
Assessment and comparison of a recent
kinematic sensitive subgrid length scale in
Hybrid RANS-LES

A. Pont-Vı́lchez, F.X. Trias, A. Revell and A. Oliva

Abstract A recent kinematic sensitive subgrid length scale, ∆lsq, initially
developed for LES applications, is now considered for DES. Even though it is
presented as a subgrid length scale, instead of a grey area mitigation (GAM)
technique, this initial study shows how it could also be a good and natural
approach for addressing this well-known DES shortcoming. In this paper,
the ∆lsq has been compared with a well-known kinematic sensitive length

scale, ∆̃ω. It includes a mesh resilience and a shear layer delay study with
a Decaying Homogeneous Isotropic Turbulence configuration and two Back-
ward Facing Step configurations, respectively. Encouraging results have been
obtained, indicating ∆lsq as a subgrid length scale to be considered.

1 Introduction

In the context of turbulence simulation approaches, the subgrid length scale,
∆, undoubtedly plays a crucial role in the approximation of the subgrid-scale
viscosity, νsgs (Eq.1). However, in spite of this, it has not been given as much
prominence as other parameters such as the model constant, Cm (CDES in
DES nomenclature), or the differential operator, Dm (ū).

νsgs = (Cm∆)
2
Dm (ū) (1)
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Trias et al. [8] performed a comprehensive study of the spatial length scales
used to date, concerned about the lack of consensus in the scientific com-
munity. Summarising the trends in modelling and simulation research, they
identified that the volume cubic root, ∆vol (Eq. 2), is used predominantly for
LES applications, whereas the maximum length scale,∆max (Eq. 3), is pre-
ferred for Hybrid ones. Mockett et al. [2] and Shur et al. [4] observed as both
definitions were inextricably linked to unintended length scale changes due
to mesh variations, as neither one considers the kinematic fluid behaviour;
causing a poor mesh resilience for anisotropic meshes.

∆vol = (∆x∆y∆z)
1/3

(2)

∆max = max (∆x,∆y,∆z) (3)

In this context, a kinematic sensitive approach resistant to mesh anisotropies
was proposed by Mockett et al. [2], ∆̃ω (Eq. 4), defending the importance
of using the maximum meaningful scale at each LES control volume. This
method was improved by Shur et al. [4], ∆SLA (Eq. 5), for DDES/IDDES
applications, where a rapid transition from RANS to LES is required to avoid
unphysical instability delays.

∆̃ω =
1√
3

max
n,m=1,...,8

|ln − lm| (4)

∆SLA = ∆̃ωFKH(〈V TM〉) (5)

Where l = ω/‖ω‖ × rn, rn (n=1,. . . ,8 for hexahedral cell) are the locations
of the cell vertices and FKH is a blending function which depends on the
average Vortex Tilting Measure coefficient defined in Eq. 6.

V TM =
| (S · ω)× ω|
ω2
√
−QS̃

(6)

Where S̃ is the traceless part of the rate-of-strain tensor, S = 1/2
(
∇ū+∇ūT

)
,

i.e. S̃ = S − 1/3tr(S)I. Note that for incompressible flows tr(S) = ∇ · ū = 0,
therefore, S̃ = S. Finally, QA refers to the second invariant of a second-order
tensor A.

Although successful results have been obtained for a broad spectrum of
fluid behaviours [2, 4, 1], a lack of physical meaning can be attributed to ∆̃ω.
In this regard, Trias et al. [8] suggested a new subgrid length scale only based
on the velocity gradient, ∆lsq. This subgrid length scale, which is derived
from physical LES well-established assumptions, is not only resistant to grid
anisotropies but also computationally inexpensive and adapted for any sort
of grid, structured and unstructured ones.
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∆lsq =

√
JGTG : JGTG

GTG : GTG
, Ji =

J xii J yii
J zii

 ,J lii =
1∑

j!=i ‖Glij‖
(7)

Where J is the Jacobian, which colapses to J = diag(∆x,∆y,∆z) in a Carte-
sian structured and non-uniform mesh. Glij referes to the components of the
gradient operator, G, in the l direction. It is important to note that the
gradient tensor, G, is actually being computed in any LES and DES code.
The ∆lsq approach was tested in LES simulations (incompressible flow) us-
ing different kind of anisotropic meshes, showing good mesh resilience in all
cases.

The rest of the paper is arranged as follows. In the next section, a brief
description of the mathematical model is presented. In section 3, there is a
detailed comparison of ∆̃ω and ∆lsq, considering a simple (but meaningful)
2D case. In fact, this study was presented in Trias et al. [8], but this time
the ∆̃ω performance is also examined. In section 4, the CDES of a DDES
Spalart-Allmaras (SA) model is assessed with ∆̃ω and ∆lsq, as well as their
mesh resilience capabilities. Finally, subgrid length scales are tested in sec-
tion 5 with two different Backward Facing Step configurations. These are:
the experimental study of Vogel and Eaton [9] and the recent DNS of a BFS
studied by Pont-Vı́lchez et al.[3]. The necessity of introducing a Shear Layer
Adaptative technique into the ∆lsq algorithm is also discussed.

2 Mathematical Model

The DDES turbulence model presented by Spalart et al.[6] has been used in
this paper, including the Ψ term specially designed to override the unintended
low-Re terms. All simulations carried out in this study have been run using
OpenFOAM . The hybrid convection scheme presented by Travin et al. [5]
for hybrid RANS/LES calculations is used. For the temporal discretisation,
a 2nd-order implicit backward scheme is considered. The velocity-pressure
system is coupled using the well-known PISO algorithm. Concerning the
boundary conditions, they can be found in the respective references.

3 Comparison of subgrid length scales for a 2D
simplified flow

First, the ∆̃ω and ∆lsq performance is assessed in 2D simplified flow, based
on the following parameters,



4 A. Pont-Vı́lchez, F.X. Trias, A. Revell and A. Oliva

∆ =

(
β
β−1

)
, G =

(
0 1

1− 2ω 0

)
(8)

which is displayed in Figure 1. Notice that the size of the control volume
remains equal to unity; therefore, ∆vol = 1, regardless of the value of β. Even
though turbulence is a clearly 3D phenomenon, this analysis in 2D helps to
understand the most essential properties of each length scale. For instance,
in a 2D motion ∆̃ω =

√
(β2 + β−2) /3 only depends on the β ratio, but is not

sensitive neither the flow behaviour nor the volume rotation (the same results
is obtained with β = 5 and β = 1/5). In contrast, ∆lsq is adapted depending
on the flow behaviour and the cell orientation, providing completely different
values in the simple shear (ω = 0.5) case. In that situation, the spatial length
scale is reduced to β−1 = ∆y, completely depending then on the wall mesh
refinement. This capability propitiates the physical instabilities in Grey Area
regions, as in those situations the flow normally exhibits a 2D-like simple
shear and is also accompanied by strong mesh refinements (close to the wall).
In the other hand, this severe reduction could sadly damage the LES/RANS
domain, which is defined by the d̃ coefficient. The original DES [7] would
be highly influenced by the new ∆lsq, but it seems as it is not the case
for the Delayed DES [6], which present a good resilience to the different ∆
behaviours (see section 5). However, a rigorous study should be carried out
in this area, as it could affect other flow configuration not treated so far.
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Fig. 1 Comparison between ∆̃ω and ∆lsq for the simple 2D flow defined in Eq. 8
with different values of β = 1/5, 1/2, 2, 5, 10
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4 Decaying Homogeneous Isotropic Turbulence (DHIT)

The subgrid length scale properties mentioned in the previous section have
been tested in a DHIT case (Wray [10] configuration), where the DDES
turbulence model acts in LES mode. Different CDES coefficients have been
analysed, concluding that CDES = 0.65 is the most appropriate, regardless
of the subgrid length scale. The study considering different CDES has not
been included in this work, but it is worth noting that both meshes, 323

and 643 have been studied. Regarding the subgrid length scale resilience in
anisotropic meshes, a couple of cell configurations have been considered in
figure 2, Book (32× 32×N ,left) and Pencil (32×N ×N ,right), respectively.
First, ∆max is too dissipative with anisotropic meshes in both situations, but
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Fig. 2 Assessment of the mesh resilience capabilities for different subgrid length
scales in a DHIT (CDES = 0.65) case; ∆max (top), ∆lsq (middle) and ∆̃ω (bottom).
“Book” (left) and “Pencil” (right) cells are considered.

their effects are pronounced in the Pencil case, where the length scale clearly
underestimate the mesh capabilities for solving turbulence. The contrary is
true in the ∆lsq case, where the dissipation introduced by the DDES model
is not enough, increasing the energy retained in the smallest scales. This
behaviour can be attributed to the subgrid length scale property discussed
in section 3, where ∆lsq allows values similar to the smallest scale (β−1).
However, in contrast to ∆max, the same reaction is observed for Book and
Pencil cells, indicating a beneficial lack of sensitivity to the kind of mesh
anisotropy. Finally, the most robust behaviour is presented by ∆̃ω, which
is not influenced at all in the Book shape and only small discrepancies are
observed in the Pencil case. This feature is associated with the intrinsic defi-
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nition of the subgrid length scale, where the diagonal value of the cell volume
is assessed. By definition, it means that ∆̃ω is always going to depend at
least on 2 dimensions, being sensitive to the mesh anisotropies, but at the
same time limiting their downward excursions, something that cannot be
guaranteed in the ∆lsq.

5 Results and Discusions

Once the properties of the subgrid length scale have been assessed in a fully
3D turbulent case (DHIT), their influence on switching from RANS to LES
is analysed in two BFS configurations. BFS is a well-known studied case
in Hybrid turbulence modelling, where the flow separation is induced by the
geometry and the resulting shear layer downstream of the step-edge is delayed
because of the undesired smooth RANS-LES transition (Grey Area). The first
BFS resembles the experimental study carried out by Vogel and Eaton [9] at
Reh = 28000 and expansion ratio (ER) equal to 5/4, where Reh is based on
the step height and the inflow bulk velocity Ub. In contrast, the other BFS is
a DNS carried out by Pont-Vilchez, A. et al [3] at Reh ∼ 13700 and ER = 2,
which provides high-quality data for assessing the forecasting capabilities of
existing/new turbulence models subjected to sudden expansions. The Reτ at
the inflow of each BFS are 2500 and 395, which hereafter are named BFS-VE
and BFS-DNS , respectively. The influence of the unsteady flow (LES area)
into the RANS zone is perceived in the BFS-DNS , whereas it is negligible
in the BFS-VE due to the LES zone remains far from the upper wall region.
Apart from that, the Reh value of the BFS-VE is significantly higher than the
BFS-DNS , studying then the subgrid length scale performance at high and
moderate Re values. Therefore, the reasons for selecting two different BFS
geometries are clear. Both configuration share the same coordinate system,
which is located at the step edge.

5.1 BFS-VE (Reh = 28000, ER = 5/4)

A boddy fitted mesh with 300 × 78 × 60 grid points has been used to cover
the computational domain in the stream-wise (x1), normal (x2) and span-
wise (x3) directions, respectively. The same boundary conditions used by
Spalart et al. [6] have been considered. First, the differences observed between
∆lsq and ∆̃ω, as well as the improvements provided by the ∆lsq, can be
explained/summarised using Fig. 3 and Fig.1. Fig. 3 shows the evolution of
various ∆ along the stream-wise direction and a detailed view (zoom) at
the shear layer zone. ∆max exhibits the highest values, providing too much
dissipation into the shear layer and contributing to an excessive delay. An
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important reduction of ∆ values is presented by ∆̃ω, as the flow detect a
2D flow behaviour in the x1x2 plane downstream of the step edge (Grey
Area), ignoring the ∆x3 and collapsing to the diagonal value in that plane,
∆̃ω−2D =

√
∆x21 +∆x22/3. Even though this is the initial behaviour (Fig.3,

right), turbulence is triggered in the shear layer (around 1-2h) switching from
2D to 3D (∆̃ω−3D). It is worth noting here that ∆̃ω will never provide values
lower than the lowest cell volume 2D diagonal (Eq.9). Where coefficient 3
was artificially introduced for recovering ∆max behaviour in the DHIT case
with cubic cells.
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Fig. 3 Average of the subgrid length scales from the step edge to the out-
flow (left) and a zoom view downstream of the step edge (right). Where ∆̃ω−2D =√
∆x21 +∆x22/3 and ∆̃ω−3D =

√
∆x21 +∆x22 +∆x23/3 refer to the vortex located in

the x1x2 plane (KHinstabilities) and 3D Homogeneous Isotropic Turbulence, respec-
tively.

∆̃ωmin = min
i!=j

(√
∆x2i +∆x2j/3

)
(9)

In contrast, ∆lsq can provide values as lower as the wall mesh refinement
allows ∆x2 (the order of wall units in RANS-LES simulations), as has been
demonstrated and discussed in Section 3 for simple shear dynamics. This is
exactly the case of the BFS (and many others), where a strong reduction of
∆ values can be observed (in comparison to ∆̃ω) significantly diminishing
the eddy viscosity and unlocking the KHinstabilities. Once the KHare trig-
gered (0.5-1.5h), ∆lsq switches its behaviour to a diagonal-trend similar to

∆̃ω−2D. It corresponds to the “Pure rotation” mentioned in Fig.1.
The reduction of the shear layer delay can be perceived in Fig.4, comparing

the rms values along the stream-wise direction using ∆lsq and ∆̃ω. Apart
from observing how both ∆ provide good results at x1 = 3.2h (left), and a
clear improvement of ∆lsq in comparison to ∆̃ω from 0h to 2h (right), Fig.4
also shows how both ∆ unlock KH instabilities from the step-edge (x1 = 0).
This is not the case for other spatial length scales, which do not depend on the
flow kinematics. Finally, the skin friction,〈Cf 〉, at the lower and upper walls
are shown in Fig. 5, presenting a good agreement with the reference data
obtained by Shur et al. [4]. In that case, the differences between both subgrid
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Fig. 4 Resolved Reynolds stresses in the stream-wise direction (urms11 ) considering
various subgrid length scales (left) and its evolution at x2 = 0 (right). Where Uo
refers to the inflow bulk velocity. Reference data, ∆̃ωF limKH , has been obtained from
Shur et al. [4].

length scales is minimum, observing only small discrepancies in favour of the
∆lsq, close to the outflow.
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Fig. 5 Skin friction, 〈Cf 〉, at the lower and upper walls downstream of the step edge.

Reference data, ∆̃ωF limKH , has been obtained from Shur et al. [4].

5.2 BFS-DNS (Reb = 13700, ER = 2)

A boddy fitted mesh with 332×86×60 grid points has been used to cover the
computational domain. A turbulent and steady channel flow at Reτ = 395 is
used as an inflow, whereas a Neumman condition is applied at the outflow
for the velocity and ν̃ fields. First, the same data and explanation used in
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Fig.3 can be applied in this case, though the mesh distribution is slightly
different. The benefits of ∆lsq into the mean flow and rms can be appreciated
in Fig.6, observing as the shear layer delay is diminished in comparison to
∆̃ω. However, both length scales converge with the DNS data downstream of
the step edge in the LES part (x1 = 4), regardless of the delay at the shear
layer. It would not necessarily be the case in external flows. The unlocking of
KHinstabilities directly impacts the mean flow behaviour, decreasing the flow
stiffness at the shear layer and converging to the DNS result. Regarding the
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Fig. 6 Resolved Reynolds stresses in the stream-wise direction (〈urms11 〉) considering
various subgrid length scales (left) and its evolution at x2 = 0 (right). Where Uo
refers to the inflow bulk velocity. Reference data, DNS, has been obtained from Pont
et al. [3].

〈Cf 〉 coefficient at the lower wall the improvements triggered by the shear
layer are also observed (Fig.7, left, A) with ∆lsq. In that case, the 〈Cf 〉
peak is also better captured than the RANS − SA simulation and ∆̃ω (B).
Moreover, the improvement of DDES − SA respect to the RANS − SA is
also evident at the upper wall, where the separation point is delayed (C).
However, DDES − SA model does not properly capture the channel flow
recovering process neither in the upper nor the lower walls (D). The 〈Cf 〉
depletion at the upper wall is produced because of the LES interference into
the RANS zone, diminishing the eddy viscosity in a place where turbulence
is not well triggered yet. Finally, even though acceptable results are obtained
with ∆̃ω, those are improved with ∆lsq presenting a better transition in
the adverse pressure gradient zone. The RANS − SA results are obviously
damaged because of its early separation.
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Fig. 7 Skin friction, 〈Cf 〉, at the lower and upper walls downstream of the step edge.
Reference data, DNS, has been obtained from Pont et al. [3].

6 Conclusions and Future Work

The recent subgrid length scale, ∆lsq, initially developed for LES application
by Trias et al. [8], has proved to be a good candidate for DES applications.
Its good response in shear layer zones with RANS to LES transitions (GA),
makes that model a natural approach for mitigating the GA phenomenon
without the need of artificial, and sometimes case dependent, blending func-
tions. However, more challenging flow configurations need to be studied, in-
cluding computational performance analysis, before considering ∆lsq as a
good GAM approach.
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