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Abstract. The essence of turbulence are the smallest scales of motion [1]. They result from
a subtle balance between convective transport and diffusive dissipation. Mathematically, these
terms are governed by two differential operators differing in symmetry: the convective operator
is skew-symmetric, whereas the diffusive is symmetric and negative-definite. At discrete level,
operator symmetries must be retained to preserve the analogous (invariant) properties of the
continuous equations [2, 3]: namely, the convective operator is represented by a skew-symmetric
coefficient matrix, the diffusive operator by a symmetric, negative-definite matrix and the di-
vergence is minus the transpose of the gradient operator. Therefore, even for coarse grids, the
energy of the resolved scales of motion is convected in a stable manner, i.e. the discrete convec-
tive operator transports energy from a resolved scale of motion to other resolved scales without
dissipating any energy, as it should be from a physical point-of-view. Furthermore, high-order
symmetry-preserving discretizatons can be constructed for Cartesian staggered grids [2]. It is
noteworthy to mention that in the last decade, many DNS reference results have been success-
fully generated using this type of discretization (see Figure 1, for example).

However, for unstructured meshes, it is (still) a common argument that accuracy should take
precedence over the properties of the operators. Contrary to this, our philosophy is that operator
symmetries are critical to the dynamics of turbulence and must be preserved. With this in mind,
a fully-conservative discretization method for general unstructured grids was proposed in Ref. [3]:
it exactly preserves the symmetries of the underlying differential operators on a collocated mesh.
In summary, and following the same notation than in Ref. [3], the method is based on a set of
five basic operators: the cell-centered and staggered control volumes (diagonal matrices), Ωc and
Ωs, the matrix containing the face normal vectors, Ns, the cell-to-face scalar field interpolation,
Πc→s and the cell-to-face divergence operator, M. Once these operators are constructed, the rest
follows straightforwardly from them. Therefore, the proposed method constitutes a robust and
easy-to-implement approach to solve incompressible turbulent flows in complex configurations
that can be easily implemented in already existing codes such as OpenFOAMR© [4]. However, any
pressure-correction method on collocated grids suffer from the same drawbacks: the cell-centered
velocity field is not exactly incompressible and some artificial dissipation is inevitable introduced.
On the other hand, for staggered velocity fields, the projection onto a divergence-free space is a
well-posed problem: given a velocity field, it can be uniquely decomposed into a solenoidal vector
and the gradient of a scalar (pressure) field. Regarding these issues, in this work, we address
(i) the possibility to build up staggered formulations based on the above-explained reduced set
of discrete operators and (ii) how to keep the artificial dissipation introduced in the pressure-
correction for collocated grids minimals. The latter is a critical issue not only for DNS but
also for LES simulations since in standard approaches this artificial dissipation can reach values
higher than the subgrid scale (SGS) dissipation blurring the effect of SGS models [5]. In our
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Figure 1: Examples of DNSs computed using symmetry-preserving discretizations. Top: air-filled (Pr =
0.7) Rayleigh-Bénard configuration studied in Ref. [1]. Instantaneous temperature field at Ra = 1010

(left) and instantaneous velocity magnitude at Ra = 1011 (right) for a span-wise cross section are shown.
The latter was computed on 8192 CPU cores of the MareNostrum 4 supercomputer on a mesh of 5.7 billion
grid points. Bottom: DNS of the turbulent flow around a square cylinder at Re = 22000 computed on
784 CPU cores of the MareNostrum 3 supercomputer on a mesh of 323 million grid points [6] .

opinion, losing control of the actual amount of dissipation is incompatible with the high-fidelity

concept. Apart from this, other relevant issues such as the time-integration method or the
portability challenges imposed by current HPC trends will be discussed during the Symposium.
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