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Motivation

Research question :
Will the complexity of numerically solving Poisson’s equation
increase or decrease for very large scale DNS/LES simulations of
incompressible turbulent flows?

DNS1 of air-filled Rayleigh–Bénard convection at Ra “ 108 and 1010

1B.Sanderse, F.X.Trias. Energy-consistent discretization of viscous dissipation with
application to natural convection flow. Computers & Fluids, 286:106473, 2025
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Poisson’s equation: a quick reminder

  

u⃗
n+1−u⃗

n

Δ t
=

3

2
R⃗ (u⃗n)−

1

2
R⃗ (u⃗n−1)−∇ p

n+1

∇⋅u⃗n+1=0

Semi-discrete 

(just in time)

NS equations

Orthogonal functions

∇ p
u⃗ (∇⋅⃗u=0)

Solutions of NS lie

on this space
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Poisson’s equation: getting more tough or not?
Research question:

Will the complexity of numerically solving Poisson’s equation
increase or decrease for very large scale DNS/LES simulations of
incompressible turbulent flows?

  

∇
2
p
n+1
=

1

Δ t
∇⋅u⃗

p

Re↑
Δ x↓ N x↑

Δ t↓

Larger system

Better initial guess ↑

↓

Two competing effects: who (if any) will eventually win?

Ra “ 108 Ra “ 1010 Ra “ 1011

208 ˆ 208 ˆ 400 768 ˆ 768 ˆ 1024 1662 ˆ 1662 ˆ 2048
17.5M 607M 5600M

2F.Dabbagh, F.X.Trias, A.Gorobets, A.Oliva. Flow topology dynamics in a 3D phase
space for turbulent Rayleigh-Bénard convection, Phys.Rev.Fluids, 5:024603, 2020.
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Smaller and smaller, but how much?
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K41 theory:
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Residual of Poisson’s equation
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Residual of Poisson’s equation
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Residual of Poisson’s equation
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Residual of Poisson’s equation in Fourier space
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Residual of Poisson’s equation in Fourier space
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Residual of Poisson’s equation in Fourier space
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Solver convergence
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Homogeneous isotropic turbulence
Kolmogorov theory predictions
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Homogeneous isotropic turbulence
New derivations

  

(Q̂G)k∝k
−7 /6+2=k

5 /6

( R̂G)k∝(k
5 /6)3 /2=k

5 /4

Reλ≈433  (1024
3)  from https://turbulence.pha.jhu.edu/

(∂ Q̂G

∂ t )
k

∝kβ

Ek=C k ε
2/3
k
−5/3

Pk=Bp ε
4 /3
k
−7 /3

p̂k∝k
−7 /6

∇2~pn+1=∇⋅⃗u p=2Δ t QG

r̂k
o∝Re

−1
Δ t

q
k

β∼Re
~α
k

β

14 / 23



Motivation Two competing effects Residual of Poisson’s equation Solver convergence Results Conclusions

Homogeneous isotropic turbulence
New derivations

  

(Q̂G)k∝k
−7 /6+2=k

5 /6

( R̂G)k∝(k
5 /6)3 /2=k

5 /4

( r̂ )k∝k
5 /6+1=k

11/6

∂QG

∂ t
=−(u⋅∇)QG−3RG

∇2~pn+1=∇⋅⃗u p=2Δ t QG Reλ≈433  (1024
3)  from https://turbulence.pha.jhu.edu/

(∂ Q̂G

∂ t )
k

∝kβ

Ek=C k ε
2/3
k
−5/3

Pk=Bp ε
4 /3
k
−7 /3

p̂k∝k
−7 /6

r̂k
o∝Re

−1
Δ t

q
k

β∼Re
~α
k

β

14 / 23



Motivation Two competing effects Residual of Poisson’s equation Solver convergence Results Conclusions

Homogeneous isotropic turbulence
New derivations

  

(Q̂G)k∝k
−7 /6+2=k

5 /6

( R̂G)k∝(k
5 /6)3 /2=k

5 /4

( r̂ )k∝k
5 /6+1=k

11/6

∂QG

∂ t
=−(u⋅∇)QG−3RG

∇2~pn+1=∇⋅⃗u p=2Δ t QG Reλ≈433  (1024
3)  from https://turbulence.pha.jhu.edu/

(∂ Q̂G

∂ t )
k

∝kβ

Ek=C k ε
2/3
k
−5/3

Pk=Bp ε
4 /3
k
−7 /3

p̂k∝k
−7 /6

r̂k
o∝Re

−1
Δ t

q
k

β∼Re
~α
k

β

14 / 23



Motivation Two competing effects Residual of Poisson’s equation Solver convergence Results Conclusions

Homogeneous isotropic turbulence
New derivations

  

(Q̂G)k∝k
−7 /6+2=k

5 /6

( R̂G)k∝(k
5 /6)3 /2=k

5 /4

Reλ≈433  (1024
3)  from https://turbulence.pha.jhu.edu/

(∂ Q̂G

∂ t )
k

∝kβ

Ek=C k ε
2/3
k
−5/3

Pk=Bp ε
4 /3
k
−7 /3

p̂k∝k
−7 /6

∇2~pn+1=∇⋅⃗u p=2Δ t QG

r̂k
o∝Re

−1
Δ t

q
k

β∼Re
~α
k

β

14 / 23



Motivation Two competing effects Residual of Poisson’s equation Solver convergence Results Conclusions

Homogeneous isotropic turbulence
New derivations

  

(Q̂G)k∝k
−7 /6+2=k

5 /6

( R̂G)k∝(k
5 /6)3 /2=k

5 /4

( r̂ )k∝k
5 /6+1=k

11/6

∂QG

∂ t
=−(u⋅∇)QG−3RG

∇2~pn+1=∇⋅⃗u p=2Δ t QG Reλ≈433  (1024
3)  from https://turbulence.pha.jhu.edu/

(∂ Q̂G

∂ t )
k

∝kβ

Ek=C k ε
2/3
k
−5/3

Pk=Bp ε
4 /3
k
−7 /3

p̂k∝k
−7 /6

r̂k
o∝Re

−1
Δ t

q
k

β∼Re
~α
k

β

14 / 23



Motivation Two competing effects Residual of Poisson’s equation Solver convergence Results Conclusions

Homogeneous isotropic turbulence
New derivations

  

(Q̂G)k∝k
−7 /6+2=k

5 /6

( R̂G)k∝(k
5 /6)3 /2=k

5 /4

( r̂ )k∝k
5 /6+1=k

11/6

∂QG

∂ t
=−(u⋅∇)QG−3RG

∇2~pn+1=∇⋅⃗u p=2Δ t QG Reλ≈433  (1024
3)  from https://turbulence.pha.jhu.edu/

(∂ Q̂G

∂ t )
k

∝kβ

Ek=C k ε
2/3
k
−5/3

Pk=Bp ε
4 /3
k
−7 /3

p̂k∝k
−7 /6

r̂k
o∝Re

−1
Δ t

q
k

β∼Re
~α
k

β

14 / 23



Motivation Two competing effects Residual of Poisson’s equation Solver convergence Results Conclusions

Homogeneous isotropic turbulence
New derivations

  

(Q̂G)k∝k
−7 /6+2=k

5 /6

( R̂G)k∝(k
5 /6)3 /2=k

5 /4

( r̂ )k∝k
5 /6+1=k

11/6

∂QG

∂ t
=−(u⋅∇)QG−3RG

∇2~pn+1=∇⋅⃗u p=2Δ t QG Reλ≈433  (1024
3)  from https://turbulence.pha.jhu.edu/

(∂ Q̂G

∂ t )
k

∝kβ

Ek=C k ε
2/3
k
−5/3

Pk=Bp ε
4 /3
k
−7 /3

p̂k∝k
−7 /6

r̂k
o∝Re

−1
Δ t

q
k

β∼Re
~α
k

β

14 / 23



Motivation Two competing effects Residual of Poisson’s equation Solver convergence Results Conclusions

Homogeneous isotropic turbulence
New derivations

  

(Q̂G)k∝k
−7 /6+2=k

5 /6

( R̂G)k∝(k
5 /6)3 /2=k

5 /4

( r̂ )k∝k
5 /6+1=k

11/6

∂QG

∂ t
=−(u⋅∇)QG−3RG

∇2~pn+1=∇⋅⃗u p=2Δ t QG Reλ≈433  (1024
3)  from https://turbulence.pha.jhu.edu/

(∂ Q̂G

∂ t )
k

∝kβ

Ek=C k ε
2/3
k
−5/3

Pk=Bp ε
4 /3
k
−7 /3

p̂k∝k
−7 /6

r̂k
o∝Re

−1
Δ t

q
k

β∼Re
~α
k

β

14 / 23



Motivation Two competing effects Residual of Poisson’s equation Solver convergence Results Conclusions

Homogeneous isotropic turbulence
New derivations

  

(Q̂G)k∝k
−7 /6+2=k

5 /6

( R̂G)k∝(k
5 /6)3 /2=k

5 /4

( r̂ )k∝k
5 /6+1=k

11/6

∂QG

∂ t
=−(u⋅∇)QG−3RG+tr (G (H p−ν∇ 2

G))

∇2~pn+1=∇⋅⃗u p=2Δ t QG Reλ≈433  (1024
3)  from https://turbulence.pha.jhu.edu/

Ek=Ck ε
2/3
k
−5 /3

Pk=B p ε
4 /3
k
−7 /3

p̂k∝k
−7 /6

r̂k
o∝Re

−1
Δ t

q
k

β∼Re
~α
k

β

14 / 23



Motivation Two competing effects Residual of Poisson’s equation Solver convergence Results Conclusions

Non-homogeneous turbulent flows

Flow around a square cylinder

Re “ 22000 (330M grid points)
Re “ 55000 (2.6B grid points)
Re “ 100000 (10B grid points) on-going

Air-filled Rayleigh–Bénard

Ra “ 1010 (604M grid points)
Ra “ 1011 (5.7B grid points)

15 / 23



Motivation Two competing effects Residual of Poisson’s equation Solver convergence Results Conclusions

Non-homogeneous turbulent flows
Flow around a square cylinder at Re “ 22000

  

~r
o
=∇

2~p
n
−∇⋅u

p ,n+1

≈Δ t∇⋅
∂u

p

∂ t
≈2Δ t

∂QG

∂ t

16 / 23



Motivation Two competing effects Residual of Poisson’s equation Solver convergence Results Conclusions

Non-homogeneous turbulent flows
Flow around a square cylinder at Re “ 22000

  

~r
o
=∇

2~p
n
−∇⋅u

p ,n+1

≈Δ t∇⋅
∂u

p

∂ t
≈2Δ t

∂QG

∂ t

∇
2~p

n
−∇

2~p
n+1

≈2Δ t
∂QG

∂ t
∇

2 ∂ p

∂ t
≈−2

∂QG

∂ t

16 / 23



Motivation Two competing effects Residual of Poisson’s equation Solver convergence Results Conclusions

Non-homogeneous turbulent flows
Flow around a square cylinder at Re “ 22000

  

~r
o
=∇

2~p
n
−∇⋅u

p ,n+1
≈Δ t∇⋅

∂u
p

∂ t
≈2Δ t

∂QG

∂ t

∇
2~p

n
−∇

2~p
n+1
≈2Δ t

∂QG

∂ t
∇

2 ∂ p

∂ t
≈−2

∂QG

∂ t

k ²
∂ p̂k

∂ t
≈−2

∂ Q̂G

∂ t

k ²
∂ p̂k

∂ t
∝k

β
  with  β=11/6

FFT

16 / 23



Motivation Two competing effects Residual of Poisson’s equation Solver convergence Results Conclusions

Non-homogeneous turbulent flows
Flow around a square cylinder at Re “ 22000

  
k ²

∂ p̂k

∂ t
∝k

β
  with  β=11/6

16 / 23



Motivation Two competing effects Residual of Poisson’s equation Solver convergence Results Conclusions

Non-homogeneous turbulent flows
Flow around a square cylinder at Re “ 22000

  
k ²

∂ p̂k

∂ t
∝k

β
  with  β=11/6

16 / 23



Motivation Two competing effects Residual of Poisson’s equation Solver convergence Results Conclusions

Non-homogeneous turbulent flows
Flow around a square cylinder at Re “ 22000

  
k ²

∂ p̂k

∂ t
∝k

β
  with  β=11/6

16 / 23



Motivation Two competing effects Residual of Poisson’s equation Solver convergence Results Conclusions

Non-homogeneous turbulent flows
Flow around a square cylinder at Re “ 55000
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Non-homogeneous turbulent flows
Flow around a square cylinder at Re “ 55000
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Non-homogeneous turbulent flows
Air-filled Rayleigh–Bénard at Ra “ 1010
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Non-homogeneous turbulent flows
Air-filled Rayleigh–Bénard at Ra “ 1011
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Solver convergence
tα̃, β̃u phase space
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Solver convergence for Burgers’ equation
tα̃, β̃u phase space
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Concluding remarks

Two competing effects on the convergence of
Poisson’s equation have been identified.

The tα̃, β̃u phase space is divided in two regions
depending on the solver convergence.

Numerical results match well with the developed
theory prediction β « 11{6

For HIT ✓
But also for non-homogeneous flows ✓

On-going research:
Numerical analysis of the scaling of number of
solver iterations with Re
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Thank you for your attendance
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