
Introduction Mathematical Machinery Flux Limiters Results Conclusions

Algebraic implementation of a flux limiter for
heterogeneous computing

N. Valle, X. Álvarez, F.X. Trias, J. Castro and A. Oliva

Heat and Mass Transfer Technological Centre (CTTC), Universitat Politècnica
de Catalunya - BarcelonaTech (UPC)

July 16, 2018

10th International Conference in Computational Fluid Dynamics
July, 9-13, 2018, Barcelona

1 / 22



Introduction Mathematical Machinery Flux Limiters Results Conclusions

Overview

1 Introduction
Motivation
Inspiration

2 Mathematical Machinery
Algebraic Topology
Mimetic/Symmetry preserving schemes

3 Flux Limiters
High Resolution Schemes
Gradient Ratio
Implementation

4 Results
Periodic Advection

5 Conclusions

2 / 22



Introduction Mathematical Machinery Flux Limiters Results Conclusions

Portability. Why?

Software
Legacy codes
Architecture-dependent
Non-standard kernels

Hardware
New architectures
Hybrid platforms
Power consumption

Challenge
How to design portable/hybrid platform codes?

3 / 22



Introduction Mathematical Machinery Flux Limiters Results Conclusions

Portability. Why?

Software
Legacy codes
Architecture-dependent
Non-standard kernels

Hardware
New architectures
Hybrid platforms
Power consumption

Challenge
How to design portable/hybrid platform codes?

3 / 22



Introduction Mathematical Machinery Flux Limiters Results Conclusions

Portability. Why?

Software
Legacy codes
Architecture-dependent
Non-standard kernels

Hardware
New architectures
Hybrid platforms
Power consumption

Challenge
How to design portable/hybrid platform codes?

3 / 22



Introduction Mathematical Machinery Flux Limiters Results Conclusions

Portability. How?

Idea
Mathematics are always portable!

“The reason MATLAB is so good at signal processing is that it
was not designed for signal processing. It was designed to do
mathematics.“

Jim McClellan
GeorgiaTech

May approaching dedicated scientific computing codes from an
algebraic perspective help?

4 / 22



Introduction Mathematical Machinery Flux Limiters Results Conclusions

Portability. How?

Idea
Mathematics are always portable!

“The reason MATLAB is so good at signal processing is that it
was not designed for signal processing. It was designed to do
mathematics.“

Jim McClellan
GeorgiaTech

May approaching dedicated scientific computing codes from an
algebraic perspective help?

4 / 22



Introduction Mathematical Machinery Flux Limiters Results Conclusions

Portability. How?

Idea
Mathematics are always portable!

“The reason MATLAB is so good at signal processing is that it
was not designed for signal processing. It was designed to do
mathematics.“

Jim McClellan
GeorgiaTech

May approaching dedicated scientific computing codes from an
algebraic perspective help?

4 / 22



Introduction Mathematical Machinery Flux Limiters Results Conclusions

Portability. What for?

Casting computational operations into algebraic forms provides
with several advantages:

fewer number of computing kernels → portability
mathematical formality → analysis

Remark1

For a typical DNS simulation of an incompressible flow, almost
90% of the operations can be cast into 3 basic kernels:

SpMV

DOT

axpy

1Guillermo Oyarzun et al. “Portable implementation model for CFD simulations. Application to hybrid
CPU/GPU supercomputers”. In: Int. J. Comut. Fluid Dyn. 31.9 (2017), pp. 396–411.

5 / 22



Introduction Mathematical Machinery Flux Limiters Results Conclusions

Scope

How to design a flux limiter kernel from an algebraic approach?

Advantages
With this approach we aim at:

High portability
High degree of abstraction

Disclaimer
We are not after:

Discussing Flux Limiters
Optimize performance

6 / 22



Introduction Mathematical Machinery Flux Limiters Results Conclusions

Scope

How to design a flux limiter kernel from an algebraic approach?

Advantages
With this approach we aim at:

High portability
High degree of abstraction

Disclaimer
We are not after:

Discussing Flux Limiters
Optimize performance

6 / 22



Introduction Mathematical Machinery Flux Limiters Results Conclusions

Mathematical Machinery

1 Introduction
Motivation
Inspiration

2 Mathematical Machinery
Algebraic Topology
Mimetic/Symmetry preserving schemes

3 Flux Limiters
High Resolution Schemes
Gradient Ratio
Implementation

4 Results
Periodic Advection

5 Conclusions

7 / 22



Introduction Mathematical Machinery Flux Limiters Results Conclusions

Algebraic Topology

Your mesh. A starting point.

c1

c2

c3

c4

f
1

f2

f 3

f
4

f5

f6

f 7

f 8f
9

v1

v2

v3 v4

v5

v6

Figure 1: Primal mesh

c1

c2

c3

c4

e1

e
2

e3

Figure 2: Dual mesh

8 / 22



Introduction Mathematical Machinery Flux Limiters Results Conclusions

Algebraic Topology

c1

c2

c3

c4

n̂1

n̂2

n̂3

n̂4

n̂5
n̂6

n̂7

n̂8

n̂9

v1

v2

v3 v4

v5

v6

DeRahm Cohomology

R → Λ0(Ω) → Λ1(Ω) → Λ2(Ω) → Λ3(Ω) → 0
l ? l ? l ? l ?

0 ← Λ3(Ω) ← Λ2(Ω) ← Λ1(Ω) ← Λ0(Ω) ← R

9 / 22



Introduction Mathematical Machinery Flux Limiters Results Conclusions

Algebraic Topology

c1

c2

c3

c4

n̂1

n̂2

n̂3

n̂4

n̂5
n̂6

n̂7

n̂8

n̂9

v1

v2

v3 v4

v5

v6

DeRahm Cohomology
Under the hood of:

Staggered grid
Symmetry preserving

9 / 22



Introduction Mathematical Machinery Flux Limiters Results Conclusions

A graph to rule them all

Operators
Operators can be constructed
from graph information.

c1

c2

c3

c4

n̂1

n̂2

n̂3

n̂4

n̂5
n̂6

n̂7

n̂8

n̂9

v1

v2

v3 v4

v5

v6

Tcf =


f1 f2 f3 f4 f5 f6 f7 f8 f9

c1 0 0 +1 −1 −1 0 0 0 0
c2 +1 +1 −1 0 0 0 0 0 0
c3 −1 0 0 0 0 +1 −1 0 0
c4 0 −1 0 0 0 0 0 −1 −1


10 / 22



Introduction Mathematical Machinery Flux Limiters Results Conclusions

A graph to rule them all

Example: Gradient operator∫ c2

c3
∇P = P2 − P3

c1

c2

c3

c4

c2

c3n̂1

n̂2

n̂3

n̂4

n̂5
n̂6

n̂7

n̂8

n̂9

v1

v2

v3 v4

v5

v6

Tcf =


f1 f2 f3 f4 f5 f6 f7 f8 f9

c1 0 0 +1 −1 −1 0 0 0 0
c2 +1 +1 −1 0 0 0 0 0 0
c3 −1 0 0 0 0 +1 −1 0 0
c4 0 −1 0 0 0 0 0 −1 −1


10 / 22



Introduction Mathematical Machinery Flux Limiters Results Conclusions

A graph to rule them all

Example: Divergence operator

∫
c2
∇ · ~u =

∫
∂c2
~un̂f ≈

∑
f ∈c2

Sf uf

c1

c3

c4

c2

n̂1

n̂2

n̂3

n̂4

n̂5
n̂6

n̂7

n̂8

n̂9

v1

v2

v3 v4

v5

v6

Tcf =


f1 f2 f3 f4 f5 f6 f7 f8 f9

c1 0 0 +1 −1 −1 0 0 0 0
c2 +1 +1 −1 0 0 0 0 0 0
c3 −1 0 0 0 0 +1 −1 0 0
c4 0 −1 0 0 0 0 0 −1 −1


10 / 22



Introduction Mathematical Machinery Flux Limiters Results Conclusions

Summary

Metric
Development of numerical method in terms of geometric entities.

Ωf = ∆xSf

Symmetry-preserving

GRAD = −Ω−1f DIV T = −(∆xSf )−1(Tcf Sf )T = −(∆x )−1TT
cf

Highlights
The definition of star (?) determines dual operators
Preserve important quantities

11 / 22



Introduction Mathematical Machinery Flux Limiters Results Conclusions

Flux Limiters

1 Introduction
Motivation
Inspiration

2 Mathematical Machinery
Algebraic Topology
Mimetic/Symmetry preserving schemes

3 Flux Limiters
High Resolution Schemes
Gradient Ratio
Implementation

4 Results
Periodic Advection

5 Conclusions

12 / 22



Introduction Mathematical Machinery Flux Limiters Results Conclusions

Flux Limiters

Typically, flux limiters are stated in the following form:

θf = θC + Ψ(r)
(
θD − θU

2

)

rf = θC − θU
θD − θC

= ∆Uθc
∆uθc

U C D

~v

i + 1/2

Figure 3: Classical stencil for the computation of the gradient ratio at face i + 1/2. U,
C and D correspond to the upstream, centered and downstream nodes.

13 / 22



Introduction Mathematical Machinery Flux Limiters Results Conclusions

Flux Limiters

Reformulation in terms of matrices 2

Rearrangement:

θf = θD + θU
2 + Ψ(r)− 1

2 (θD − θU)

Matrix formulation:

θf = (ΠC→F + F (r)C→F ) θc

Dynamic addition of artificial diffusivity as a function of r

2F.X. Trias et al. “Symmetry-preserving discretization of Navier–Stokes equations on collocated
unstructured grids”. In: J. Comput. Phys. 258 (Feb. 2014), pp. 246–267.

14 / 22



Introduction Mathematical Machinery Flux Limiters Results Conclusions

Gradient Ratio
How to compute the gradient ratio?

i − 1 i i + 1 i + 2

~v

i + 1/2

i − 1 i i + 1 i + 2

~v

i + 1/2

Figure 4: Switched stencil for a typical flux limiter

i − 1 i i + 1 i + 2

~v

i + 1/2

Figure 5: Algebraic stencil for an algebraic
flux limiter

rf = θC − θU
θD − θC

= ∆Uθc
∆uθc

∆u = S(u)Tcf θc

How to compute ∆U?

15 / 22



Introduction Mathematical Machinery Flux Limiters Results Conclusions

Gradient Ratio
How to compute the gradient ratio?

i − 1 i i + 1 i + 2

~v

i + 1/2

i − 1 i i + 1 i + 2

~v

i + 1/2

Figure 4: Switched stencil for a typical flux limiter

i − 1 i i + 1 i + 2

~v

i + 1/2

Figure 5: Algebraic stencil for an algebraic
flux limiter

rf = θC − θU
θD − θC

= ∆Uθc
∆uθc

∆u = S(u)Tcf θc

How to compute ∆U?

15 / 22



Introduction Mathematical Machinery Flux Limiters Results Conclusions

Gradient Ratio
How to compute the gradient ratio?

i − 1 i i + 1 i + 2

~v

i + 1/2

i − 1 i i + 1 i + 2

~v

i + 1/2

Figure 4: Switched stencil for a typical flux limiter

i − 1 i i + 1 i + 2

~v

i + 1/2

Figure 5: Algebraic stencil for an algebraic
flux limiter

rf = θC − θU
θD − θC

= ∆Uθc
∆uθc

∆u = S(u)Tcf θc

How to compute ∆U?

15 / 22



Introduction Mathematical Machinery Flux Limiters Results Conclusions

Gradient Ratio
How to compute the gradient ratio?

i − 1 i i + 1 i + 2

~v

i + 1/2

i − 1 i i + 1 i + 2

~v

i + 1/2

Figure 4: Switched stencil for a typical flux limiter

i − 1 i i + 1 i + 2

~v

i + 1/2

Figure 5: Algebraic stencil for an algebraic
flux limiter

rf = θC − θU
θD − θC

= ∆Uθc
∆uθc

∆u = S(u)Tcf θc

How to compute ∆U?

15 / 22



Introduction Mathematical Machinery Flux Limiters Results Conclusions

Gradient Ratio
How to compute the gradient ratio?

i − 1 i i + 1 i + 2

~v

i + 1/2

i − 1 i i + 1 i + 2

~v

i + 1/2

Figure 4: Switched stencil for a typical flux limiter

i − 1 i i + 1 i + 2

~v

i + 1/2

Figure 5: Algebraic stencil for an algebraic
flux limiter

rf = θC − θU
θD − θC

= ∆Uθc
∆uθc

∆u = S(u)Tcf θc

How to compute ∆U?

15 / 22



Introduction Mathematical Machinery Flux Limiters Results Conclusions

Gradient Ratio
Computing ∆U

c1

c2

c3

c4

n̂1

n̂2

n̂3

n̂4

n̂5
n̂6

n̂7

n̂8

n̂9

v1

v2

v3 v4

v5

v6

Figure 6: Upstream and Downstream adjacency faces
16 / 22



Introduction Mathematical Machinery Flux Limiters Results Conclusions

Gradient Ratio

Idea
1 Vectorize differences
2 Sum up upstream faces
3 Project over the normal

∆U = N
(
Id ⊗ AU

FF (u)

)
NT ∆

N =

n1x 0 0 n1y . . . 0
...

. . .
...

...
. . .

...
0 0 n9x 0 . . . n9y


AU

FF (u) = 1
2
(
S(u)AFF − AD

FF

)

c1

c2

c3

c4

v̂1
n̂1

n̂2

n̂3

n̂4

n̂5
n̂6

n̂7

n̂8

n̂9

v1

v2

v3 v4

v5

v6

17 / 22



Introduction Mathematical Machinery Flux Limiters Results Conclusions

Gradient Ratio

Idea
1 Vectorize differences
2 Sum up upstream faces
3 Project over the normal

∆U = N
(
Id ⊗ AU

FF (u)

)
NT ∆

N =

n1x 0 0 n1y . . . 0
...

. . .
...

...
. . .

...
0 0 n9x 0 . . . n9y


AU

FF (u) = 1
2
(
S(u)AFF − AD

FF

)

c1

c2

c3

c4

v̂1
n̂1

n̂2

n̂3

n̂4

n̂5
n̂6

n̂7

n̂8

n̂9

v1

v2

v3 v4

v5

v6

17 / 22



Introduction Mathematical Machinery Flux Limiters Results Conclusions

Gradient Ratio

Idea
1 Vectorize differences
2 Sum up upstream faces
3 Project over the normal

∆U = N
(
Id ⊗ AU

FF (u)

)
NT ∆

N =

n1x 0 0 n1y . . . 0
...

. . .
...

...
. . .

...
0 0 n9x 0 . . . n9y



AU
FF (u) = 1

2
(
S(u)AFF − AD

FF

)

c1

c2

c3

c4

v̂1
n̂1

n̂2

n̂3

n̂4

n̂5
n̂6

n̂7

n̂8

n̂9

v1

v2

v3 v4

v5

v6

17 / 22



Introduction Mathematical Machinery Flux Limiters Results Conclusions

Gradient Ratio

Idea
1 Vectorize differences
2 Sum up upstream faces
3 Project over the normal

∆U = N
(
Id ⊗ AU

FF (u)

)
NT ∆

N =

n1x 0 0 n1y . . . 0
...

. . .
...

...
. . .

...
0 0 n9x 0 . . . n9y


AU

FF (u) = 1
2
(
S(u)AFF − AD

FF

)

c1

c2

c3

c4

v̂1
n̂1

n̂2

n̂3

n̂4

n̂5
n̂6

n̂7

n̂8

n̂9

v1

v2

v3 v4

v5

v6

17 / 22



Introduction Mathematical Machinery Flux Limiters Results Conclusions

Gradient Ratio

Idea
1 Vectorize differences
2 Sum up upstream faces
3 Project over the normal

∆U = N
(
Id ⊗ AU

FF (u)

)
NT ∆

N =

n1x 0 0 n1y . . . 0
...

. . .
...

...
. . .

...
0 0 n9x 0 . . . n9y


AU

FF (u) = 1
2
(
S(u)AFF − AD

FF

)

+

+

+

+
c1

c2

c3

c4

n̂1

n̂2

n̂3

n̂4

n̂5
n̂6

n̂7

n̂8

n̂9

v1

v2

v3 v4

v5

v6

17 / 22



Introduction Mathematical Machinery Flux Limiters Results Conclusions

Gradient Ratio

Idea
1 Vectorize differences
2 Sum up upstream faces
3 Project over the normal

∆U = N
(
Id ⊗ AU

FF (u)

)
NT ∆

N =

n1x 0 0 n1y . . . 0
...

. . .
...

...
. . .

...
0 0 n9x 0 . . . n9y


AU

FF (u) = 1
2
(
S(u)AFF − AD

FF

)

+

+

−

−
c1

c2

c3

c4

n̂1

n̂2

n̂3

n̂4

n̂5
n̂6

n̂7

n̂8

n̂9

v1

v2

v3 v4

v5

v6

17 / 22



Introduction Mathematical Machinery Flux Limiters Results Conclusions

Gradient Ratio

Idea
1 Vectorize differences
2 Sum up upstream faces
3 Project over the normal

∆U = N
(
Id ⊗ AU

FF (u)

)
NT ∆

N =

n1x 0 0 n1y . . . 0
...

. . .
...

...
. . .

...
0 0 n9x 0 . . . n9y


AU

FF (u) = 1
2
(
S(u)AFF − AD

FF

)

c1

c2

c3

c4

v̂1
n̂1

n̂2

n̂3

n̂4

n̂5
n̂6

n̂7

n̂8

n̂9

v1

v2

v3 v4

v5

v6

17 / 22



Introduction Mathematical Machinery Flux Limiters Results Conclusions

Computational framework

The code has been implemented into HPC2 - a fully-portable,
algebra-based framework for heterogeneous computing 3.

Operation SpMV axpy axdy shft scal vmax
vmin

smax
smin

sign

S(u) 0 0 0 0 0 0 0 1
∆U θ 3 1 0 0 0 0 0 0
∆uθ 2 0 0 0 0 0 0 0

rf 0 0 1 0 0 0 0 0
SUPERBEE(r) 0 0 0 1 1 1 3 0

F (r)C→F 0 0 0 0 1 0 0 0
Euler 6 2 0 0 0 0 0 0
total 11 3 1 1 2 1 3 1

Table 1: Operation count per time step with SUPERBEE and Euler integration 4.

3X Álvarez et al. “HPC2 - a fully-portable, algebra-based framework for heterogeneous computing.
Application to CFD”. . In: Comput. Fluids (published online) (2018).

4X Álvarez et al. “Integration of a flux limiter into a fully-portable, algebra-based framework for
heterogeneous computing”. In: Tenth Int. Conf. Comput. Fluid Dyn. Barcelona, 2018.

18 / 22



Introduction Mathematical Machinery Flux Limiters Results Conclusions

Advection of a scalar field

19 / 22



Introduction Mathematical Machinery Flux Limiters Results Conclusions

Profiles

0

0.2

0.4

0.6

0.8

1

−1 −0.75 −0.5 −0.25 0 0.25 0.5 0.75 1

t = 0 t = 2 t = 4

0

0.2

0.4

0.6

0.8

1

−1 −0.75 −0.5 −0.25 0 0.25 0.5 0.75 1

t = 0 t = 2 t = 4

0

0.2

0.4

0.6

0.8

1

−1 −0.75 −0.5 −0.25 0 0.25 0.5 0.75 1

t = 0 t = 2 t = 4

0

0.2

0.4

0.6

0.8

1

−1 −0.75 −0.5 −0.25 0 0.25 0.5 0.75 1

t = 0 t = 2 t = 4

Figure 7: Left column corresponds to a meshes with a characteristic lenght of
∆x = 1/32, while right columns are produced with a characteristic length of
∆x = 1/64. 20 / 22



Introduction Mathematical Machinery Flux Limiters Results Conclusions

Conclusions

Highlights
Flux limiters have been implemented into a portable platform
Flux limiters CAN be cast in an algebraic form
New conceptual platform developed

Future Work
Analyze flux limiters properties
Assess flux limiters design
Improve gradient reconstruction strategies

21 / 22



Introduction Mathematical Machinery Flux Limiters Results Conclusions

Conclusions

Thank you for your attention!

22 / 22


	Introduction
	Motivation
	Inspiration

	Mathematical Machinery
	Algebraic Topology
	Mimetic/Symmetry preserving schemes

	Flux Limiters
	High Resolution Schemes
	Gradient Ratio
	Implementation

	Results
	Periodic Advection

	Conclusions

	anm0: 
	anm1: 


