



# A highly portable heterogeneous implementation of symmetry-preserving methods for magnetohydrodynamics

J.A. Hopman, F.X. Trias and J.Rigola Heat and Mass Transfer Technological Center (CTTC)

Technical University of Catalonia (UPC), Terrassa, Spain

Fusion HPC workshop 3 15-16 December 2022, online







### Outline

Symmetry preserving methods in MHD HPC<sup>2</sup> framework Exploiting symmetries in geometry













Liquid metals in magnetic field





















3



















|          |   | $\sim$                                |
|----------|---|---------------------------------------|
|          | 0 |                                       |
|          |   |                                       |
|          |   |                                       |
|          |   |                                       |
|          |   |                                       |
|          |   |                                       |
|          |   | $\sim$                                |
|          |   |                                       |
|          |   |                                       |
|          |   |                                       |
|          |   | · · · · · · · · · · · · · · · · · · · |
|          | 0 | 0                                     |
|          |   |                                       |
|          |   |                                       |
|          |   |                                       |
|          |   |                                       |
|          |   |                                       |
|          |   |                                       |
|          |   |                                       |
|          |   |                                       |
|          |   | ~/                                    |
|          |   |                                       |
|          |   |                                       |
|          |   |                                       |
|          |   |                                       |
|          |   |                                       |
|          |   |                                       |
|          |   |                                       |
|          |   |                                       |
|          |   |                                       |
|          |   |                                       |
|          |   |                                       |
|          |   |                                       |
|          |   |                                       |
|          |   |                                       |
|          |   |                                       |
|          |   |                                       |
|          |   |                                       |
|          |   |                                       |
|          |   |                                       |
|          |   |                                       |
|          |   |                                       |
|          |   |                                       |
|          |   |                                       |
|          |   |                                       |
|          |   |                                       |
|          |   | W                                     |
|          |   |                                       |
|          |   |                                       |
|          |   |                                       |
|          |   |                                       |
|          |   |                                       |
|          |   | W                                     |
|          |   | 1                                     |
|          |   |                                       |
|          |   |                                       |
| <u></u>  |   | W                                     |
| <u>^</u> |   |                                       |
|          |   | <u></u>                               |
|          |   |                                       |
|          |   | 1                                     |
|          |   |                                       |
|          |   |                                       |
|          |   |                                       |
|          |   |                                       |











#### Lorentz force implementation

#### Following method of Ni et al.<sup>1, 2</sup>

Collocated + staggered current densities, *j* Conserves current density

#### **Scheme basics**

Update U using projection method Solve 2<sup>nd</sup> Poisson equation for  $\varphi$ :  $\nabla \cdot (\nabla \varphi) = \nabla \cdot (\mathbf{u} \times \mathbf{B})$ Update jInterpolate to cell center to calculate  $F_{lor}$ 



<sup>1</sup>Ni, M. J., Munipalli, R., Morley, N. B., Huang, P., & Abdou, M. A. (2007). "A current density conservative scheme for incompressible MHD flows at a low magnetic Reynolds number. Part I: On a rectangular collocated grid system". *Journal of Computational Physics*, *227*(1), 174-204. <sup>2</sup>Ni, M. J., Munipalli, R., Huang, P., Morley, N. B., & Abdou, M. A. (2007). "A current density conservative scheme for incompressible MHD flows at a low magnetic Reynolds number. Part II: On an arbitrary collocated mesh". *Journal of Computational Physics*, *227*(1), 205-228.





#### Preserving symmetries

#### Following method of Trias et al.<sup>1</sup>

Conserve physical properties by mimicking continuous operators

- Use projected distances in gradients
- Use midpoint interpolation
- Use face-volume weighted interpolation



#### **Consequences for MHD**

Avoid iterative correction schemes Conserve total momentum from Lorentz force:  $\int_{\Omega} \nabla \cdot (J(B \times r)) d\Omega$ 

<sup>1</sup>Trias, F. X., Lehmkuhl, O., Oliva, A., Pérez-Segarra, C. D., & Verstappen, R. W. C. P. (2014). "Symmetry-preserving discretization of Navier–Stokes equations on collocated unstructured grids". *Journal of Computational Physics*, *258*, 246-267.







HydroDynamic TGV





UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH

UPC



HydroDynamic TGV

Transverse B-field





UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH





HydroDynamic TGV

Transverse B-field

Imposed  $\varphi$ -field





Magneto-HydroDynamic TGV

UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH

UPC

Transverse B-field

Imposed  $\varphi$ -field





#### Case 2: MHD duct flow







#### Accuracy results

#### **2D Taylor-Green vortex**

Should not generate Lorentz Force Should not dissipate energy

#### Results

Symmetry Preserving method outperforms Ni method Especially on distorted grids



#### Error of energy budgets





### Stability for highly distorted meshes

**Taylor green vortex** 



#### M-profile in duct







### $HPC^2$



#### **Highly-portable code for HPC**

Stencil based  $\rightarrow$  Algebra based Only a few algebraic kernels are needed





### Algebraic kernels

From continuous NS equations:

$$\nabla \cdot \mathbf{u} = \mathbf{0}, \qquad \partial_t \mathbf{u} + (\mathbf{u} \cdot \nabla) \mathbf{u} - \frac{1}{Re} \Delta \mathbf{u} + \nabla p = \mathbf{0}$$

To discrete algebraic equations:

$$\boldsymbol{M} \mathbf{u}_{s} = \mathbf{0}_{c}, \qquad \boldsymbol{\Omega} \partial_{t} \mathbf{u}_{c} + \boldsymbol{C} \left( \mathbf{u}_{s} \right) \mathbf{u}_{c} + \boldsymbol{D} \mathbf{u}_{c} + \boldsymbol{\Omega} \boldsymbol{G} \boldsymbol{p}_{c} = \mathbf{0}_{c}$$

Using three kernels only:

$$y \leftarrow Ax$$
,  $z \leftarrow ax + by$ ,  $r \leftarrow x \cdot y$ 

SpMV axpy dot





#### Memory boundedness







#### Memory boundedness







#### Memory boundedness































1. The MPI process







- 1. The MPI process
- 2. The host and co-processors







- 1. The MPI process
- 2. The host and co-processors
- 3. Multiple NUMA nodes in a manycore CPU







#### HPC<sup>2</sup>: tested architectures

MareNostrum 4



rank #42 3456 nodes with: 2× Intel Xeon 8160 1× Intel Omni-Path Lomonosov-2



rank #156 1696 nodes with: 2× Intel Xeon E5-2697 v3 1× NVIDIA Tesla K40M 1× InfiniBand FDR **TSUBAME3.0** 



rank #31 540 nodes with: 2× Intel Xeon E5-2680 v4 4× NVIDIA Tesla P100 4× Intel Omni-Path





#### Exploiting symmetries

| Π | Γ  |        |   |     |     |    |     |       | TT-LIU           |
|---|----|--------|---|-----|-----|----|-----|-------|------------------|
| × | þ  | × ا،   |   | ×   | ×   | ×  | •   | •••   | .   .  . . .     |
|   | L  |        |   |     |     |    |     | 1     | I I I III        |
| Π | t  | $\top$ |   |     |     |    |     |       | ++-              |
|   | Ь  | ( ×    |   | ж   | ×   | ж  | •   |       | · . · . · . W    |
|   | L  |        |   |     |     |    |     |       | 1 1 1 111        |
| Ħ | t  | +      | 1 |     |     |    |     |       | + + 1+1          |
| ~ | 4, | ۰ ×    |   | ×   | ×   | ×  | •   |       | ! . !.!.W.       |
|   | L  |        |   |     |     |    |     |       |                  |
| Ħ | t  | +      | 1 |     |     |    |     |       | + + 14           |
|   | b  | , ×    |   | ×   | ×   | ×  |     |       |                  |
|   | L  |        |   |     |     |    |     |       |                  |
| H | t  | +-     | 1 |     |     |    |     | +     | ++-              |
| * | Ι, | , ×    |   | ×   | ×   | ×  |     | ι.    | الما ما ما ما    |
| Π | L  |        |   |     |     |    |     | I I   | I I I III        |
| H | t  | +      | ┥ |     |     |    |     | r – – | + + 1 + 1 + 1    |
|   | Į, | , I ,  |   | ×   | ×   | ×  |     | ۰.    | I. I.I.W         |
| Π | Γ  |        |   |     |     |    |     | 1     | 1 1 1 111        |
| H | t  | +      | + |     |     |    |     | +     | + + - ⊢  +       |
|   | I, | , I ,  |   | ×   | ×   | ×  |     | ۰.    | · . · . · . !!!! |
| Π | Г  |        |   |     | ~   | _  |     | 1     | 1 1 1 11         |
| H | t  | +      | ┥ |     |     |    |     | ⊢ – – | + + 14           |
| × | ľ  | ۲ ×    |   | ×   | ×   | ×  | L   | _ · - |                  |
| × | •  | t X    |   | ×   | ×   | ×  |     |       |                  |
| 8 | В  | Ηğ     |   | - Ř | - Ž | Š. | ヒゴニ | 느 그 그 | キニに キキゼ噛         |

| 野田 프 년<br>태리 프 년                                                             | Ē                |             | 355              | Ē₿Ē              | ĒBEB  |                                         |
|------------------------------------------------------------------------------|------------------|-------------|------------------|------------------|-------|-----------------------------------------|
| - -  •   •                                                                   | •                | •           | •                | •                | •     | • • • • • • • • • • • • • • • • • • • • |
| HI - I                                                                       |                  |             |                  |                  |       | +                                       |
| W.! . !                                                                      |                  | ! • !       | •                |                  | ! • ! | ! . !.!.W                               |
| 111 1                                                                        |                  | I           |                  |                  | I     |                                         |
| HI-I-                                                                        |                  | + +         | +                |                  | + +   | + + - + 1+1                             |
|                                                                              | I . I            | I _         |                  |                  | I _ I |                                         |
| ШЦ Ц                                                                         |                  | ı • 1       |                  | •                | ı * 1 |                                         |
| 41-1-4                                                                       | ⊢                | ⊢ _ ⊣       |                  |                  | ⊢ _ ⊣ | +-                                      |
|                                                                              | I                | I 1         |                  |                  | I 1   |                                         |
| 00000                                                                        | · · ·            | · · ·       | •                | •                | . • . |                                         |
|                                                                              |                  |             |                  |                  |       |                                         |
|                                                                              |                  |             |                  |                  |       |                                         |
|                                                                              |                  |             |                  |                  |       |                                         |
| ××× ×                                                                        | ×                | ×           | ×                |                  |       |                                         |
| ** * *                                                                       | ж                | ×           | х                |                  | •     |                                         |
| ×× × ×                                                                       | ×                | ×           | ×                | •                | · .   | · · · · · · · · · · · · · · · · · · ·   |
| ** * *                                                                       | ×                | ×           | ×                |                  | · . · | .  . .W<br>  .  . .W<br>                |
| ** × ×                                                                       | ×                | ×           | x<br>x           | •<br>•<br>•      | · .   |                                         |
| xx x x<br>xx x x                                                             | x<br>x           | ×           | x<br>x           |                  | · · · |                                         |
| xx x x<br>xx x x                                                             | ×                | ×           | x<br>x           |                  |       |                                         |
| xx x x<br>xx x x<br>xx x x                                                   | ×<br>×<br>×      | ×<br>×<br>× | х<br>*<br>*      |                  |       |                                         |
| xx x x<br>xx x x<br>xx x x                                                   | ×<br>×<br>×      | x<br>x<br>x | x<br>x<br>x      |                  |       |                                         |
| xx x x<br>xx x x<br>xx x x                                                   | ×<br>×<br>×      | × ×         | x<br>*<br>x      |                  |       |                                         |
| xx x x<br>xx x x<br>xx x x<br>xx x x                                         | ×<br>×<br>×      | × ×         | х<br>х<br>х      | ·<br>·<br>·<br>· |       |                                         |
| xx x x<br>xx x x | ×<br>×<br>×<br>× | × × ×       | x<br>x<br>x<br>x | •                |       |                                         |

#### 1 Symmetry

2 Symmetries

#### Symmetry-aware ordering





#### Exploiting symmetries

| $x \times x \times$                                        | ×  | ×          | ж | × | ж | ж | •     | · ·     |                                       |
|------------------------------------------------------------------------------------------------------------------------------------|----|------------|---|---|---|---|-------|---------|---------------------------------------|
| $xx \times x $                                             | ю  | ×          | × | × | × | × |       | · ·     |                                       |
|                                                                                                                                    | ×  | ×          | ж | × | × | × |       |         |                                       |
|                                                                                                                                    | ю  | ×          | × | х | × | ж | •     |         |                                       |
|                                                                                                                                    | ×  | ×          | ж | × | × | * | •     | · ·     |                                       |
|                                                                                                                                    | ж  | ×          | × | × | × | × | •     | · ·     |                                       |
|                                                                                                                                    | ж  | ×          | × | 0 | × | × |       | · ·     |                                       |
| <u>*** × × × × × </u>                                                                                                              | ×  | ×          | × | × | × | × |       |         | · · · · · · · · · · · · · · · · · · · |
| ▝▓ <del>▓▝▁▝▖▁▝▖▁▁▖▖▁</del> ▖▖▁ <u></u> ▖▁▁ <u>▖</u> ▁ <u></u> ▖▁▁ <u>▖</u> ▁ <u></u> ▖▁▁ <u></u> ▁▁ <u></u> ▁▁ <u></u> ▁▁ <u></u> | ×  | ĸ          | × | × | × | × |       |         | エニ・ニュ こ ⊡ !!!                         |
|                                                                                                                                    | 20 | <u>4 8</u> | ð | ð | ŏ | ő | F = = | = =:= : | + = := ㅋ ㅋ ㅋ @                        |

| 명한 관 한<br>1910년 - 1                                      | Ē           |             | 383              | = <u>3</u> = | ĒŞĒļ             |      | 프로면영                                                |
|----------------------------------------------------------|-------------|-------------|------------------|--------------|------------------|------|-----------------------------------------------------|
|                                                          | · · ·       |             |                  |              |                  |      |                                                     |
|                                                          |             |             |                  |              |                  |      |                                                     |
| <u></u>                                                  | · ·         |             | •                | •            | · · !            | •    | 1 • 1• W                                            |
| 111 1                                                    | I           | I           |                  |              | I I              |      | 1 1 111                                             |
| 1+1 -                                                    |             | + +         | +                |              | + +              |      | ⊢ I+I                                               |
|                                                          | Ι           | I _         |                  |              | I _ I            | _    | 1 1 111                                             |
| ш., ,                                                    | ı .         | ı • ı       | • •              | •            | ı <sup>•</sup> ı | •    | 1.1.111                                             |
| 414 - 4                                                  | ⊢           | ⊢ _ →       |                  | L            | ⊢ _ →            |      | + - 1-11                                            |
| 111-1                                                    | 1           | I           |                  |              | I I              |      | 1 1111                                              |
| 00.1                                                     | · ·         | •           | •                | •            | · · ·            | •    | 1.1.1100                                            |
|                                                          |             |             |                  |              |                  |      |                                                     |
|                                                          |             |             |                  |              |                  |      |                                                     |
|                                                          |             |             |                  |              |                  |      | + + +++                                             |
| ××× ×                                                    | ×           | ×           | ×                |              |                  |      | + ++++<br>+                                         |
| ** * *                                                   | ×           | ×           | ж                |              |                  |      | + ++++<br>+<br>+                                    |
| ** * *                                                   | ×           | ×           | ж                | •            |                  |      | + ++++<br>+ - +.W<br>+ - +-++                       |
| ** * *                                                   | ж           | ×           | х                | •            | · · ·            |      | + + ++++<br>+ . +<br>+ + ++++<br>+ - +-+++          |
| ×× × ×                                                   | ×           | ×           | x<br>x           |              | · . ·            |      | + + ++++<br>+ - +-+++<br>+ - +-+++<br>+ - ++++++++  |
| xx x x<br>xx x x                                         | ×           | ×           | ×<br>×           | •<br>• • •   |                  |      | + + +++<br>+ ++<br>+ ++<br>+                        |
| ×× × ×                                                   | ×           | ×           | x<br>*           |              | · · ·            | <br> | ↓ . I.W<br>↓ . F.W<br>↓ . F.W<br>↓ . F.W<br>↓ . F.W |
| xx x x<br>xx x x<br>xx x x                               | ×<br>×<br>× | ×<br>×<br>× | х<br>*           |              |                  | <br> |                                                     |
| xx x x<br>xx x x<br>xx x x                               | ×<br>×<br>× | x<br>x<br>x | х<br>*<br>*      |              |                  |      |                                                     |
| xx x x<br>xx x x<br>xx x x                               | ×<br>×<br>× | *           | x<br>x<br>x      |              |                  |      |                                                     |
| xx x x<br>xx x x<br>xx x x<br>xx x x                     | ×<br>×<br>× | ×<br>×<br>× | x<br>*<br>x      |              |                  |      |                                                     |
| xx x x<br>xx x x<br>xx x x<br>xx x x<br>xx x x<br>xx x x | ×<br>×<br>× | × × ×       | x<br>x<br>x<br>x | ·<br>·<br>·  |                  |      |                                                     |

#### 1 Symmetry

2 Symmetries

#### Symmetry-aware ordering





#### Exploiting symmetries



| 명한 관 표 표<br>1911년 - 11                         | ₿≣Ŧ         | 383              | ΞΞΞ              | EBE       | ┋┋┋   | ≣≣≣       | 포탄團                                          |
|------------------------------------------------|-------------|------------------|------------------|-----------|-------|-----------|----------------------------------------------|
| HI.I.                                          | · ī         | · · ·            |                  | <b></b>   |       | · ·       | 1 • 1•144                                    |
| $H_{1} - F_{1}$                                | +           |                  |                  |           | 1     |           | + - HIH                                      |
| ₩.¦ . ¦                                        | ·¦          | • ¦              | •                | •         | · · ; | •         | ¦ • ¦•₩                                      |
| HI-1 - F                                       | +           | +                |                  | +         | +     | +         | + – ⊢  +                                     |
| ₩.¦ · ¦                                        | · ¦         | • ¦              | •                | •         | •     | •         | •  ·                                         |
|                                                | +           |                  |                  |           |       |           | + + + + + + + + + + + + + + + + +            |
| m                                              | · ¦         | • ¦              | •                | •         | •     | •         | · · · m                                      |
|                                                |             |                  |                  |           |       |           |                                              |
| +++++++++++++++++++++++++++++++++++++++        |             |                  |                  |           |       |           | + + ++++                                     |
| ** *                                           | ×           | ×                | ж                | •         | •     |           | <br>  .  .W. <br>                            |
| ** * *                                         | ж           | ×                | ж                |           |       |           | + + +++<br>  .  .W <br>  .  .W <br>+ -  -  + |
| ×× ×<br>×× ×                                   | ×           | ×                | x<br>*           |           |       |           | + + + + + + + + + + + + + + + + + + +        |
| xx x x                                         | ×           | ×                | x                |           |       | <br>-<br> | + + + + + + + + + + + + + + + + + + +        |
| xx x x<br>xx x x<br>xx x x                     | × ×         | ×<br>×<br>×      | x<br>*<br>*      |           |       | <br>-<br> | + - + - + + + + + + + + + + + + + + + +      |
| xx x x<br>xx x x<br>xx x x                     | ×<br>×<br>× | ×<br>×<br>×      | x<br>x<br>x      |           |       |           |                                              |
| xx x x<br>xx x x<br>xx x x<br>xx x x           | x x x x x   | ×<br>×<br>×      | х<br>*<br>х      |           |       |           |                                              |
| xx x x<br>xx x x<br>xx x x<br>xx x x<br>xx x x | × × × × × × | ×<br>×<br>×<br>× | x<br>*<br>x<br>x | · · · · · |       |           |                                              |

#### 1 Symmetry

2 Symmetries

#### Symmetry-aware ordering





• |•|•|

-1#1

....

111

'm

1 111

1.44

1 111

нн

۰.w

1 111

1 111

'iii

• [•]•]

FIN

王己庙

. ....

1 111

#### Exploiting symmetries



#### 1 Symmetry

2 Symmetries

٠

٠

ж

×

ж

ж

×

X

×

ж

×

ж

×

.

ж

×

#### Symmetry-aware ordering





• |•|•|

-1#1

....

111

'm

1 111

1.44

1 111

нн

۰.w

1 111

| |||

'iii

• [•]•]

- 다마

王已商

. . . . .

1 111

#### Exploiting symmetries



Symmetry-aware ordering





• |-|-|

-1#1

1 111

111

100

1 111

1.44

1 111

нн

۰.w

1 111

| |||

'iii

• [•]•]

FIN

王已商

. 1. UU

#### Exploiting symmetries



Symmetry-aware ordering





$$L = \frac{|\mathsf{L}_{\mathsf{inn}}|||\mathsf{L}_{\mathsf{out}}||}{||\mathsf{L}_{\mathsf{out}}|||} \in R^{N \times N}$$

$$S = \sqrt{\frac{1}{2}} \quad \frac{\mathsf{I}_{\mathsf{N}/2}}{\mathsf{I}_{\mathsf{N}/2}} \quad \frac{\mathsf{I}_{\mathsf{N}/2}}{\mathsf{I}_{\mathsf{N}/2}} \quad \in \mathbb{R}^{N \times N}$$

$$\hat{L} = SLS^{-1} = \frac{L_{inn} + L_{out}}{0} \frac{0}{L_{inn} - L_{out}}$$







$$S = \sqrt{\frac{1}{2}} \quad \frac{\mathsf{I}_{\mathsf{N}/2}}{\mathsf{I}_{\mathsf{N}/2}} \quad \frac{\mathsf{I}_{\mathsf{N}/2}}{\mathsf{I}_{\mathsf{N}/2}} \quad \in \mathbb{R}^{N \times N}$$

$$\hat{L} = SLS^{-1} = \frac{L_{inn} + L_{out}}{0} \frac{0}{L_{inn} - L_{out}}$$







$$L = \frac{L_{\text{inn}}}{L_{\text{out}}} \frac{L_{\text{out}}}{L_{\text{inn}}} \in R^{N \times N}$$

$$S = \sqrt{\frac{1}{2}} \quad \frac{\mathsf{I}_{\mathsf{N}/2}}{\mathsf{I}_{\mathsf{N}/2}} \quad \frac{\mathsf{I}_{\mathsf{N}/2}}{\mathsf{I}_{\mathsf{N}/2}} \quad \in \mathbb{R}^{N \times N}$$

$$\hat{L} = SLS^{-1} = \frac{L_{\text{inn}} + L_{\text{out}}}{0} = L_{\text{inn}} - L_{\text{out}}$$

| ····· |      |
|-------|------|
|       |      |
|       |      |
| ••••• | •••• |





$$L = \frac{\mathbf{L}_{\text{inn}} \quad \mathbf{L}_{\text{out}}}{\mathbf{L}_{\text{out}} \quad \mathbf{L}_{\text{inn}}} \in \mathbb{R}^{N \times N}$$

$$S = \sqrt{\frac{1}{2}} \quad \frac{\mathsf{I}_{\mathsf{N}/2}}{\mathsf{I}_{\mathsf{N}/2}} \quad \frac{\mathsf{I}_{\mathsf{N}/2}}{\mathsf{I}_{\mathsf{N}/2}} \quad \in \mathbb{R}^{N \times N}$$

$$\hat{L} = SLS^{-1} = \frac{L_{inn} + L_{out}}{0} \frac{0}{L_{inn} - L_{out}}$$







$$L = \frac{L_{\text{inn}}}{L_{\text{out}}} \frac{L_{\text{out}}}{L_{\text{inn}}} \in R^{N \times N}$$

$$S = \sqrt{\frac{1}{2}} \quad \frac{\mathsf{I}_{\mathsf{N}/2}}{\mathsf{I}_{\mathsf{N}/2}} \quad \frac{\mathsf{I}_{\mathsf{N}/2}}{\mathsf{I}_{\mathsf{N}/2}} \quad \in \mathbb{R}^{N \times N}$$

$$\hat{L} = SLS^{-1} = \frac{L_{inn} + L_{out}}{0} \frac{0}{L_{inn} - L_{out}}$$







#### Sparse matrix-matrix product

Rewriting the SpMV product:

$$\hat{L}\mathbf{v} = \begin{pmatrix} L_{inn}^{0} & 0 \\ & \ddots & \\ 0 & & L_{inn}^{p} \end{pmatrix} \begin{pmatrix} \mathbf{v}^{0} \\ \vdots \\ \mathbf{v}^{p} \end{pmatrix} + L_{out}\mathbf{v}$$
$$L_{inn} \left( \mathbf{v}^{0} \mid \dots \mid \mathbf{v}^{p} \right)$$

A reduction in time complexityA reduction in memory footprintAn increase in arithmetic intensity

into an SpMM product





#### Increasing arithmetic intensity







#### Increasing arithmetic intensity







### Summarising

Symmetry preserving methods in MHD HPC<sup>2</sup> framework

Exploiting symmetries in geometry





## Thank you for attending!

