xeon Platinum 8360Y (36 cores, 2.4 GHz, 54 MB L3 cache and 204.8 GB/s
memory bandwidth), accelerated with four NVIDIA A100 (9.7 TFLOPS with FP64, 40GB
HBM2e and 1.935 GB/s memory bandwidth), linked to 512 GB of RAM, and interconnected
through two HDR100 ConnectX-6, two 25GbE SFP28 LOM and one 1GbE RJ45 LOM, adding
up to 251Gb/s.

The domain considered is analogous to figure 2. As discussed in [11], we only discretised a
fraction of it in accordance with the number of symmetries being exploited. Namely, a half, a
quarter and an eighth of the domain when exploiting s = 1, 2, 3 symmetries, respectively. Then,
given the mesh resolution demands of high-fidelity simulations of the CSP case studied, the
discretisation considered had 512 million grid points (see [12, 13]).

To evaluate the parallel efficiency of TFA and compare it to that of OpenFOAM, we
benchmarked OpenFOAM’s PISO against TFA’s fully-explicit fractional step method. Given
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Figure 2. Example of portions meshed when exploiting s reflection symmetries.

that both algorithms cannot be directly compared, we limited these preliminary results to
analysing how both codes scale. Figure 3a presents their strong scalability on CPUs, including,
for TFA, the scalability of applying the discrete Laplacian, gradient and divergence operators.
As expected, OpenFOAM’s MPI-only parallelisation (which assigns an MPI process per CPU
core) resulted in larger communication overheads and, consequently, poorer parallel efficiencies.
Conversely, TFA’s multithreaded parallelism resulted in significantly higher efficiencies as the
number of processors increased. As explained earlier, TFA’s adoption of an “algebraic approach”
grants easy portability to massively parallel accelerators. Figure 3b displays its scalability on
GPU-accelerated nodes.
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Figure 3. Strong scalability analysis with 70% to 100% parallel efficiency range in light grey.

In order to assess the feasibility of overnight LES simulations, the CSP case of figure 1 has
been studied. More concretely, we recalled the excellent weak scaling of TFA, as demonstrated in
[9] by the almost perfect weak scalability of SpMV. Then, by picking from figure 3 the CPU work
loads of 1024 and 4096 CPUs, which correspond to 95% and 65% parallel efficiencies, we could
approximate the maximum simulation sizes that TFA could afford in overnight simulations,
i.e., taking at most 16 wall-clock hours. This was very convenient given the limited availability
of computing resources, as it allowed us to obtain low-cost approximations of the positive impact
of exploiting symmetries and leveraging GPUs.

On the one hand, we can infer from figure 3 the time a time-step takes, T eff
∆t, at a given parallel

efficiency and on a mesh of size Nref. On the other hand, the number of time-steps required to
simulate τ time units can be approximated as follows:

n∆t =
τ

∆t
. (3)



Then, recalling that LES are generally convection-dominated, its time-step can be approximated
as follows:

∆t = min

{
∆xi
|ui|

}
≃ c

3
√
N

, (4)

where ∆x, u and N stand for the cell length, local velocity and mesh size, respectively. Then,
from equation (4), ∆t is (approximately) inversely proportional to 3

√
N and, as shown in [14],

the correction constant c typically takes values around 0.3. Therefore, the wall-clock time of a
simulation of size N can be approximated as:

TLES(N) ≃ n∆t
T eff
∆tN

Nref
=

τT eff
∆t

cNref

3
√
N4. (5)

When it comes to τ , it is also shown in [14] that after around 100 time-units the flow starts to
become statistically stationary. Therefore, figure 4 considers the wall-clock time for simulating
τ = 150 time units.
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Figure 4. Estimation of largest affordable overnight simulations in up to 16 wall-clock time
hours. Results for several efficiencies according to figure 3.

As expected, increasing the number of CPUs allows for larger overnight simulations, but
this comes at the cost of lower efficiencies. According to figure 4b, restricting ourselves to 65%
efficiencies allows for around 50M overnight LES simulations. Then, thanks to exploiting up to
two symmetries, 75M simulations become affordable. Nonetheless, as shown in [12, 13], high-
fidelity simulations of CSP applications would easily require 300 to 500 million-sized grids. As a
result, leveraging massively-parallel accelerators is imperative. In this sense, one of the critical
advantages of TFA is its modular design, which provides support for both CUDA and OpenCL,
therefore covering virtually all GPU vendors. Given our limited access to the GPU nodes, the
CPU tests could not be extended to GPUs. As a result, we were forced to approximate its
performance by applying a conservative speed-up factor based on past results, see [9]. More
concretely, by assuming a 5x GPU speed-up, figure 4b illustrates how up to 250M overnight
simulations can be tackled.

4. Conclusions
This conference paper presents a symmetry-preserving discretisation for unstructured collocated
grids that is virtually free of artificial dissipation and unconditionally stable. The proposed
discretisation relies on a minimal set of algebraic kernels to ensure cross-platform portability,
making it suitable for complex geometries and modern computational architectures.



The paper addresses several challenges related to the algebraic approach, such as the low
arithmetic intensity of the sparse matrix-vector product, reformulating boundary conditions
and flux limiters, and efficiently computing eigenbounds to determine the time-step.

The advantages and disadvantages of the proposed approach are analysed by comparing
our in-house code, TFA, with OpenFOAM. The performance analysis demonstrates that the
algebraic approach in TFA scales better thanks to its hybrid MPI+OpenMP parallelisation,
leading to higher efficiencies as the number of processors increases.

Furthermore, this paper evaluates the feasibility of overnight industrial LES simulations.
With this aim, we recall a relevant case from the CSP industry to estimate the largest affordable
overnight simulations. As it is shown, leveraging massively-parallel accelerators such as GPUs
becomes crucial for meeting the industry demands, and we estimate that TFA could tackle up
to 250M overnight simulations.

Overall, this work shows promising results for enabling reliable DNS and LES simulations of
turbulent flows in industrial applications with robust and stable numerical methods on modern
high-performance computing systems. It demonstrates the potential of the algebraic approach
to achieve performance portability while proposing strategies to increase the arithmetic intensity
of the simulations.

Regarding future work, we aim to extend the scalability tests both on CPUs and GPUs.
Additionally, we plan to enrich the comparison between TFA and OpenFOAM by studying
their cost vs accuracy.
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[10] Valle N, Álvarez-Farré X, Gorobets A, Castro J, Oliva A and Trias F X 2022 Comput. Phys. Commun. 271
108230
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