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Research question #1:

@ Can we construct numerical discretizations of the Navier-Stokes

equations suitable for complex geometries, such that the symmetry
properties are exactly preserved?

1F X.Trias, A.Gorobets, A.Oliva. Turbulent flow around a square cylinder at Reynolds
number 22000: a DNS study, Computers&Fluids, 123:87-98, 2015.
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DNS? of backward-facing step at Re; = 395 and expansion ratio 2

2A.Pont-Vilchez, F.X.Trias, A.Gorobets, A.Oliva. DNS of Backward-Facing Step flow
at Rer = 395 and expansion ratio 2. Journal of Fluid Mechanics, 863:341-363, 2019.
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Research question #2:
@ How can we develop portable and efficient CFD codes for large-scale
simulations on modern supercomputers?

1995 2000 2005 2010 2015 2020

CopLin oy

Technology Trends in HPC &

single-core CPU clusters ... multicore CPUclusters ...  hybrid clusters >

\ V\?’\k \\3‘0{&

3X.Alvarez, A.Gorobets, F.X.Trias, R.Borrell, and G.Oyarzun. HPC? - a fully portable algebra-dominant framework for
heterogeneous computing. Application to CFD. Computers & Fluids, 173:285-292, 2018

4X.Alvarez, A.Gorobets, F.X.Trias. A hierarchical parallel implementation for heterogeneous computing. Application to
algebra-based CFD simulations on hybrid supercomputers. Computers & Fluids, 214:104768, 2021.
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@ How can we develop portable and efficient CFD codes for large-scale

simulations on modern supercomputers?
1995 2000 2005 2010 2015 2020
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Technology Trends in HPC 2
single-core CPU clusters . multi-core CPU clusters = hybrid clusters >
T
S W
T
CTTC resources and software _——_scalability up to 100k cores
DPC STG ] 7 HPC?
sequential structured parallel structured | termofluids heterogeneous algebr>

deep source of applied and
fundamental research

HPC?: portable, algebra-based framework3 for heterogeneous computing is being
developed4. Traditional stencil-based data and sweeps are replaced by algebraic
structures (sparse matrices and vectors) and kernels. SpMM-based strategies to increase
the arithmetic intensity are presented in this Symposiums.

3X.Alvarez, A.Gorobets, F.X.Trias, R.Borrell, and G.Oyarzun. HPC? - a fully portable algebra-dominant framework for
heterogeneous computing. Application to CFD. Computers & Fluids, 173:285-292, 2018
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algebra-based CFD simulations on hybrid supercomputers. Computers & Fluids, 214:104768, 2021.

5X.A|varez—Farré, A.AlsaltifBaldellou, A.Gorobets, A.Oliva, F.X.Trias. Enabling larger and faster simulations from mesh

symmetries. HiFiLeD2 Symposium Don’t miss it! 18
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Frequently used general purpose CFD codes:
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« ANSYS-FLUENT TAWNSIE®

FLUENT
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Frequently used general purpose CFD codes:

+ STARCCM+  (Liesaarce SIEMENS
« ANSYS-FLUENT TAWNSIE®

FLUENT

q
hd - ‘3 €% CODE &
cosesatume oM oo  [HEl

* OpenFOAM  OpenVFOAM® G’i’“

Main common characteristics of LES in such codes:

@ Unstructured finite volume method, collocated grid
@ Second-order spatial and temporal discretisation
o Eddy-viscosity type LES models

5
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OpenVFOAM® | ESCresults of a turbulent channel for at Re, = 180

25,

—— OpenFOAM - no model —— OpenFOAM - no model .
— =+ OpenFOAM - Lilly model
+=+= OpenFOAM - Smagorinsky
—— Kim, Moin & Moser

—— OpenFOAM - no model

— = OpenFOAM - Lilly model
+=+=0penFOAM - Smagorinsky +==+=OpenFOAM - Smagorinsky
—— Kim, Moin & Moser 7z 15l ——Kim, Moin & Moser

== 0penFOAM - Lily model

20|

of i o
_ »
10| 1
r
5| 5} 4/ ‘ 5|
10 10 10 Lo 10 10 10° 10" 10° 10' 10° 100 10 10 10
¥ ¥ v
13X76X20 197828 38X78x%57
Ax'=90,Ay,,=0.5Az =30 Ax"=60,A y,y=0.5Az"=20 Ax"=30,Ay,,;=0.5,Az =10

6E.M.J.Komen, L.H.Camilo, A.Shams, B.J.Geurts, B.Koren. A quantification method
for numerical dissipation in quasi-DNS and under-resolved DNS, and effects of numerical
dissipation in quasi-DNS and under-resolved DNS of turbulent channel flows, Journal of

Computational Physics, 345, 565-595, 2017.
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Motivation

Research question #1:
@ Can we construct numerical discretizations of the Navier-Stokes
equations suitable for complex geometries, such that the symmetry
properties are exactly preserved?
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1F X.Trias, A.Gorobets, A.Oliva. Turbulent flow around a square cylinder at Reynolds
number 22000: a DNS study, Computers&Fluids, 123:87-98, 2015.
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Why collocated arrangements are so popular?

STAR-CCM+  (Ltacerce SIEMENS
ANSYS-FLUENT JAWNES)

FLUENT - )
* Code-Saturne @%RNE & SeDF
* OpenFOAM  OpenVFOAM® IGPL

Qs% + C(us) us = Dus — Gp,; Mus = 0, dh

In staggered meshes m
@ p-us coupling is naturally solved v

e C(us) and D difficult to discretize X AA
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Pressure-velocity coupling on collocated grids

A vicious circle that cannot be broken...

In summary?®:

e Mass: MI_,ctue = MM ete — Ll MM cue ~ 00 X
e Energy: p. (L—Lc) p_#0x

8F.X.Trias, O.Lehmkuhl, A.Oliva, C.D.Pérez-Segarra, R.W.C.P.Verstappen.
Symmetry-preserving discretization of Navier-Stokes equations on collocated

unstructured grids, Journal of Computational Physics, 258 (1): 246-267, 2014.
11/18



Preserving symmetries at discrete level
[e]e]e] lele)

Pressure-velocity coupling on collocated grids

A vicious circle that cannot be broken...

In summary?®:

@ Mass: Ml su. = Ml su, —‘\ LCL_lJI\/IF(_-HsuC ~0. X
o Energy: pc‘\ (L— LC)JPC #0 X

8F.X.Trias, O.Lehmkuhl, A.Oliva, C.D.Pérez-Segarra, R.W.C.P.Verstappen.
Symmetry-preserving discretization of Navier-Stokes equations on collocated

unstructured grids, Journal of Computational Physics, 258 (1): 246-267, 2014.
11/18



Preserving symmetries at discrete level
[e]e]e] lele)

Pressure-velocity coupling on collocated grids

A vicious circle that cannot be broken...

In summary?®:

@ Mass: Ml su. = Ml su, —‘\ LCL_lJI\/IF(_-HsuC ~0. X
o Energy: pc‘\ (L— LC)JPC #0 X

'L:L(:

Checkerboard

8F.X.Trias, O.Lehmkuhl, A.Oliva, C.D.Pérez-Segarra, R.W.C.P.Verstappen.
Symmetry-preserving discretization of Navier-Stokes equations on collocated

unstructured grids, Journal of Computational Physics, 258 (1): 246-267, 2014.
11/18



Preserving symmetries at discrete level
[e]e]e] lele)

Pressure-velocity coupling on collocated grids

A vicious circle that cannot be broken...

In summary?®:

@ Mass: Ml su. = Ml su, —‘\ LCL_lJI\/IF(_-HsuC ~0. X
o Energy: pc‘\ (L— LC)JPC #0 X

UNSTABLE!!! STABLE
-~ |—
—g“ L = L(:
! I
..8 Very low | | .Too' muc'h
E dissipation | | dissipation
P | |
Q
= [ |
Q | I
Ideal target : 77777 J_»
Pe (L - l—z:)p¢

8F.X.Trias, O.Lehmkuhl, A.Oliva, C.D.Pérez-Segarra, R.W.C.P.Verstappen.
Symmetry-preserving discretization of Navier-Stokes equations on collocated
unstructured grids, Journal of Computational Physics, 258 (1): 246-267, 2014.



Preserving symmetries at discrete level
[e]e]e] lele)

Pressure-velocity coupling on collocated grids

A vicious circle that cannot be broken...

In summary?®:

@ Mass: Ml su. = Ml su, —‘\ LCL_lJI\/IF(_-HsuC ~0. X
o Energy: pc‘\ (L— LC)JPC #0 X

UNSTABLE!!! STABLE
-~ |——
-0L =1L,
= g
3 ‘ |
o Very low | | 'Too' muc'h
E dissipation | | dissipation
|
P | |
Q
= [ |
Q | |
! |
Ideal target L . -

L= L{. p(t(l- - Llf)p(f
and p. L Ker(L.)

SShashank, J.Larsson, G.laccarino. A co-located incompressible Navier-Stokes solver
with exact mass, momentum and kinetic energy conservation in the inviscid limit,

Journal of Computational Physics, 229: 4425-4430,2010.
11/18



Preserving symmetries at discrete level
[e]e]e] lele)

Pressure-velocity coupling on collocated grids

A vicious circle that cannot be broken...

In summary?®:

@ Mass: Ml su. = Ml su, —‘\ LCL_lJI\/IF(_-HsuC ~0. X
o Energy: pc‘\ (L— LC)JPC #0 X

UNSTABLE!!! | STABLE
-~ | —————
-0L =1L,
= g
3 ‘ |
o Very low | | Too much
E dissipation | | dissipation
! |
8 ™ ! ’ |
= = I
5 L=L using p;. !
© I_ - I_ ! |
Ideal target
—_— & - -
L=L, pe(L = L)pe

and p. L Ker(L.)

8F.X.Trias, O.Lehmkuhl, A.Oliva, C.D.Pérez-Segarra, R.W.C.P.Verstappen.
Symmetry-preserving discretization of Navier-Stokes equations on collocated
unstructured grids, Journal of Computational Physics, 258 (1): 246-267, 2014.




Preserving symmetries at discrete level
[e]e]e] lele)

Pressure-velocity coupling on collocated grids

A vicious circle that cannot be broken...

In summary?®:

@ Mass: Ml su. = Ml su, —‘\ LCL_lJI\/IF(_-HsuC ~0. X
o Energy: pc‘\ (L— LC)JPC #0 X

UNSTABLE!!! STABLE
- —————
—®L = L.
=1 g
8 | |
£ Very low | | 'T°°' muc'h
§ dissipation ! | dissipation
I |
- o , |
s|L=Lusingp. '_ . ) )
O 0 |: I_ ¢ | Rhie&Chow implementation
Ideal target - ! ! in OpenFOAM
—_— & - ™

L= Lr‘ pc(l- - Llf)p(f
and p. L Ker(L.)
8E.Komen, J.A.Hopman, E.M.A Frederix, F.X.Trias, R.W.C.P.Verstappen. "A
symmetry-preserving second-order time-accurate PISO-based method”. Computers &
Fluids, 225:104979, 2021.

11/18



Preserving symmetries at discrete level

[e]e]e]e] Jo]

Pressure-velocity coupling on collocated grids

A vicious circle that cannot be broken can almost be broken...
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Pressure-velocity coupling on collocated grids

Examples of simulations

Despite these inherent limitations, symmetry-preserving collocated
formulation has been successfully used for DNS/LES simulations!?:

SRR
S iy
Y

VA e
N YRR R TAVAY
¥ SNy NAVAVLY, AAVAVAY,
ey Sy S AYAVAV,Y, TAVAY;
LRy
o """AV % AVAVAX%V* A% %
o

e ——

AVaV,
X NI
X Vavg

S0

NERAEKY K
R AR SRR
R N R AR KRR
A‘vmaﬁmw%?&»ﬁ;
0y A AV, ey, AVay AV i
Wy vy AVav v Ay Vav,
W ay Ay, Avy,
WA AY ATy
LY
v,

AV
\V,
AVaw VAN
LXK
QK
S

i
y W
SR INY

/)
9%
A
95
75
7%
7%
7
7
7
7
f"
7

1l

]

19R Borrell, O.Lehmkuhl, F.X.Trias, A.Oliva. Parallel Direct Poisson solver for
discretizations with one Fourier diagonalizable direction. Journal of Computational

Physics, 230:4723-4741, 2011.
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Examples of simulations
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Portability and beyond
@00

Algebra-based approach naturally leads to portability

Research question #2:
@ How can we develop portable and efficient CFD codes for large-scale

simulations on modern supercomputers?
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the arithmetic intensity are presented in this Symposium
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Algebra-based approach naturally leads to portability, to

simple and analyzable formulations

Continuous Discrete
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(V-a,p) = —(a, V) QG =-M"

(V?a,b) = (a,Vb) D=DT def—
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L=SLS™ =1® Ly, + diag(d)

@ Higher arithmetic intensity (Al) R
@ Reduction of memory footprint L

@ Reduction in the number of
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— Overall speed-up up to x2-x3 v ° ° ° e T
— Memory reduction of ~2 v SpMM can be used = higher Al
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simple and analyzable formulations and opens the door to
new strategies'? to improve its perfomance...

Other SpMM-based strategies to

increase Al and reduce memory
footprint:

L =SLS™! = 1®Lj,, + diag(d)

@ Multiple transport equations
@ Parametric studies
@ Parallel-in-time simulations

@ Go to higher-order?

SpMM can be used = higher Al
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collocated formulations is the key point for reliable
LES/DNS simulations.

@ Algebra-based approach naturally leads to
portability, to simple and analyzable formulations
and opens the door to new strategies to improve
its perfomance.

On-going research:

e Rethinking standard CFD operations (e.g. flux limiters'®, CFL,...) to
adapt them into an algebraic framework (Motivation: maintaining a
minimal number of basic kernels is crucial for portability!!!)

@ Symmetry-preserving formulations for staggered unstructured grids.
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