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Background



Research at CTTC Laboratory

The Heat and Mass Transfer Technological Center (CTTC) is a research group of the
Technical University of Catalonia highly concerned about the environmental sustain-
ability. Specifically, researchers at the CTTC have been enrolled in both fundamen-
tal and applied research, studying several phenomena: natural and forced convection,
multi-phase flow, aerodynamics, among many others.
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HPC at CTTC Laboratory
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The evolution in hardware technologies
enables scientific computing to advance incessantly and reach further aims. Nowadays,
the use of HPC systems is rather common on the solution of both industrial and aca-
demic scale problems.
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Since the beginning,
researchers of CTTC is devoted to develop and adapt CFD codes for the state-of-the art
computer resources, from sequential structured to parallel unstructured applications.
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Massively-parallel devices
of various architectures are incorporated into modern supercomputers, causing the hy-
bridisation of HPC systems and making the design of computing applications a rather
complex problem: the kernels conforming the algorithms must be compatible with
distributed- and shared-memory SIMD and MIMD parallelism, and stream processing.
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Currently,
a fully-portable, algebra-based framework for heterogeneous computing is being de-
veloped. Namely, the traditional stencil data structures and sweeps are replaced by
algebraic data structures and kernels, and the discrete operators and mesh functions
are then stored as sparse matrices and vectors, respectively.

2/21



The future of scientific computing codes

Is it necessary to use the new hardware architectures?

• In our opinion, yes. New hardware is designed to increase energy efficiency, an
imperative to overcome the power constraints in the context of the exascale chal-
lenge.

Do the traditional implementation models facilitate code portability?

• In our opinion, no. Legacy codes were not designed portable simply because it
was not necessary before; these codes usually contain a large number of complex
kernels and data structures mostly suitable for CPU architectures.

Do we need to change the way we look at scientific computing in general?

• In our opinion, yes. There is a large variety of hardware architectures and it is dif-
ficult to determine which are going to prevail. Therefore, sustainability and porta-
bility should become the center of scientific computing software design.
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The algebraic approach



Towards portable implementation models

Traditionally, the development of scientific computing so�tware is based on calculations in iterative 
stencil loops over a discretized geometry—the mesh. Despite being intuitive and versatile, the interde-
pendency between algorithms and their computational implementations in stencil applications usua-
lly introduces an inevitable complexity when it comes to portability and sustainability.

Algebraic

Stencil

By casting discrete operators and mesh functions into sparse matrices and vectors, it has been shown 
that all the calculations in a typical CFD algorithm for the DNS and LES of incompressible turbulent 
flows boil down to a minimalist set of algebraic subroutines.

The idea is to use the stencils just for building data and leave the calculations to an algebraic fra-
mework; thus, legacy codes may be maintained indefinitely as preprocessing tools, and the calculation 
engines become easy to port and optimize.
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Tailoring Navier–Stokes into an algebraic framework

Continuous, dimensionless Navier–Stokes equations read:

∇ · u = 0, ∂tu+ (u · ∇)u−
1

Re
∆u+∇p = 0.

In a matrix–vector notation, the finite-volume discretization of the NS equations on an
arbitrary collocated mesh can be written1 by:

Mus = 0c, Ωdtuc +MUsuc +Duc −MTpc = 0c.

• The discrete variables are stored in vectors and the discrete operators in sparse
matrices.

• The numerical method results fully integrated into the data structures somehow
so that generic algebraic kernels can be used2 .

• The discrete operators can be built directly from the inherent incidence matrices
that define the mesh mimicking the properties of the continuum operators.

1Trias et al., Symmetry-preserving discretization of Navier-Stokes equations on collocated unstructured grids, J.Comp.Phys., 258, 246-267,
2014.
2Álvarez-Farré et al., HPC2–A fully-portable, algebra-based framework for heterogeneous computing. Application to CFD, Computers and
Fluids, 173, 285–292, 2018.
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Tailoring Navier–Stokes into an algebraic framework

An example of an algebra-based formulation of the algorithm for the time-integration
phase relies on a reduced set of only three linear algebra kernels: the sparse matrix-
vector product (SpMV), the linear combination of vectors (axpy) and the dot product
(dot).

Algorithm 1 Time-integration step.
1: R (un

s ,u
n
c , θ

n
c )← −C

3d
c (un

s )u
n
c − D3d

c un
c + fc(θ

n
c ) ▷ momentum’s right-hand side

2: up
c = un

c + ∆t
{

3
2R (un

s ,u
n
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2R
(
un−1

s ,un−1
c

)}
▷ predictor velocity

3: Lp̃n+1
c = Mup

s , where up
s = Γc→su

p
c ▷ solve Poisson equation

4: un+1
s = up

s − Gp̃n+1
c , where G = −Ω−1

s MT ▷ correct the staggered velocity field
5: un+1

c = up
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n+1
c , where Gc = −Γs→cΩ

−1
s MT ▷ correct the collocated velocity field
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▷ integrate energy
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A hierarchical parallel
implementation



Hybrid HPC systems

Modern HPC systems consist of multiple hybrid computing nodes interconnected via
a communication infrastructure. The nodes are composed of many hardware devices
of different architectures, such as central processing unit (CPU) or graphics processing
unit (GPU), among others.

HYBRID SYSTEM

Interconnect

multiple nodes interconnected 

via high-memory bandwidth network

we use MPI at this level

The algorithms must be compatible with distributed- and shared-memory multiple in-
struction, multiple data (DMMIMD and SMMIMD, respectively) parallelism, and more im-
portantly, with stream processing (SP).
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Multilevel domain decomposition

Multilevel workload distribution consists of dividing the computational domain (mesh)
into subsets recursively to distribute it among the hardware of a computing system.

• First-level decomposition divides the workload among the computing nodes, that
is, the MPI processes.

• Second-level decomposition divides the first-level partitions to share each MPI’s
workload among its available hardware, that is, the host and co-processors.

• Third-level decomposition divides the second-level partitions to distribute the work-
load of a device whose shared-memory space introduces a significant NUMA factor.
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Flat multithreaded execution strategies

To minimise the overhead of the communications, efficient multithreaded execution
strategies are required. Roughly, the idea is to overlap the communications with the
computations.

OpenMP

intra-node

management

inter-node

computing
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Performance study



HPC systems

MareNostrum 4

#rank42
3456 nodes with:

• 2× Intel Xeon 8160
• 1× Intel Omni-Path

Lomonosov-2

#rank156
1696 nodes with:

• 1× Intel Xeon E5-2697 v3
• 1× NVIDIA Tesla K40M
• 1× InfiniBand FDR

TSUBAME3.0

#rank31
540 nodes with:

• 2× Intel Xeon E5-2680 v4
• 4× NVIDIA Tesla P100
• 4× Intel Omni-Path
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Single-Node

Test case
Single-node performance of SpMV, axpy and dot kernels shown in rooflinemodel for two
different architectures. The sparse matrix used arises from the symmetry-preserving
discretization3 of the Laplacian operator on unstructured hex-dominant mesh of 17 mil-
lion cells. The sparse matrix storage format used is ELLPACK.
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3Trias et al., Symmetry-preserving discretization of Navier-Stokes equations on collocated unstructured grids, J.Comp.Phys., 258, 246-267,
2014.
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MareNostrum 4

Test case
Multi-node strong (left) and weak (right) scaling of SpMV kernel on MareNostrum 4. The
sparse matrix used arise from the symmetry-preserving discretization4 of the Laplacian
operator on unstructured hex-dominant mesh of 17 million cells (also 110 million in
strong scaling). The sparse matrix storage format used is ELLPACK.

1
8

27

64

125

200

1 8 27 64 125 200

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

Sp
ee

d-
up

Pe
rf

or
m

an
ce

, T
FL

O
PS

Nodes (2x 24-core CPU each)

mode=ovl, rows=110M 
mode=ovl, rows=17M 
mode=syn, rows=110M 
mode=syn, rows=17M 

0

10

20

30

40

50

60

70

80

90

100

1 8 27 64 125 200
 0

 5

 10

 15

 20

R
el

at
iv

e 
pe

rf
or

m
an

ce
, %

Pe
rf

or
m

an
ce

, G
FL

O
PS

Nodes (2x 24-core CPU each)

mode=ovl 
mode=syn 

4Trias et al., Symmetry-preserving discretization of Navier-Stokes equations on collocated unstructured grids, J.Comp.Phys., 258, 246-267,
2014.
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Lomonosov-2

Test case
Multi-node strong (left) and weak (right) scaling of SpMV kernel on Lomonosov-2. The
sparse matrix used arise from the symmetry-preserving discretization5 of the Laplacian
operator on unstructured hex-dominant mesh of 17 million cells. The sparse matrix
storage format used is ELLPACK.
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5Trias et al., Symmetry-preserving discretization of Navier-Stokes equations on collocated unstructured grids, J.Comp.Phys., 258, 246-267,
2014.
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TSUBAME3.0

Test case
Multi-node strong (left) and weak (right) scaling of SpMV kernel on TSUBAME3.0. The
sparse matrix used arise from the symmetry-preserving discretization6 of the Laplacian
operator on unstructured hex-dominant mesh of 17 million cells. The sparse matrix
storage format used is ELLPACK.
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6Trias et al., Symmetry-preserving discretization of Navier-Stokes equations on collocated unstructured grids, J.Comp.Phys., 258, 246-267,
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Enabling larger and faster
simulations



Outline of SpMV

The SpMV is an essential operation in scientific computing, and therefore, it receives a
great deal of attention. Given x⃗ ∈ Rn , y⃗ ∈ Rm , and A ∈ Rm×n :

y⃗ ← Ax⃗ : AIspmv =
2nnz(A)

12nnz(A) + 4m+ 8n+ 8m
≈ 0.13.

Algorithm 2 SpMV implementation using the standard CSR matrix format.
Require: A, x
Ensure: y
1: for i← 1 to m do
2: for j ← A.rptr[i] to A.rptr[i+ 1] do
3: y[i]← y[i] + A.coef [j] · x[A.cidx[j]]
4: end for
5: end for
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Outline of SpMM

The SpMM represents the product of a sparse matrix by a dense matrix. It is very ben-
eficial in terms of achievable performance to implement a specific SpMM that takes
advantage of the reuse of the matrix coefficients. Given x⃗ ∈ Rkn , y⃗ ∈ Rkm , and
A ∈ Rm×n :


y1

...
yn

←


A 0

. . .
0 A




x1

...
xn

 : AIspmm =
2knnz(A)

12nnz(A) + 4m+ 8kn+ 8km

Algorithm 3 SpMM implementation using the standard CSR matrix format.
Require: A, x
Ensure: y
1: for i← 1 to m do
2: for j ← A.rptr[i] to A.rptr[i+ 1] do
3: for k ← 1 to K do
4: y[i][k]← y[i][k] + A.coef [j] · x[A.cidx[j]][k]
5: end for
6: end for
7: end for
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SpMM vs SpMV

The gain of SpMM vs SpMV increases significantly with respect to k. In the plot, we show
the theoretical values along with preliminary results, measured in our local JFF cluster
with a 20-core Intel Xeon Gold 6230.
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Applications of SpMM

First of all, remark that the SpMV is the most time-consuming kernel in a typical CFD
simulation deployed in our framework, nearly 90%. Therefore, any SpMV optimization
has a huge impact in performance.

• Multiple components of velocity in collocated formulation. Directly k = 3 for 3D
simulations.

• Multiple transport equations (e.g., temperature, chemicals). Considering only tem-
perature (Algorithm 1), increases to k = 4.

• Simulations on a mesh with p symmetries. Increases k by a factor of p2 , and also
reduces memory footprint of discrete operators.

1 Symmetry 2 Symmetries
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Applications of SpMM

A highly portable heterogeneous
implementation of a Poisson solver for

flows with mesh symmetries

Àdel Alsalti-Baldellou1,2, F. Xavier Trias1, Xavier Álvarez-Farré1 and
Assensi Oliva1
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2 Termo Fluids SL, C/ Mag ı́ Colet 8, 08204 Sabadell (Barcelona), Spain
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The direct benefits of this approach are:

• Reduces the number of iterations and its computational cost (increased AI).
• Reduces substantially the memory footprint of the matrices.
• Reduces substantially the cost of building complex preconditioners.
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Conclusions and Future Work

Conclusions

• An algebra-based framework has been presented as a naturally portable strategy for imple-
menting numerical simulation codes.

• The hierarchical parallel implementation of our framework has been detailed, and its perfor-
mance evaluated on various HPC system.

• HPC systems with extremely high ratios of memory bandwidth to network bandwidth (fat nodes)
are harmful for ligth memory bound kernels such as SpMV; the calculations become too fast
to hide the communications. In the case of TSUBAME3.0, this ratio was 2928:50.

• The application of SpMM within algebraic frameworks is demonstrated to be versatile and pow-
erful. Particularly, in the presence of mesh symmetries the benefits are threefold: reduces
number of iterations, computational cost and memory footprint.

Future Work

• To design a new update mechanism to accelerate the data exchanges, for instance, taking into
account NUMA factor in inter- and intra-node exchanges.

• Applying our framework to multiple parameters simulations. Considering n different simu-
lations, increases k by a factor of n, allowing for running multiple simulations faster while
maintaining the memory footprint of discrete operators constant.

• Applying our framework to parallel-in-time simulations. Considering t decompositions in time,
increases k by a factor of t, allowing for solving multiple time-intervals faster while maintaining
the memory footprint of discrete operators constant.
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Thank you for your attention
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