On the feasibility of overnight industrial high-fidelity simulations of CSP technologies on modern HPC systems

A.Alsalti-Baldellou^{1,2} G.Colomer³ J.A.Hopman¹ X.Álvarez-Farré⁴ A.Gorobets⁵ <u>F.X.Trias</u>¹ C.D.Pérez-Segarra¹ A.Oliva¹

> ¹Heat and Mass Transfer Technological Center, Technical University of Catalonia ²Department ICEA, University of Padova, Italy ³Termo Fluids SL, http://www.termofluids.com/ ⁴High-Performance Computing Team, SURF, The Netherlands ⁵Keldysh Institute of Applied Mathematics of RAS, Russia

9th edition of the European Thermal Sciences Conference June 10-13 2024 – Bled, Slovenia

Algebra-based design

Addressing the challenges 0000000

Numerical results

Concluding remarks 000

Index

 Motivation Performance portability 2 Algebra-based design HPC² • TFA Addressing the challenges Numerical challenges Computational challenges 4 Numerical results Exploiting symmetries • TFA vs OpenFOAM Towards overnight LES 6 Concluding remarks

Algebra-based design

Addressing the challenges 0000000

Numerical results

Concluding remarks

Motivation

Motivation	Algebra-based design	Addressing the challenges	Numerical results	Concluding remarks
0000	000	0000000	000000000000	000

Changing landscape...

Rank	System	Cores	Rmax (PFlop/s)	Rpeak (PFlop/s)	Power (kW)
1	Frontier - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE D0E/SC/Oak Ridge National Laboratory United States	8,699,904	1,194.00	1,679.82	22,703
2	Supercomputer Fugaku - Supercomputer Fugaku, A64FX 48C 2.2GHz, Tofu interconnect D, Fujitsu RIKEN Center for Computational Science Japan	7,630,848	442.01	537.21	29,899
3	LUMI - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE EuroHPC/CSC Finland	2,220,288	309.10	428.70	6,016
4	Leonardo - BullSequana XH2000, Xeon Platinum 8358 32C 2.6GHz, NVIDIA A100 SXM4 64 GB, Quad-rail NVIDIA HDR100 Infiniband, Atos EuroHPC/CINECA Italy	1,824,768	238.70	304.47	7,404

Motivation	
0000	

Addressing the challenges

Numerical results

Concluding remarks

Changing landscape, changing codes

Motivation ○○○● Algebra-based design

Addressing the challenges

Numerical results

Concluding remarks

Towards performance portability

Stencil-based design

Looping across the mesh performing local operations

Motivation ○○○● Algebra-based design

Addressing the challenges

Numerical results

Concluding remarks

Towards performance portability

Stencil-based design

Looping across the mesh performing local operations

• Pros: More flexible and compute-intensive, lower memory requirements

Motivation	
0000	

Addressing the challenges 0000000

Numerical results

Concluding remarks 000

Towards performance portability

Stencil-based design

Looping across the mesh performing local operations

- Pros: More flexible and compute-intensive, lower memory requirements
- **Cons:** More challenging portability probably relying on "hardware-agnostic" APIs (eg, OpenMP and OpenACC) or libraries (eg, Kokkos and RAJA)

Motivation	
0000	

Addressing the challenges 0000000

Numerical results

Concluding remarks 000

Towards performance portability

Stencil-based design

Looping across the mesh performing local operations

- Pros: More flexible and compute-intensive, lower memory requirements
- **Cons:** More challenging portability probably relying on "hardware-agnostic" APIs (eg, OpenMP and OpenACC) or libraries (eg, Kokkos and RAJA)

Algebra-based design

Express discrete operators as sparse matrices and fields as vectors

Motivation	
0000	

Addressing the challenges

Numerical results

Concluding remarks 000

Towards performance portability

Stencil-based design

Looping across the mesh performing local operations

- Pros: More flexible and compute-intensive, lower memory requirements
- **Cons:** More challenging portability probably relying on "hardware-agnostic" APIs (eg, OpenMP and OpenACC) or libraries (eg, Kokkos and RAJA)

Algebra-based design

Express discrete operators as sparse matrices and fields as vectors

• **Pros:** All operations reduce to 3 linear algebra kernels generally available in standard libraries (eg, Intel MKL, cuSPARSE, clSPARSE)

Motivation	
0000	

Addressing the challenges 0000000

Numerical results

Concluding remarks 000

Towards performance portability

Stencil-based design

Looping across the mesh performing local operations

- Pros: More flexible and compute-intensive, lower memory requirements
- **Cons:** More challenging portability probably relying on "hardware-agnostic" APIs (eg, OpenMP and OpenACC) or libraries (eg, Kokkos and RAJA)

Algebra-based design

Express discrete operators as sparse matrices and fields as vectors

- **Pros:** All operations reduce to 3 linear algebra kernels generally available in standard libraries (eg, Intel MKL, cuSPARSE, clSPARSE)
- **Cons:** Less compute-intensive, higher memory requirements, requires algorithmic reformulation

Algebra-based design ●○○ Addressing the challenges 0000000

Numerical results

Concluding remarks

Algebra-based design

Algebra-based design

Addressing the challenges

Numerical results

Concluding remarks

HPC² library

HPC² library

- Sparse linear algebra code
- Modular design ensuring natural portability

X. Álvarez-Farré et al. (2018). "HPC² – A fully-portable, algebra-based framework for heterogeneous computing. Application to CFD" in *Computers & Fluids*.

A. Alsalti-Baldellou et al. (2023). "Exploiting spatial symmetries for solving Poisson's equation" in *Journal of Computational Physics*.

Algebra-based design

Addressing the challenges

Numerical results

Concluding remarks 000

HPC² library

HPC² library

- Sparse linear algebra code
- Modular design ensuring natural portability
- In C++ and currently supporting MPI+OpenMP, CUDA and OpenCL
- Implements a few highly optimized kernels. Namely:
 - Matrix-vector product
 - Linear combination of vectors
 - Dot product of vectors

X. Álvarez-Farré et al. (2018). "HPC² – A fully-portable, algebra-based framework for heterogeneous computing. Application to CFD" in *Computers & Fluids*.

A. Alsalti-Baldellou et al. (2023). "Exploiting spatial symmetries for solving Poisson's equation" in *Journal of Computational Physics*.

Algebra-based design

Addressing the challenges

Numerical results

Concluding remarks 000

HPC² library

HPC² library

- Sparse linear algebra code
- Modular design ensuring natural portability
- In C++ and currently supporting MPI+OpenMP, CUDA and OpenCL
- Implements a few highly optimized kernels. Namely:
 - Matrix-vector product
 - Linear combination of vectors
 - Dot product of vectors
- Als includes specialized kernels and Poisson solvers

X. Álvarez-Farré et al. (2018). "HPC² – A fully-portable, algebra-based framework for heterogeneous computing. Application to CFD" in *Computers & Fluids*.

A. Alsalti-Baldellou et al. (2023). "Exploiting spatial symmetries for solving Poisson's equation" in *Journal of Computational Physics*.

Algebra-based design

Addressing the challenges

Numerical results

Concluding remarks 000

TFA library

TFA library

- Incompressible CFD simulation code
- Fully-conservative discretisation for collocated unstructured grids

F.X. Trias et al. (2014). "Symmetry-preserving discretization of Navier-Stokes equations on collocated unstructured meshes" in *Journal of Computational Physics*.

X. Álvarez-Farré et al. (2021). "A hierarchical parallel implementation for heterogeneous computing. Application to algebra-based CFD simulations on hybrid supercomputers" in *Computers & Fluids*.

Algebra-based design

Addressing the challenges

Numerical results

Concluding remarks 000

TFA library

TFA library

- Incompressible CFD simulation code
- Fully-conservative discretisation for collocated unstructured grids
- Algebra-based, formulated in terms of:
 - Sparse matrix-vector product
 - Linear combination of vectors
 - Dot product of vectors

F.X. Trias et al. (2014). "Symmetry-preserving discretization of Navier-Stokes equations on collocated unstructured meshes" in *Journal of Computational Physics*.

X. Álvarez-Farré et al. (2021). "A hierarchical parallel implementation for heterogeneous computing. Application to algebra-based CFD simulations on hybrid supercomputers" in *Computers & Fluids*.

Algebra-based design

Addressing the challenges \bullet

Numerical results

Concluding remarks

Addressing the challenges

Algebra-based design

Addressing the challenges $\bigcirc \bullet \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

Numerical results 00000000000000 Concluding remarks 000

Algorithmic reformulation

Some extra effort is required to reformulate algebraically certain operations applying "locally".

Recently, it was shown how to effectively implement flux limiters and CFL-like time-steps.

N. Valle et al. (2022). "On the implementation of flux limiters in algebraic frameworks" in *Computer Physics Communications*.

F.X. Trias et al. (2023). "An Efficient Eigenvalue Bounding Method: CFL Condition Revisited" in SSRN.

Algebra-based design

Addressing the challenges $\bigcirc \bullet \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

Numerical results

Concluding remarks 000

Algorithmic reformulation

Some extra effort is required to reformulate algebraically certain operations applying "locally".

Recently, it was shown how to effectively implement flux limiters and CFL-like time-steps.

Algebra-based boundary conditions

Virtually all boundary conditions can be expressed as an affine transformation:

 $\psi_h \to A\psi_h + b_h,$

where fluxes are imposed through A and values through b_h

N. Valle et al. (2022). "On the implementation of flux limiters in algebraic frameworks" in *Computer Physics Communications*.

F.X. Trias et al. (2023). "An Efficient Eigenvalue Bounding Method: CFL Condition Revisited" in SSRN.

Algebra-based design

Addressing the challenges

Numerical results

Concluding remarks

New opportunities: exploiting regular geometries - 1

F. Dabbagh et al. (2017) in *Physics of Fluids*

D.E. Aljure et al. (2018) in Journal of Wind Engineering and Industrial Aerodynamics

L. Paniagua et al. (2014) in Numerical Heat Transfer, Part B: Fundamentals

M. Calaf et al. (2010) in Physics of Fluids

3

Algebra-based design

Addressing the challenges

Numerical results

Concluding remarks

New opportunities: exploiting regular geometries - 2

** ×	×	×	×	×		· ·	· ·	ד - רוח ו.ו.ווו ו.ווו			E ⊒;∃ : 		= E = 	= = =	E ₿∃∃ ¦ - :- :	ŧ≕≡ ¦∵:	「王豆園 「エロ団」 「・」・1・144
×××	×	×	×	×	• • •	+ · ! !	·	III I.W III	HI W			+ .	•	•		+ ! . !	- FIH . .W
×××	×	×	×	×		 	· ·					+ •	•	• •		+ •	- ⊢ + - , - '
×××	×	×	×	×	•	¦ •			iii M			¦ .	•	•		+ .	
×××	×	×	×	×	•			1.1.W	××	< x	×	ж	×	•	•		
×× ×	×	×	×	×				· · · · · · · · · · · · · · · · · · ·	***	« ×	×	×	×	•		· ·	· · · · · · · · · · · · · · · · · · ·
×××	×	×	×	×					***	< ×	ж	ж	×	•	•		· · · · · · · · · · · · · · · · · · ·
×* × ×* ×	× ×	×	× × ×	× ×	 = 3 =	L E B E E	¦ È⊒≣	王王正國	**	< x < x	* *	*	* * *			 	「ここの
(a) 1 symmetry									(b)	2 syı	nmet	ries					

Figure: 2D meshes with varying number of symmetries.

Algebra-based design

Numerical results

Concluding remarks

New opportunities: exploiting regular geometries - 3

Figure: "Mirrored" ordering on 2D meshes with a varying no. of symmetries.

Algebra-based design

Addressing the challenges

Numerical results

Concluding remarks

New opportunities: exploiting regular geometries - 4

Figure: "Mirrored" partitioning on an unstructured 2D meshes with 2 symmetries.

Algebra-based design

Addressing the challenges $\circ \circ \circ \circ \circ \circ \circ \bullet$

Numerical results

Concluding remarks

Computational advantages

On a domain with n_b repeated/mirrored subdomains, virtually all operators satisfy (or a compatible expression):

$$\bar{H} = \mathbb{I}_{n_b} \otimes H,\tag{1}$$

where $\bar{H} \in \mathbb{R}^{n \times n}$ stands for the operator itself and $H \in \mathbb{R}^{n/n_b \times n/n_b}$ for its restriction to the base mesh.

A. Alsalti-Baldellou et al. (2023). "Lighter and faster simulations on domains with symmetries", submitted.

Algebra-based design

Numerical results

Concluding remarks

Computational advantages

On a domain with n_b repeated/mirrored subdomains, virtually all operators satisfy (or a compatible expression):

$$\bar{H} = \mathbb{I}_{n_b} \otimes H,\tag{1}$$

where $\bar{H} \in \mathbb{R}^{n \times n}$ stands for the operator itself and $H \in \mathbb{R}^{n/n_b \times n/n_b}$ for its restriction to the base mesh. Then, the standard SpMV on \bar{H} :

$$y = \begin{pmatrix} H & & \\ & \ddots & \\ & & H \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_{n_b} \end{pmatrix} \in \mathbb{R}^n,$$
(2)

A. Alsalti-Baldellou et al. (2023). "Lighter and faster simulations on domains with symmetries", submitted.

Algebra-based design

Numerical results 000000000000000 Concluding remarks

Computational advantages

On a domain with n_b repeated/mirrored subdomains, virtually all operators satisfy (or a compatible expression):

$$\bar{H} = \mathbb{I}_{n_b} \otimes H,\tag{1}$$

where $\bar{H} \in \mathbb{R}^{n \times n}$ stands for the operator itself and $H \in \mathbb{R}^{n/n_b \times n/n_b}$ for its restriction to the base mesh. Then, the standard SpMV on \bar{H} :

$$y = \begin{pmatrix} H & & \\ & \ddots & \\ & & H \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_{n_b} \end{pmatrix} \in \mathbb{R}^n,$$
(2)

can be replaced with an SpMM on H:

$$(y_1 \dots y_{n_b}) = H(x_1 \dots x_{n_b}) \in \mathbb{R}^{n/n_b \times n_b}.$$
(3)

A. Alsalti-Baldellou et al. (2023). "Lighter and faster simulations on domains with symmetries", submitted.

Algebra-based design

Numerical results 000000000000000 Concluding remarks

Computational advantages

On a domain with n_b repeated/mirrored subdomains, virtually all operators satisfy (or a compatible expression):

$$\bar{H} = \mathbb{I}_{n_b} \otimes H,\tag{1}$$

where $\bar{H} \in \mathbb{R}^{n \times n}$ stands for the operator itself and $H \in \mathbb{R}^{n/n_b \times n/n_b}$ for its restriction to the base mesh. Then, the standard SpMV on \bar{H} :

$$y = \begin{pmatrix} H & & \\ & \ddots & \\ & & H \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_{n_b} \end{pmatrix} \in \mathbb{R}^n,$$
(2)

can be replaced with an SpMM on H:

$$(y_1 \dots y_{n_b}) = H(x_1 \dots x_{n_b}) \in \mathbb{R}^{n/n_b \times n_b}.$$
(3)

SpMV vs SpMM

- SpMM reads $H n_b$ less times
- \bar{H} takes n_b times more memory than H

A. Alsalti-Baldellou et al. (2023). "Lighter and faster simulations on domains with symmetries", submitted.

Algebra-based design

Addressing the challenges 0000000

Numerical results

Concluding remarks

Numerical results

Algebra-based design

Addressing the challenges

Numerical results

Concluding remarks

Exploiting symmetries - 1

Figure: Top: 17.7M wall-bounded pin matrix heat exchanger. Bottom: 15.5M cubic mesh.

Algebra-based design

Addressing the challenges

Numerical results

Concluding remarks

Exploiting symmetries - 2

Figure: SpMM speedups on a fixed problem size. Left: structured. Right: unstructured.

Algebra-based design

Addressing the challenges 0000000

Numerical results

Concluding remarks

Exploiting symmetries - 3

Figure: SpMM speedups on a fixed base mesh. Left: structured. Right: unstructured.

Algebra-based design

Addressing the challenges

Numerical results

Concluding remarks

Exploiting symmetries - 4

Figure: SpMM's roofline analysis. Dashed: fixed problem size. Solid: fixed base mesh.

Algebra-based design

Addressing the challenges

Numerical results

Concluding remarks

Exploiting symmetries - 5

Figure: Operators' memory footprint. Left: structured. Right: unstructured.

Algebra-based design

Addressing the challenges

Numerical results

Concluding remarks

Exploiting symmetries - 5

Figure: Operators' memory footprint. Left: structured. Right: unstructured.

More generally: repeated geometries lead to n_b times smaller footprints!

Algebra-based design

Addressing the challenges

Numerical results

Concluding remarks

Test-case: CSP central tower receiver

Assumptions for industrial LES

LES limitation to be routinely applied in the industry: to be completed overnight.

- Mesh resolution: 300M-500M grid
- Simulated time period: 150 time units
- Wall-clock time limit: 16 hours

R. Löhner et al. (2011). "Overnight industrial LES for external aerodynamics" in *Computers & Fluids*.

Algebra-based design

Addressing the challenges

Numerical results

Concluding remarks

TFA vs OpenFOAM: strong scalability

Figure: Scalability of TFA (MPI+OpenMP) vs OpenFOAM (MPI-only) down to 70% efficiency on a 500M CSP structured grid. Ran on AMD EPYC Rome nodes.

Algebra-based design

Addressing the challenges

Numerical results

Concluding remarks

Towards overnight LES

Assuming constant Δt , to simulate τ time units, the required time-steps are:

$$n_{\Delta t} = \frac{\tau}{\Delta t}.$$

F.X. Trias et al. (2010). "Direct numerical simulation of a differentially heated cavity of aspect ratio 4 with Rayleigh numbers up to 10^{11} – Part I: Numerical methods and time-averaged flow" in *International Journal of Heat and Mass Transfer*.

Algebra-based design

Addressing the challenges

Numerical results

Concluding remarks

Towards overnight LES

Assuming constant Δt , to simulate τ time units, the required time-steps are:

$$n_{\Delta t} = \frac{\tau}{\Delta t}.$$

Recalling that LES are generally convection-dominated, for some correction constant c:

$$\Delta t = \min\left\{\frac{\Delta x_i}{|u_i|}\right\} \simeq \frac{c}{\sqrt[3]{N}},$$

where Δx , u and N stand for the cell length, local velocity and mesh size.

F.X. Trias et al. (2010). "Direct numerical simulation of a differentially heated cavity of aspect ratio 4 with Rayleigh numbers up to 10^{11} – Part I: Numerical methods and time-averaged flow" in *International Journal of Heat and Mass Transfer*.

Algebra-based design

Addressing the challenges

Numerical results

Concluding remarks

Towards overnight LES

Assuming constant Δt , to simulate τ time units, the required time-steps are:

$$n_{\Delta t} = \frac{\tau}{\Delta t}.$$

Recalling that LES are generally convection-dominated, for some correction constant c:

$$\Delta t = \min\left\{\frac{\Delta x_i}{|u_i|}\right\} \simeq \frac{c}{\sqrt[3]{N}},$$

where Δx , u and N stand for the cell length, local velocity and mesh size. Let $T_{\Delta t}^{\text{eff}}$ be the wall-clock time per time-step at a given parallel efficiency and on a mesh of size N_{ref} . Then, the wall-clock time of an LES of size N can be approximated as:

$$T_{\text{LES}}(N) \simeq n_{\Delta t} \frac{T_{\Delta t}^{\text{eff}} N}{N_{\text{ref}}} = \frac{\tau T_{\Delta t}^{\text{eff}}}{c N_{\text{ref}}} \sqrt[3]{N^4}.$$

F.X. Trias et al. (2010). "Direct numerical simulation of a differentially heated cavity of aspect ratio 4 with Rayleigh numbers up to 10^{11} – Part I: Numerical methods and time-averaged flow" in *International Journal of Heat and Mass Transfer*.

Algebra-based design

Addressing the challenges

Numerical results

Concluding remarks

Towards overnight LES

Assuming constant Δt , to simulate τ time units, the required time-steps are:

$$n_{\Delta t} = \frac{\tau}{\Delta t}.$$

Recalling that LES are generally convection-dominated, for some correction constant c:

$$\Delta t = \min\left\{\frac{\Delta x_i}{|u_i|}\right\} \simeq \frac{c}{\sqrt[3]{N}},$$

where Δx , u and N stand for the cell length, local velocity and mesh size. Let $T_{\Delta t}^{\text{eff}}$ be the wall-clock time per time-step at a given parallel efficiency and on a mesh of size N_{ref} . Then, the wall-clock time of an LES of size N can be approximated as:

$$T_{\text{LES}}(N) \simeq n_{\Delta t} \frac{T_{\Delta t}^{\text{eff}} N}{N_{\text{ref}}} = \frac{\tau T_{\Delta t}^{\text{eff}}}{c N_{\text{ref}}} \sqrt[3]{N^4}.$$

According to Trias et al. (2010), $c\simeq 0.3$ and after 100 time units the flow starts becoming statistically stationary, so we take $\tau=150$.

F.X. Trias et al. (2010). "Direct numerical simulation of a differentially heated cavity of aspect ratio 4 with Rayleigh numbers up to 10^{11} – Part I: Numerical methods and time-averaged flow" in *International Journal of Heat and Mass Transfer*.

Algebra-based design

Addressing the challenges

Numerical results

Concluding remarks

TFA vs OpenFOAM: strong scalability

Figure: Scalability of TFA (MPI+OpenMP) vs OpenFOAM (MPI-only) down to 70% efficiency on a 500M CSP structured grid. Ran on AMD EPYC Rome nodes.

Algebra-based design

Addressing the challenges

Numerical results

Concluding remarks

Towards overnight LES – 95% parallel efficiency

Figure: Estimated largest affordable overnight simulations on a 500M CSP structured grid. Ran on AMD EPYC Rome nodes and assuming a conservative 5x GPU speedup.

Algebra-based design

Addressing the challenges

Numerical results

Concluding remarks

Towards overnight LES – 75% parallel efficiency

Figure: Estimated largest affordable overnight simulations on a 500M CSP structured grid. Ran on AMD EPYC Rome nodes and assuming a conservative 5x GPU speedup.

Algebra-based design

Addressing the challenges

Numerical results

Concluding remarks

Towards overnight LES – 65% parallel efficiency

Figure: Estimated largest affordable overnight simulations on a 500M CSP structured grid. Ran on AMD EPYC Rome nodes and assuming a conservative 5x GPU speedup.

Algebra-based design

Addressing the challenges 0000000

Numerical results

Concluding remarks ●○○

Concluding remarks

Algebra-based design

Addressing the challenges 0000000

Numerical results

Concluding remarks ○●○

Conclusions

Summary:

• The algebra-based design allows for easy performance portability

Algebra-based design

Addressing the challenges

Numerical results

Concluding remarks O●○

Conclusions

Summary:

- The algebra-based design allows for easy performance portability
- Despite the challenges it poses, it opens the door to new opportunities:
 - Specialised kernels such as SpMM
 - Specialised sparse matrix formats
 - Specialised solvers and preconditioners

Algebra-based design

Addressing the challenges 0000000

Numerical results

Concluding remarks ○●○

Conclusions

Summary:

- The algebra-based design allows for easy performance portability
- Despite the challenges it poses, it opens the door to new opportunities:
 - Specialised kernels such as SpMM
 - Specialised sparse matrix formats
 - Specialised solvers and preconditioners
- Massively parallel accelerators open the door to overnight industrial LES

Algebra-based design

Addressing the challenges 0000000

Numerical results

Concluding remarks ○●○

Conclusions

Summary:

- The algebra-based design allows for easy performance portability
- Despite the challenges it poses, it opens the door to new opportunities:
 - Specialised kernels such as SpMM
 - Specialised sparse matrix formats
 - Specialised solvers and preconditioners
- Massively parallel accelerators open the door to overnight industrial LES

Ongoing work:

• Extend TFA vs OpenFOAM comparison

Algebra-based design

Addressing the challenges 0000000

Numerical results

Concluding remarks ○●○

Conclusions

Summary:

- The algebra-based design allows for easy performance portability
- Despite the challenges it poses, it opens the door to new opportunities:
 - Specialised kernels such as SpMM
 - Specialised sparse matrix formats
 - Specialised solvers and preconditioners
- Massively parallel accelerators open the door to overnight industrial LES

Ongoing work:

- Extend TFA vs OpenFOAM comparison
- Evaluate the gains with GPUs

Algebra-based design

Addressing the challenges

Numerical results

Concluding remarks O●○

Conclusions

Summary:

- The algebra-based design allows for easy performance portability
- Despite the challenges it poses, it opens the door to new opportunities:
 - Specialised kernels such as SpMM
 - Specialised sparse matrix formats
 - Specialised solvers and preconditioners
- Massively parallel accelerators open the door to overnight industrial LES

Ongoing work:

- Extend TFA vs OpenFOAM comparison
- Evaluate the gains with GPUs
- Evaluate the gains on regular domains like wind-farms and heat exchangers

Algebra-based design

Addressing the challenges

Numerical results

Concluding remarks ○●○

Conclusions

Summary:

- The algebra-based design allows for easy performance portability
- Despite the challenges it poses, it opens the door to new opportunities:
 - Specialised kernels such as SpMM
 - Specialised sparse matrix formats
 - Specialised solvers and preconditioners
- Massively parallel accelerators open the door to overnight industrial LES

Ongoing work:

- Extend TFA vs OpenFOAM comparison
- Evaluate the gains with GPUs
- Evaluate the gains on regular domains like wind-farms and heat exchangers
- Evaluate the gains with a novel multigrid reduction framework

Algebra-based design

Addressing the challenges 0000000

Numerical results

Concluding remarks

Thanks for your attention!