

On the evolution of Poisson solvers

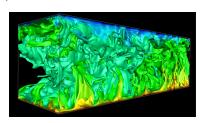
F.Xavier Trias¹, Àdel Alsalti-Baldellou^{1,2}

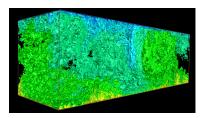
 1 Heat and Mass Transfer Technological Center, Technical University of Catalonia 2 Department of Civil, Environmental and Architectural Engineering, University of Padova

On the evolution of Poisson solvers for extreme-scale CFD simulations

F.Xavier Trias¹. Àdel Alsalti-Baldellou^{1,2}

¹Heat and Mass Transfer Technological Center, Technical University of Catalonia ²Department of Civil, Environmental and Architectural Engineering, University of Padova





Contents

- Motivation
- 2 Two competing effects
- Residual of Poisson's equation
- 4 Solver convergence
- 6 Results
- 6 Conclusions

Two competing effects Residual of Poisson's equation Solver convergence Results Conclusions

Tera, Peta, Exa,..., Zetta, Yotta

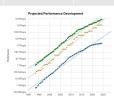
Motivation

•0

Source: www.top500.org

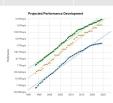
Tera, Peta, Exa,..., Zetta, Yotta

	PetaFLOPS		#1 in LINPACK	#1 in HPCG	Cutting-edge CFD simulation	'Routine' CFD simulation
Zetta	106					
Exa	10³	years	2022 (Frontier)			
Peta	1	ars 14	2008 (Roadrunner)	2018 (Summit)		
Tera	10-3	11 years	1997 (ASCI Red)	No data		

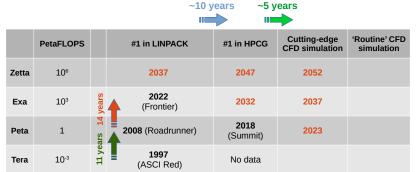


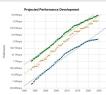
Tera, Peta, Exa,..., Zetta, Yotta

	PetaFLOPS		#1 in LINPACK	#1 in HPCG	Cutting-edge CFD simulation	'Routine' CFD simulation
Zetta	10 ⁶		2037	2047		
Exa	10³	years	2022 (Frontier)	2032		
Peta	1	ars 14	2008 (Roadrunner)	2018 (Summit)		
Tera	10-3	11 years	1997 (ASCI Red)	No data		



Tera, Peta, Exa,..., Zetta, Yotta



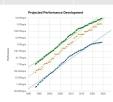


~10 vears

~5 vears

Tera, Peta, Exa,..., Zetta, Yotta

			11	→		-
	PetaFLOPS		#1 in LINPACK	#1 in HPCG	Cutting-edge CFD simulation	'Routine' CFD simulation
Zetta	106		2037	2047	2052	2062
Exa	10³	14 years	2022 (Frontier)	2032	2037	2047
Peta	1	years 14	2008 (Roadrunner)	2018 (Summit)	2023	2033
Tera	10 ⁻³	11 ye	1997 (ASCI Red)	No data		

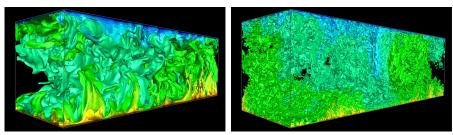


~10 years

Motivation

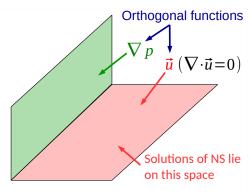
Research question:

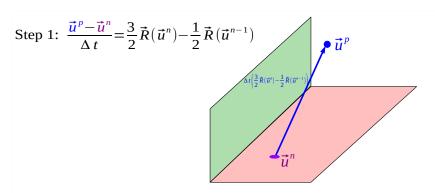
 Will the complexity of numerically solving Poisson's equation increase or decrease for very large scale DNS/LES simulations of incompressible turbulent flows?

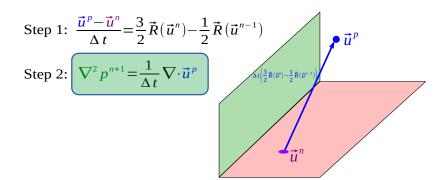


DNS¹ of air-filled Rayleigh–Bénard convection at $Ra = 10^8$ and 10^{10}

¹B.Sanderse, F.X.Trias. *Energy-consistent discretization of viscous dissipation with application to natural convection flow.* **Computers & Fluids**, 286:106473, 2025







Step 1:
$$\frac{\vec{u}^{p} - \vec{u}^{n}}{\Delta t} = \frac{3}{2} \vec{R}(\vec{u}^{n}) - \frac{1}{2} \vec{R}(\vec{u}^{n-1})$$

Step 2: $\nabla^{2} p^{n+1} = \frac{1}{\Delta t} \nabla \cdot \vec{u}^{p}$
Step 3: $\vec{u}^{n+1} = \vec{u}^{p} - \Delta t \nabla p^{n+1}$

Research question:

 Will the complexity of numerically solving Poisson's equation increase or decrease for very large scale DNS/LES simulations of incompressible turbulent flows?

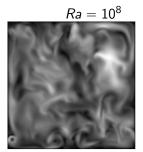
$$\left(\nabla^2 p^{n+1} = \frac{1}{\Delta t} \nabla \cdot \vec{u}^p\right)$$

Two competing effects: who (if any) will eventually win?

Re
$$\uparrow$$
 $\Delta x \downarrow \longrightarrow N_x \uparrow \longrightarrow$ Larger system \downarrow $\Delta t \downarrow \longrightarrow$ Better initial guess \uparrow

Research question:

• Will the **complexity** of numerically solving **Poisson's equation** increase or decrease for very large scale DNS/LES simulations of incompressible turbulent flows?

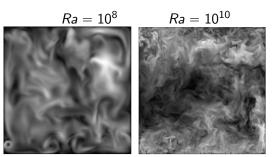


²F.Dabbagh, F.X.Trias, A.Gorobets, A.Oliva. Flow topology dynamics in a 3D phase space for turbulent Rayleigh-Bénard convection, Phys.Rev.Fluids, 5:024603, 2020.

Research question:

Two competing effects

• Will the **complexity** of numerically solving **Poisson's equation** increase or decrease for very large scale DNS/LES simulations of incompressible turbulent flows?

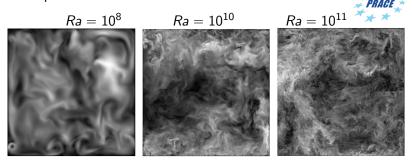


²F.Dabbagh, F.X.Trias, A.Gorobets, A.Oliva. Flow topology dynamics in a 3D phase space for turbulent Rayleigh-Bénard convection, Phys.Rev.Fluids, 5:024603, 2020.

Research question:

Two competing effects

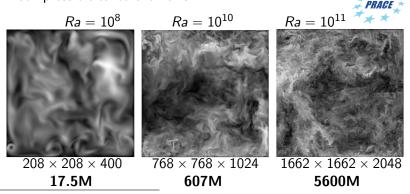
 Will the complexity of numerically solving Poisson's equation increase or decrease for very large scale DNS/LES simulations of incompressible turbulent flows?



²F.Dabbagh, F.X.Trias, A.Gorobets, A.Oliva. Flow topology dynamics in a 3D phase space for turbulent Rayleigh-Bénard convection, Phys.Rev.Fluids, 5:024603, 2020.

Research question:

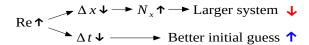
 Will the complexity of numerically solving Poisson's equation increase or decrease for very large scale DNS/LES simulations of incompressible turbulent flows?



²F.Dabbagh, F.X.Trias, A.Gorobets, A.Oliva. *Flow topology dynamics in a 3D phase space for turbulent Rayleigh-Bénard convection*, **Phys.Rev.Fluids**, 5:024603, 2020.

Smaller and smaller, but how much?

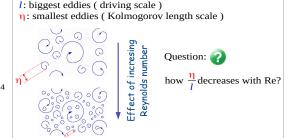
Two competing effects: who (if any) will eventually win?



From classical K41 theory:

$$\frac{1}{N_x^{\text{K41}}} = \frac{\Delta x}{L_x} \sim \frac{\eta}{l} \propto \text{Re}^{-3/4}$$

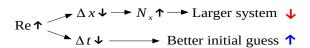
$$\frac{u}{U} \propto \text{Re}^{-1/4}$$



$$\frac{1}{N_t^{\text{K41}}} = \frac{\Delta t}{t_{\text{sim}}} \sim \frac{t_{\eta}}{t_l} \propto \frac{\eta}{l} \frac{U}{u} \propto \text{Re}^{-3/4} \,\text{Re}^{1/4} = \text{Re}^{-1/2}$$

Smaller and smaller, but how much?

Two competing effects: who (if any) will eventually win?



From classical K41 theory:

$$\frac{1}{N_x^{\text{K41}}} = \frac{\Delta x}{L_x} \sim \frac{\eta}{l} \propto \text{Re}^{-3/4}$$
$$\frac{u}{U} \propto \text{Re}^{-1/4}$$

From CFL condition:

$$\Delta t^{\text{conv}} \sim \frac{\Delta x}{U} \qquad \Delta t^{\text{diff}} \sim \frac{\Delta x^{2}}{v}$$

$$\frac{1}{N_{t}^{\text{conv}}} \sim \frac{\Delta t^{\text{conv}}}{t_{l}} \sim \frac{U}{l} \frac{l \operatorname{Re}^{-3/4}}{U} = \operatorname{Re}^{-3/4}$$

$$\frac{1}{N_{t}^{\text{diff}}} \sim \frac{\Delta t^{\text{diff}}}{t_{l}} \sim \frac{U}{l} \frac{l^{2} (\operatorname{Re}^{-3/4})^{2}}{v} = \operatorname{Re}^{-1/2}$$

$$\frac{1}{N_t^{\text{K41}}} = \frac{\Delta t}{t_{\text{sim}}} \sim \frac{t_{\eta}}{t_l} \propto \frac{\eta}{l} \frac{U}{u} \propto \text{Re}^{-3/4} \, \text{Re}^{1/4} = \text{Re}^{-1/2}$$

Smaller and smaller, but how much?

Two competing effects: who (if any) will eventually win?

Re
$$\uparrow$$
 $\Delta x \downarrow \longrightarrow N_x \uparrow \longrightarrow$ Larger system \downarrow $\Delta t \downarrow \longrightarrow$ Better initial guess \uparrow

In summary:

$$\frac{1}{N_x^{\text{K41}}} = \frac{\Delta x}{L_x} \sim \frac{\eta}{l} \propto \text{Re}^{-3/4}$$

$$\alpha = -1/2 \text{ (K41 or diffusion dominated)}$$

$$\frac{\Delta t}{t_l} \sim \text{Re}^{\alpha}$$

$$\alpha = -3/4 \text{ (convection dominated)}$$

$$\nabla^{2} p^{n+1} = \frac{1}{\Delta t} \nabla \cdot \vec{u}^{p}$$
Initial guess $\rightarrow p^{n}$

$$r^{o} = \nabla^{2} p^{n} - \frac{1}{\Delta t} \nabla \cdot u^{p,n+1}$$

$$\nabla^{2} p^{n+1} = \frac{1}{\Delta t} \nabla \cdot \vec{u}^{p}$$
Initial guess $\rightarrow p^{n}$

$$r^{o} = \nabla^{2} p^{n} - \frac{1}{\Delta t} \nabla \cdot u^{p,n+1} = \frac{1}{\Delta t} \nabla \cdot u^{p,n} - \frac{1}{\Delta t} \nabla \cdot u^{p,n+1} \approx \frac{\partial \nabla \cdot u^{p}}{\partial t} = \nabla \cdot \frac{\partial u^{p}}{\partial t}$$

$$\nabla^{2} p^{n+1} = \frac{1}{\Delta t} \nabla \cdot \vec{u}^{p}$$
Initial guess $\rightarrow p^{n}$

$$r^{o} = \nabla^{2} p^{n} - \frac{1}{\Delta t} \nabla \cdot u^{p,n+1} = \frac{1}{\Delta t} \nabla \cdot u^{p,n} - \frac{1}{\Delta t} \nabla \cdot u^{p,n+1} \approx \frac{\partial \nabla \cdot u^{p}}{\partial t} = \nabla \cdot \frac{\partial u^{p}}{\partial t}$$

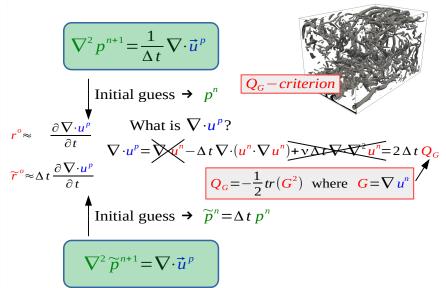
$$\tilde{r}^{o} = \nabla^{2} \tilde{p}^{n} - \nabla \cdot u^{p,n+1} \approx \nabla \cdot u^{p,n} - \nabla \cdot u^{p,n+1} \approx \Delta t \frac{\partial \nabla \cdot u^{p}}{\partial t} = \Delta t \nabla \cdot \frac{\partial u^{p}}{\partial t}$$
Initial guess $\rightarrow \tilde{p}^{n} = \Delta t p^{n}$

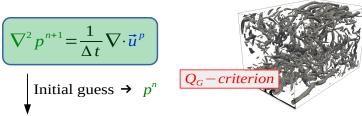
$$\nabla^{2} \tilde{p}^{n+1} = \nabla \cdot \vec{u}^{p}$$

$$\nabla^{2} p^{n+1} = \frac{1}{\Delta t} \nabla \cdot \vec{u}^{p}$$
Initial guess $\rightarrow p^{n}$

$$\vec{r}^{o} \approx \Delta t \frac{\partial \nabla \cdot u^{p}}{\partial t}$$
Initial guess $\rightarrow \widetilde{p}^{n} = \Delta t p^{n}$

$$\nabla^{2} \widetilde{p}^{n+1} = \nabla \cdot \vec{u}^{p}$$





$$r^{\circ} \approx \frac{\partial \nabla \cdot u^{p}}{\partial t} = 2 \Delta t \frac{\partial Q_{G}}{\partial t}$$

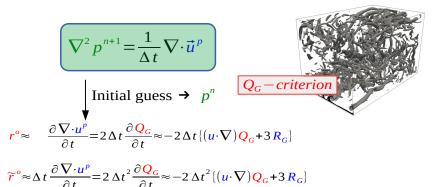
$$\widetilde{r}^{o} \approx \Delta t \frac{\partial \nabla \cdot u^{p}}{\partial t} = 2 \Delta t^{2} \frac{\partial Q_{G}}{\partial t}$$

$$R_G = det(G) = \frac{1}{3}tr(G^3)$$

$$Q_G = -\frac{1}{2}tr(G^2)$$
 where $G = \nabla u^n$

Exact equations for restricted Euler:

$$\frac{dQ_G}{dt} = -3R_G \longrightarrow \frac{\partial Q_G}{\partial t} = -(u \cdot \nabla)Q_G - 3R_G$$



$$\frac{dQ_G}{dt} = -3R_G \longrightarrow \frac{\partial Q_G}{\partial t} = -(\mathbf{u} \cdot \nabla)Q_G - 3R_G$$

$$\nabla^{2} p^{n+1} = \frac{1}{\Delta t} \nabla \cdot \vec{u}^{p}$$
Initial guess $\Rightarrow p^{n}$

$$Q_{G} - criterion$$

$$r^{o} \approx \frac{\partial \nabla \cdot u^{p}}{\partial t} = 2\Delta t \frac{\partial Q_{G}}{\partial t} \approx -2\Delta t \{(u \cdot \nabla) Q_{G} + 3R_{G}\}$$

$$\uparrow^{o} \approx \Delta t \frac{\partial \nabla \cdot u^{p}}{\partial t} = 2\Delta t^{2} \frac{\partial Q_{G}}{\partial t} \approx -2\Delta t^{2} \{(u \cdot \nabla) Q_{G} + 3R_{G}\}$$
Initial guess $\Rightarrow \tilde{p}^{n} = \Delta t p^{n}$

$$\nabla^{2} \tilde{p}^{n+1} = \nabla \cdot \vec{u}^{p}$$

In summary:

in summary:
$$r^{o} \approx \frac{\partial \nabla \cdot u^{p}}{\partial t} = 2\Delta t^{q} \frac{\partial Q_{G}}{\partial t} \approx -2\Delta t^{q} \{(u \cdot \nabla) Q_{G} + 3 R_{G}\} \qquad q = [1, 2]$$

$$\nabla^{2} p^{n+1} = \nabla \cdot \bar{u}^{p}$$

$$\frac{\Delta t}{t_1} \sim \text{Re}^{\alpha} \begin{cases} \alpha = -1/2 \text{ (K41 or diffusion dominated)} \\ \alpha = -3/4 \text{ (convection dominated)} \end{cases}$$

$$\frac{1}{N_x^{\text{K41}}} = \frac{\Delta x}{L_x} \sim \frac{1}{l} \propto \text{Re}^{-3/4}$$

In summary:

n summary:

$$r^{o} \approx \frac{\partial \nabla \cdot u^{p}}{\partial t} = 2\Delta t^{q} \frac{\partial Q_{G}}{\partial t} \approx -2\Delta t^{q} \{(u \cdot \nabla)Q_{G} + 3R_{G}\}$$

$$q = \{1, 2\}$$

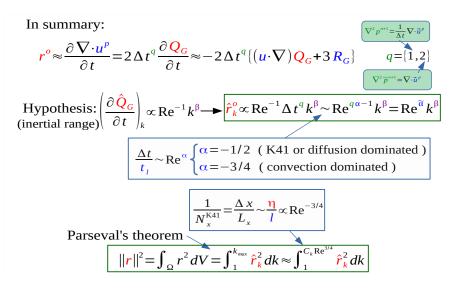
$$\nabla^{2} \bar{p}^{a+1} = \nabla \cdot \bar{u}^{p}$$

Hypothesis:
$$\left(\frac{\partial \hat{Q}_G}{\partial t}\right)_k \propto \operatorname{Re}^{-1} k^{\beta} \longrightarrow \hat{r}_k^{\circ} \propto \operatorname{Re}^{-1} \Delta t^q k^{\beta} \sim \operatorname{Re}^{q\alpha-1} k^{\beta} = \operatorname{Re}^{\alpha} k^{\beta}$$

$$\frac{\Delta t}{t_l} \sim \text{Re}^{\alpha} \begin{cases} \alpha = -1/2 \text{ (K41 or diffusion dominated)} \\ \alpha = -3/4 \text{ (convection dominated)} \end{cases}$$

$$\frac{1}{N_x^{\text{K41}}} = \frac{\Delta x}{L_x} \sim \frac{1}{l} \propto \text{Re}^{-3/4}$$

In summary: rowindary. $r^{o} \approx \frac{\partial \nabla \cdot u^{p}}{\partial t} = 2\Delta t^{q} \frac{\partial Q_{G}}{\partial t} \approx -2\Delta t^{q} \{(u \cdot \nabla) Q_{G} + 3R_{G}\} \qquad q = \{1, 2\}$ $\nabla^{2} p^{n+1} = \frac{1}{\Delta t} \nabla \cdot \vec{u}^{p}$ $\nabla^{2} p^{n+1} = \nabla \cdot \vec{u}^{p}$ Hypothesis: $\left(\frac{\partial \hat{Q}_G}{\partial t}\right)_k \propto \operatorname{Re}^{-1} k^{\beta} \longrightarrow \hat{r}_k^{\circ} \propto \operatorname{Re}^{-1} \Delta t^q k^{\beta} \sim \operatorname{Re}^{q\alpha-1} k^{\beta} = \operatorname{Re}^{\widetilde{\alpha}} k^{\beta}$ $\frac{\Delta t}{t_l} \sim \text{Re}^{\alpha} \begin{cases} \alpha = -1/2 \text{ (K41 or diffusion dominated)} \\ \alpha = -3/4 \text{ (convection dominated)} \end{cases}$ $\left| \frac{1}{N_{x}^{\text{K41}}} = \frac{\Delta x}{L_{x}} \sim \frac{\eta}{l} \propto \text{Re}^{-3/4} \right|$ Parseval's theorem $||\mathbf{r}||^2 = \int_{\Omega} r^2 dV = \int_{1}^{k_{max}} \hat{\mathbf{r}}_{k}^2 dk$



Solver convergence

$$||\mathbf{r}^{n}||^{2} = \int_{1}^{k_{\text{max}}} (\hat{\omega}_{k}^{n} \hat{\mathbf{r}}_{k}^{0})^{2} dk \approx \int_{1}^{C_{k} \text{Re}^{3/4}} \hat{\omega}_{k}^{2n} \text{Re}^{2\tilde{\alpha}} k^{2\beta} dk$$

$$\hat{\omega} = \frac{\hat{\mathbf{r}}_{k}^{n+1}}{\hat{\mathbf{r}}_{k}^{n}} \qquad \qquad \hat{\mathbf{r}}_{k}^{o} \propto \text{Re}^{-1} \Delta t^{q} k^{\beta} \sim \text{Re}^{q\alpha-1} k^{\beta} = \text{Re}^{\tilde{\alpha}} k^{\beta}$$

$$||r||^2 = \int_{\Omega} r^2 dV = \int_{1}^{k_{max}} \hat{r}_k^2 dk \approx \int_{1}^{C_k \operatorname{Re}^{3/4}} \hat{r}_k^2 dk$$

Solver convergence

$$||\mathbf{r}^{n}||^{2} = \int_{1}^{k_{max}} (\hat{\omega}_{k}^{n} \hat{\mathbf{r}}_{k}^{0})^{2} dk \approx \int_{1}^{C_{k} \operatorname{Re}^{3/4}} \hat{\omega}_{k}^{2n} \operatorname{Re}^{2\widetilde{\alpha}} k^{2\beta} dk$$

$$\hat{\omega} = \frac{\hat{\mathbf{r}}_{k}^{n+1}}{\hat{\mathbf{r}}_{k}^{n}} \qquad \qquad \hat{\mathbf{r}}_{k}^{o} \propto \operatorname{Re}^{-1} \Delta t^{q} k^{\beta} \sim \operatorname{Re}^{q\alpha - 1} k^{\beta} = \operatorname{Re}^{\widetilde{\alpha}} k^{\beta}$$

Jacobi:
$$\|\mathbf{r}^n\|^2 \approx C_k^{2\beta+1} \operatorname{Re}^{2(\widetilde{\alpha}+\widetilde{\beta})} \int_{1/k_{\max}}^1 (1-\rho^2)^{2n} \rho^{2\beta} d\rho$$
 $\rho \equiv k/k_{\max}$ $\widetilde{\beta} \equiv \frac{3}{4} (\beta+1/2)$

$$||r||^2 = \int_{\Omega} r^2 dV = \int_{1}^{k_{max}} \hat{r}_{k}^2 dk \approx \int_{1}^{C_{k} \operatorname{Re}^{3/4}} \hat{r}_{k}^2 dk$$

Solver convergence

$$||r^{n}||^{2} = \int_{1}^{k_{\text{max}}} (\hat{\omega}_{k}^{n} \hat{r}_{k}^{0})^{2} dk \approx \int_{1}^{C_{k} \text{Re}^{3/4}} \hat{\omega}_{k}^{2n} \text{Re}^{2\tilde{\alpha}} k^{2\beta} dk$$

$$\hat{\omega} = \frac{\hat{r}_{k}^{n+1}}{\hat{r}_{k}^{n}} \qquad \qquad \hat{r}_{k}^{o} \propto \text{Re}^{-1} \Delta t^{q} k^{\beta} \sim \text{Re}^{q\alpha-1} k^{\beta} = \text{Re}^{\tilde{\alpha}} k^{\beta}$$

Jacobi:
$$||r^n||^2 \approx C_k^{2\beta+1} \operatorname{Re}^{2(\widetilde{\alpha}+\widetilde{\beta})} \int_{1/k_{max}}^1 (1-\rho^2)^{2n} \rho^{2\beta} d\rho$$
 $\rho \equiv k/k_{max}$ $\approx C_k^{2\beta+1} \operatorname{Re}^{2(\widetilde{\alpha}+\widetilde{\beta})} \frac{1}{2} \operatorname{B}(2n+1,\beta+1/2)$ $\widetilde{\beta} \equiv \frac{3}{4}(\beta+1/2)$

$$||r||^2 = \int_{\Omega} r^2 dV = \int_{1}^{k_{max}} \hat{r}_{k}^2 dk \approx \int_{1}^{C_{k} \operatorname{Re}^{3/4}} \hat{r}_{k}^2 dk$$

$$||\mathbf{r}^{n}||^{2} = \int_{1}^{k_{max}} (\hat{\omega}_{k}^{n} \hat{\mathbf{r}}_{k}^{0})^{2} dk \approx \int_{1}^{C_{k} \operatorname{Re}^{3/4}} \hat{\omega}_{k}^{2n} \operatorname{Re}^{2\tilde{\alpha}} k^{2\beta} dk$$

$$\hat{\omega} = \frac{\hat{\mathbf{r}}_{k}^{n+1}}{\hat{\mathbf{r}}_{k}^{n}} \qquad \qquad \hat{\mathbf{r}}_{k}^{o} \propto \operatorname{Re}^{-1} \Delta t^{q} k^{\beta} \sim \operatorname{Re}^{q\alpha - 1} k^{\beta} = \operatorname{Re}^{\tilde{\alpha}} k^{\beta}$$

$$||\mathbf{r}^{n}||^{2} = \int_{1}^{k_{max}} (\hat{\omega}_{k}^{n} \hat{\mathbf{r}}_{k}^{0})^{2} dk \approx \int_{1}^{C_{k} \operatorname{Re}^{3/4}} \hat{\omega}_{k}^{2n} \operatorname{Re}^{2\tilde{\alpha}} k^{2\beta} dk$$

$$\hat{\omega} = \frac{\hat{\mathbf{r}}_{k}^{n+1}}{\hat{\mathbf{r}}_{k}^{n}} \qquad \qquad \hat{\mathbf{r}}_{k}^{o} \propto \operatorname{Re}^{-1} \Delta t^{q} k^{\beta} \sim \operatorname{Re}^{q\alpha-1} k^{\beta} = \operatorname{Re}^{\tilde{\alpha}} k^{\beta}$$

Jacobi:
$$\|\mathbf{r}^n\|^2 \propto \frac{\operatorname{Re}^{2(\tilde{\alpha}+\beta)}}{(2n+1)^{\beta+1/2}}$$

$$||r||^2 = \int_{\Omega} r^2 dV = \int_{1}^{k_{max}} \hat{r}_{k}^2 dk \approx \int_{1}^{C_{k} \operatorname{Re}^{3/4}} \hat{r}_{k}^2 dk$$

$$||r^{n}||^{2} = \int_{1}^{k_{max}} (\hat{\omega}_{k}^{n} \hat{r}_{k}^{0})^{2} dk \approx \int_{1}^{C_{k} \operatorname{Re}^{3/4}} \hat{\omega}_{k}^{2n} \operatorname{Re}^{2\widetilde{\alpha}} k^{2\beta} dk$$

$$\hat{\omega} = \frac{\hat{r}_{k}^{n+1}}{\hat{r}_{k}^{n}} \qquad \qquad \hat{r}_{k}^{o} \propto \operatorname{Re}^{-1} \Delta t^{q} k^{\beta} \sim \operatorname{Re}^{q\alpha-1} k^{\beta} = \operatorname{Re}^{\widetilde{\alpha}} k^{\beta}$$

Jacobi:
$$\|\mathbf{r}^n\|^2 \propto \frac{\operatorname{Re}^{2(\widetilde{\alpha}+\widetilde{\beta})}}{(2n+1)^{\beta+1/2}}$$

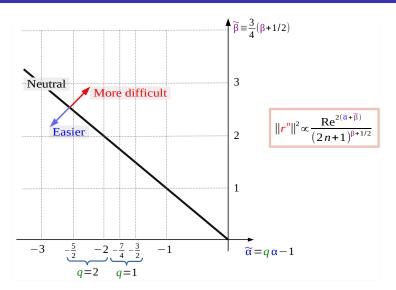
Multigrid:
$$||r^n||^2 \propto \frac{\operatorname{Re}^{2(\widetilde{\alpha}+\widetilde{\beta})}}{(2n+1)^{\beta+1/2}} \left\{ \left(\frac{\sum_{l=0}^{l_{\max}} (3/4)^{2n+1}}{2^{2l}} \right) + \frac{1}{2^{2l_{\max}}+1} \right\}$$

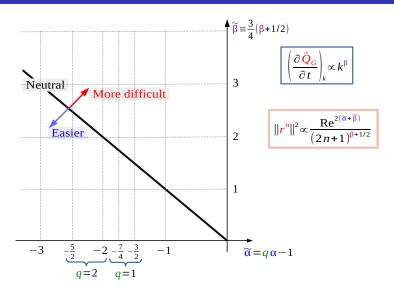
$$||\mathbf{r}||^2 = \int_{\Omega} r^2 dV = \int_{1}^{k_{max}} \hat{\mathbf{r}}_{k}^2 dk \approx \int_{1}^{C_k \operatorname{Re}^{3/4}} \hat{\mathbf{r}}_{k}^2 dk$$

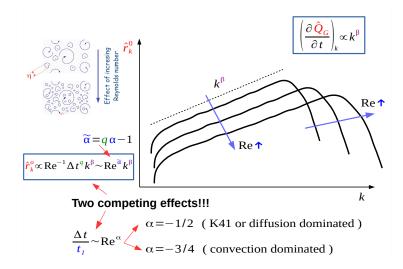
$$||r^{n}||^{2} = \int_{1}^{k_{max}} (\hat{\omega}_{k}^{n} \hat{r}_{k}^{0})^{2} dk \approx \int_{1}^{C_{k} \operatorname{Re}^{3/4}} \hat{\omega}_{k}^{2n} \operatorname{Re}^{2\tilde{\alpha}} k^{2\beta} dk$$

$$\hat{\omega} = \frac{\hat{r}_{k}^{n+1}}{\hat{r}_{k}^{n}} \qquad \hat{r}_{k}^{o} \propto \operatorname{Re}^{-1} \Delta t^{q} k^{\beta} \sim \operatorname{Re}^{q\alpha - 1} k^{\beta} = \operatorname{Re}^{\tilde{\alpha}} k^{\beta}$$
Jacobi:
$$||r^{n}||^{2} \propto \frac{\operatorname{Re}^{2(\tilde{\alpha} + \tilde{\beta})}}{(2n+1)^{\beta + 1/2}} \left(\frac{\sum_{l=0}^{l_{max}} (3/4)^{2n+1}}{2^{2l}} + \frac{1}{2^{2l_{max}} + 1} \right)$$

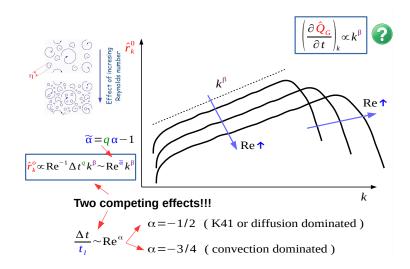
$$||r^{n}||^{2} = \int_{\Omega} r^{2} dV = \int_{1}^{k_{max}} \hat{r}_{k}^{2} dk \approx \int_{1}^{C_{k} \operatorname{Re}^{3/4}} \hat{r}_{k}^{2} dk$$







Solver Converge $\{\tilde{\alpha}, \tilde{\beta}\}$ phase space

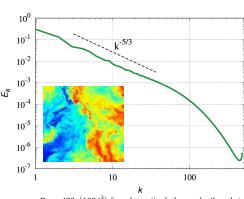


Kolmogorov theory predictions

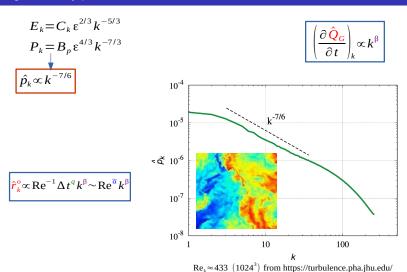
$$E_k = C_k \varepsilon^{2/3} k^{-5/3}$$

$$\left(\frac{\partial \hat{\mathbf{Q}}_{G}}{\partial t}\right)_{k} \propto k^{\beta}$$

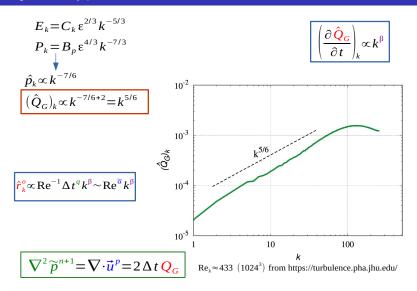
$$\hat{r}_{k}^{o} \propto \operatorname{Re}^{-1} \Delta t^{q} k^{\beta} \sim \operatorname{Re}^{\alpha} k^{\beta}$$

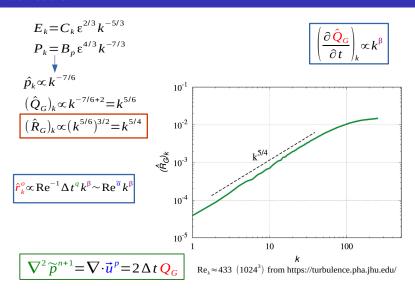


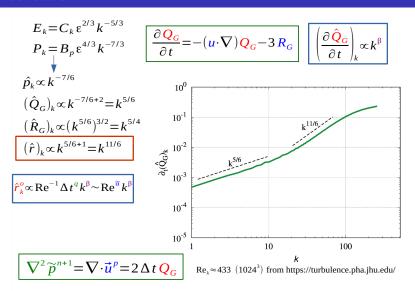
Kolmogorov theory predictions

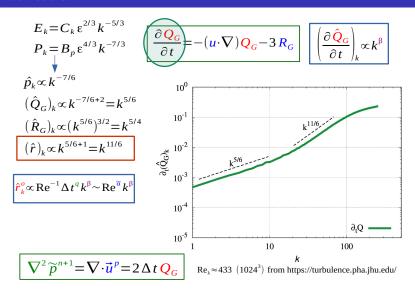


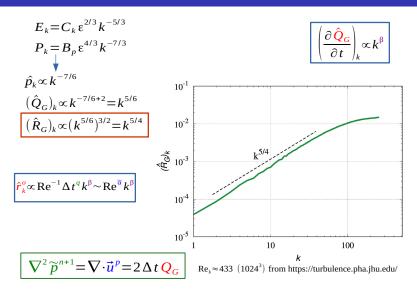
Kolmogorov theory predictions

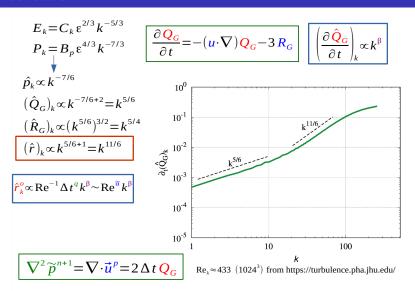


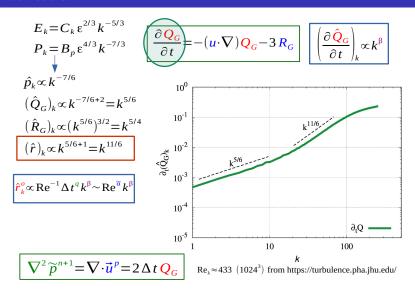


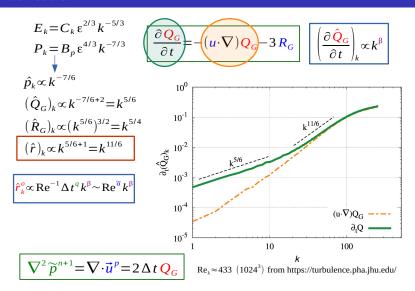


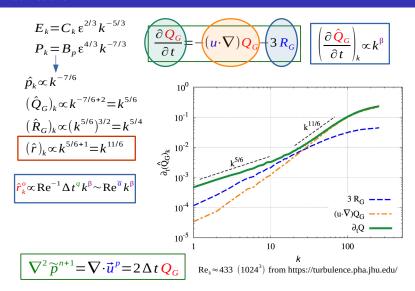


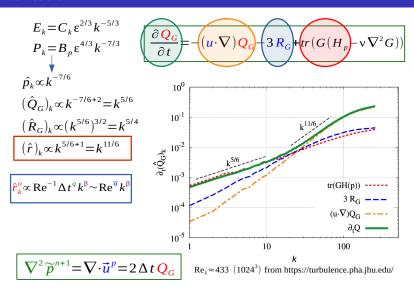




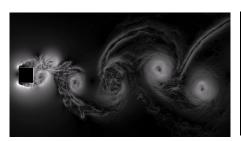








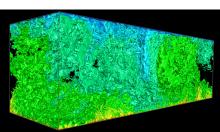
Flow around a square cylinder



Re = 22000 (330M grid points)
Re = 55000 (2.6B grid points)
Re = 100000 (10B grid points) on

Re = 100000 (10B grid points) on-going

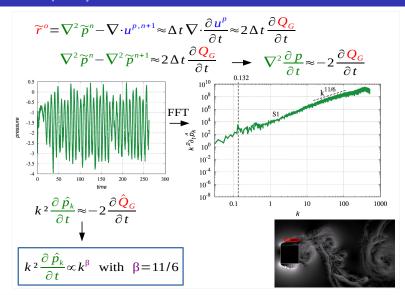
Air-filled Rayleigh-Bénard

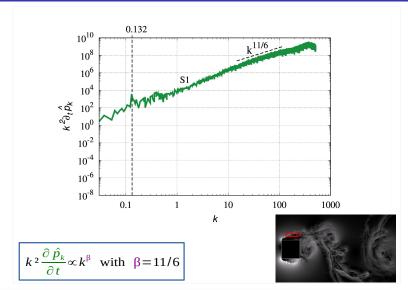


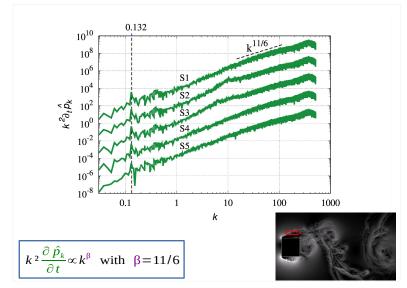
$$Ra = 10^{10}$$
 (604M grid points)
 $Ra = 10^{11}$ (5.7B grid points)

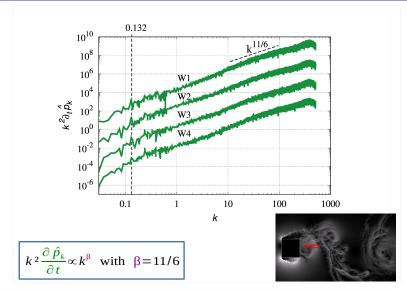
Flow around a square sylinder at Po = 22000

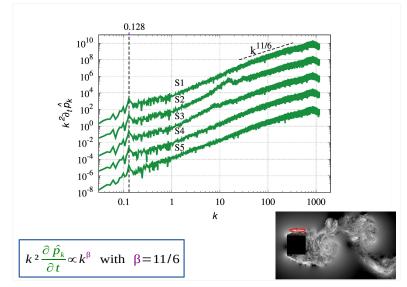
$$\widetilde{r}^{o} = \nabla^{2} \widetilde{p}^{n} - \nabla \cdot u^{p,n+1} \approx \Delta t \nabla \cdot \frac{\partial u^{p}}{\partial t} \approx 2 \Delta t \frac{\partial Q_{G}}{\partial t}$$







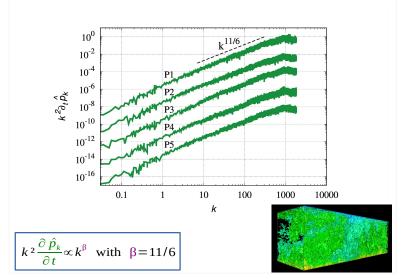




Flow around a square cylinder at Re = 55000

0.128 10^{10} k^{11/6}---- 10^{8} 10^{6} 10^{4} $k^2 \partial_t \hat{p}_k$ 10^2 10^{0} 10⁻² 10^{-4} 10⁻⁶ 0.1 100 10 1000 k with $\beta = 11/6$

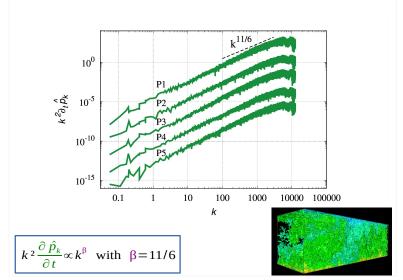
Air-filled Rayleigh–Bénard at $Ra=10^{10}$

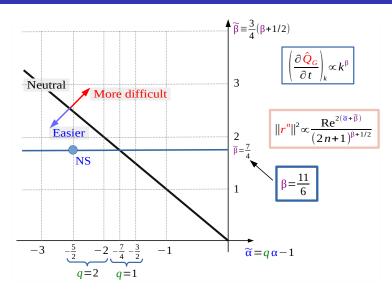


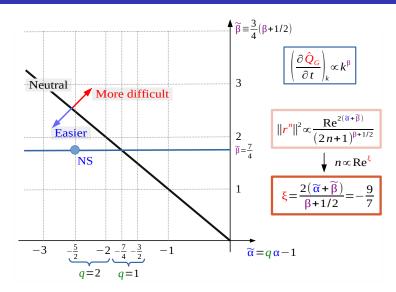
Results 000000000

Non-homogeneous turbulent flows

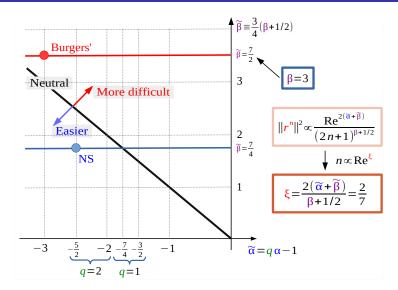
Air-filled Rayleigh–Bénard at $Ra = 10^{11}$



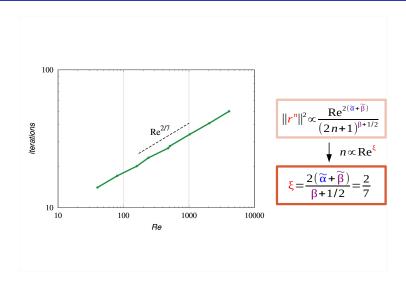




Solver convergence for Burgers' equation

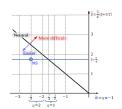


Solver convergence for Burgers' equation

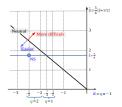


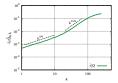
• Two competing effects on the convergence of Poisson's equation have been identified.

- **Two competing effects** on the convergence of Poisson's equation have been identified.
- The $\{\tilde{\alpha}, \tilde{\beta}\}$ phase space is divided in two regions depending on the solver convergence.

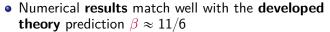


- **Two competing effects** on the convergence of Poisson's equation have been identified.
- The $\{\tilde{\alpha}, \tilde{\beta}\}$ phase space is divided in two regions depending on the solver convergence.
- Numerical **results** match well with the **developed** theory prediction $\beta \approx 11/6$
 - For HIT √

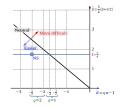


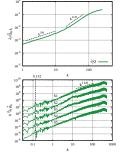


- Two competing effects on the convergence of Poisson's equation have been identified.
- The $\{\tilde{\alpha}, \tilde{\beta}\}$ phase space is divided in two regions depending on the solver convergence.

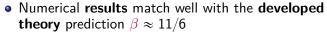


- For HIT √
- But also for non-homogeneous flows √





- Two competing effects on the convergence of Poisson's equation have been identified.
- The $\{\tilde{\alpha}, \tilde{\beta}\}$ phase space is divided in two regions depending on the solver convergence.



- For HIT √
- ullet But also for non-homogeneous flows \checkmark

On-going research:

 Numerical analysis of the scaling of number of solver iterations with Re



Thank you for your attendance

