Introduction	Mathematical Machinery	Flux Limiters	Results	Conclusions

Algebraic implementation of a flux limiter for heterogeneous computing

N. Valle, X. Álvarez, F.X. Trias, J. Castro and A. Oliva

Heat and Mass Transfer Technological Centre (CTTC), Universitat Politècnica de Catalunya - BarcelonaTech (UPC)

July 16, 2018

10th International Conference in Computational Fluid Dynamics July, 9-13, 2018, Barcelona

0000	0000	000000	00	
Overview				

- Motivation
- Inspiration
- 2 Mathematical Machinery
 - Algebraic Topology
 - Mimetic/Symmetry preserving schemes
- 3 Flux Limiters
 - High Resolution Schemes
 - Gradient Ratio
 - Implementation
- 4 Results
 - Periodic Advection

Introduction ●○○○	Mathematical Machinery	Flux Limiters 000000	Results 00	Conclusions
Portability.	Why?			

Software

- Legacy codes
- Architecture-dependent
- Non-standard kernels

Introduction ●○○○	Mathematical Machinery	Flux Limiters 000000	Results 00	Conclusions
Portability.	Why?			

Software

- Legacy codes
- Architecture-dependent
- Non-standard kernels

Hardware

- New architectures
- Hybrid platforms
- Power consumption

Introduction ●○○○	Mathematical Machinery	Flux Limiters 000000	Results 00	Conclusions
Portability.	Why?			

Software

- Legacy codes
- Architecture-dependent
- Non-standard kernels

Hardware

- New architectures
- Hybrid platforms
- Power consumption

Challenge

How to design portable/hybrid platform codes?

Introduction 0000	Mathematical Machinery	Flux Limiters 000000	Results 00	Conclusions
Portability.	How?			
Idea				

Mathematics are always portable!

Portability.	How?			
Introduction ○●○○	Mathematical Machinery	Flux Limiters 000000	Results 00	Conclusions

Idea

Mathematics are always portable!

"The reason MATLAB is so good at signal processing is that it was not designed for signal processing. It was designed to do mathematics."

> Jim McClellan GeorgiaTech

Introduction 0000	Mathematical Machinery	Flux Limiters 000000	Results 00	Conclusions
Portability.	How?			

Idea

Mathematics are always portable!

"The reason MATLAB is so good at signal processing is that it was not designed for signal processing. It was designed to do mathematics."

> Jim McClellan GeorgiaTech

May approaching dedicated scientific computing codes from an algebraic perspective help?

Introduction	Mathematical Machinery	Flux Limiters	Results	Conclusions
○0●0	0000	000000	00	
Portability.	What for?			

Casting **computational** operations into **algebraic** forms provides with several advantages:

- fewer number of computing kernels \rightarrow portability
- $\bullet\,$ mathematical formality $\rightarrow\,$ analysis

Remark¹

For a typical DNS simulation of an incompressible flow, almost 90% of the operations can be cast into 3 basic kernels:

- SpMV
- DOT
- axpy

¹Guillermo Oyarzun et al. "Portable implementation model for CFD simulations. Application to hybrid CPU/GPU supercomputers". In: *Int. J. Comut. Fluid Dyn.* 31.9 (2017), pp. 396–411.

Introduction ○○○●	Mathematical Machinery	Flux Limiters 000000	Results 00	Conclusions
Scope				

How to design a flux limiter kernel from an algebraic approach?

イロン イヨン イヨン イヨン 三日

6/22

Advantages

With this approach we aim at:

- High portability
- High degree of abstraction

Introduction ○○○●	Mathematical Machinery	Flux Limiters 000000	Results 00	Conclusions
Scope				

How to design a flux limiter kernel from an algebraic approach?

Advantages

With this approach we aim at:

- High portability
- High degree of abstraction

Disclaimer

We are not after:

- Discussing Flux Limiters
- Optimize performance

Introduction 0000	Mathematical Machinery	Flux Limiters 000000	Results 00	Conclusions
Mathema	atical Machinerv			

- Introduction
 - Motivation
 - Inspiration
- 2 Mathematical Machinery
 - Algebraic Topology
 - Mimetic/Symmetry preserving schemes
- 3 Flux Limiters
 - High Resolution Schemes
 - Gradient Ratio
 - Implementation
- 4 Results
 - Periodic Advection
- 5 Conclusions

Introduction	Mathematical Machinery	Flux Limiters	Results	Conclusions
0000	●000	000000	00	
Algebraic T	opology			

Your mesh. A starting point.

Figure 2: Dual mesh

Algebraic T	opology			
Introduction	Mathematical Machinery	Flux Limiters	Results	Conclusions
0000	○●○○	000000	00	

DeRahm Cohomology

) Q (♥ 9 / 22

Algebraic	Topology			
Introduction	Mathematical Machinery	Flux Limiters	Results	Conclusions
0000	0●00	000000	00	

DeRahm Cohomology

Under the hood of:

- Staggered grid
- Symmetry preserving

Introduction 0000	Mathematical Machinery	Flux Limiters 000000	Results 00	Conclusions
A graph	to rule them all			

$$T_{cf} = \begin{array}{c} f_1 & f_2 & f_3 & f_4 & f_5 & f_6 & f_7 & f_8 & f_9 \\ c_1 \\ c_2 \\ c_3 \\ c_4 \end{array} \begin{pmatrix} 0 & 0 & +1 & -1 & -1 & 0 & 0 & 0 & 0 \\ +1 & +1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 & 0 & +1 & -1 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 & 0 & 0 & -1 & -1 \end{pmatrix}$$

Operators

Operators can be constructed from graph information.

Introduction	Mathematical Machinery	Flux Limiters	Results	Conclusions
0000	00●0	000000	00	
A graph t	o rule them all			

Example: Gradient operator

$$\int_{c_3}^{c_2} \nabla P = P_2 - P_3$$

$$T_{cf} = \begin{array}{c} f_1 & f_2 & f_3 & f_4 & f_5 & f_6 & f_7 & f_8 & f_9 \\ c_1 \\ c_2 \\ c_3 \\ c_4 \end{array} \begin{pmatrix} 0 & 0 & +1 & -1 & -1 & 0 & 0 & 0 & 0 \\ +1 & +1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 & 0 & +1 & -1 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 & 0 & 0 & -1 & -1 \end{pmatrix}$$

Introduction	Mathematical Machinery	Flux Limiters	Results	Conclusions
0000	00●0	000000	00	
A graph to	rule them all			

Example: Divergence operator

$$\int_{c_2} \nabla \cdot \vec{u} = \int_{\partial c_2} \vec{u} \hat{n}_f \approx \sum_{f \in c_2} S_f u_f$$

$$T_{cf} = \begin{array}{c} f_1 & f_2 & f_3 & f_4 & f_5 & f_6 & f_7 & f_8 & f_9 \\ c_1 & \begin{pmatrix} 0 & 0 & +1 & -1 & -1 & 0 & 0 & 0 & 0 \\ +1 & +1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 & 0 & +1 & -1 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 & 0 & 0 & -1 & -1 \end{pmatrix}$$

Introduction	Mathematical Machinery	Flux Limiters	Results	Conclusions
0000	○○○●	000000	00	
Summary				

Metric

Development of numerical method in terms of geometric entities.

$$\Omega_f = \Delta_x S_f$$

Symmetry-preserving

$$GRAD = -\Omega_f^{-1}DIV^T = -(\Delta_x S_f)^{-1}(T_{cf}S_f)^T = -(\Delta_x)^{-1}T_{cf}^T$$

Highlights

- The definition of star (*) determines dual operators
- Preserve important quantities

Introduction 0000	Mathematical Machinery	Flux Limiters	Results 00	Conclusions
Flux Limit	ers			

- Motivation
- Inspiration
- 2 Mathematical Machinery
 - Algebraic Topology
 - Mimetic/Symmetry preserving schemes
- 3 Flux Limiters
 - High Resolution Schemes
 - Gradient Ratio
 - Implementation
- 4 Results
 - Periodic Advection
- 5 Conclusions

Introduction 0000	Mathematical Machinery	Flux Limiters	Results 00	Conclusions
Flux Limit	ers			

Typically, flux limiters are stated in the following form:

$$\theta_{f} = \theta_{C} + \Psi(r) \left(\frac{\theta_{D} - \theta_{U}}{2} \right)$$
$$r_{f} = \frac{\theta_{C} - \theta_{U}}{\theta_{D} - \theta_{C}} = \frac{\Delta_{U}\theta_{c}}{\Delta_{u}\theta_{c}}$$
$$\underbrace{\overrightarrow{U}}_{U} \underbrace{\overrightarrow{U}}_{C} \underbrace{\overrightarrow{U}}_{D} \underbrace{\overrightarrow{U}} \underbrace{\overrightarrow{U}}_{D} \underbrace{\overrightarrow{U}}_{D} \underbrace{\overrightarrow{U}}_{D} \underbrace{\overrightarrow{U}}_{D} \underbrace{\overrightarrow{U}}_{D}$$

i + 1/2

Figure 3: Classical stencil for the computation of the gradient ratio at face i + 1/2. *U*, *C* and *D* correspond to the upstream, centered and downstream nodes.

Introduction 0000	Mathematical Machinery	Flux Limiters 0●0000	Results 00	Conclusions
Flux Limiter	rs			

Reformulation in terms of matrices ² Rearrangement:

$$heta_f = rac{ heta_D + heta_U}{2} + rac{\Psi(r) - 1}{2} \left(heta_D - heta_U
ight)$$

Matrix formulation:

$$\theta_f = \left(\prod_{C \to F} + F(r)_{C \to F} \right) \theta_c$$

Dynamic addition of artificial diffusivity as a function of r

²F.X. Trias et al. "Symmetry-preserving discretization of Navier-Stokes equations on collocated unstructured grids". In: *J. Comput. Phys.* 258 (Feb. 2014), pp. 246–267.

Introduction 0000	Mathematical Machinery	Flux Limiters	Results 00	Conclusions
Gradient Ratio				

Figure 4: Switched stencil for a typical flux limiter

Introduction 0000	Mathematical Machinery	Flux Limiters	Results 00	Conclusions
Gradient Ratio				

Figure 4: Switched stencil for a typical flux limiter

Figure 5: Algebraic stencil for an algebraic flux limiter

Introduction 0000	Mathematical Machinery	Flux Limiters	Results 00	Conclusions
Gradient Ra	tio			

Figure 4: Switched stencil for a typical flux limiter

$$r_f = \frac{\theta_C - \theta_U}{\theta_D - \theta_C} = \frac{\Delta_U \theta_c}{\Delta_u \theta_c}$$

Figure 5: Algebraic stencil for an algebraic flux limiter

Introduction 0000	Mathematical Machinery	Flux Limiters	Results 00	Conclusions
Gradient Ra	tio			

Figure 4: Switched stencil for a typical flux limiter

$$r_{f} = \frac{\theta_{C} - \theta_{U}}{\theta_{D} - \theta_{C}} = \frac{\Delta_{U}\theta_{c}}{\Delta_{u}\theta_{c}}$$
$$\Delta_{u} = S(u)T_{cf}\theta_{c}$$

Figure 5: Algebraic stencil for an algebraic flux limiter

Introduction 0000	Mathematical Machinery	Flux Limiters	Results 00	Conclusions
Gradient Ra	tio			

Figure 4: Switched stencil for a typical flux limiter

Figure 5: Algebraic stencil for an algebraic flux limiter

$$r_f = \frac{\theta_C - \theta_U}{\theta_D - \theta_C} = \frac{\Delta_U \theta_c}{\Delta_u \theta_c}$$

$$\Delta_u = S(u) T_{cf} \theta_c$$

How to compute Δ_U ?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Introduction 0000	Mathematical Machinery	Flux Limiters ○○0●00	Results 00	Conclusions
Gradient F	Ratio			

Computing Δ_U

Figure 6: Upstream and Downstream adjacency faces $z \rightarrow z \rightarrow z$

16 / 22

Introduction 0000	Mathematical Machinery 0000	Flux Limiters ○○○○●○	Results 00	Conclusions
Gradient	Ratio			

Idea

- Vectorize differences
- ② Sum up upstream faces
- Project over the normal

Introduction Mathematical Machinery		Flux Limiters	Results	Conclusions
0000 0000		○○○○○○	00	
Gradient R	atio			

Idea

- Vectorize differences
- ② Sum up upstream faces
- Project over the normal

$$\Delta_U = N\left(\mathbb{I}_d \otimes A^U_{FF(u)}\right) N^T \Delta$$

Introduction 0000	Mathematical Machinery	Flux Limiters	Results 00	Conclusions
Gradient Ra	itio			
Idea Vectoriz Sum up Project $\Delta_U = N \left(\begin{pmatrix} n_{1x} & 0 \\ \vdots & 0 \\ 0 & 0 \end{pmatrix} \right)$ $A_{FF(u)}^U = \frac{1}{2}$	e differences upstream faces over the normal $\mathbb{I}_{d} \otimes A_{FF(u)}^{U} N^{T} \Delta$ $\mathbb{O} \qquad 0 \qquad n_{1y} \qquad 0$ $\mathbb{O} \qquad \mathbb{O} \qquad $	\hat{n}_{5} \hat{v}_{2} \hat{n}_{4} \hat{v}_{1} \hat{v}_{1}	v_3 \hat{n}_1 \hat{n}_2 \hat{n}_2 \hat{n}_2 \hat{n}_2 \hat{n}_3 \hat{n}_4 \hat{n}_5 \hat{n}_6 \hat{n}	n ₇ n ⁷ n ⁷

Introduction 0000	Mathematical Machinery	Flux Limiters	Results 00	Conclusions
Gradient Ra	itio			
Idea Vectoriz Sum up Project $\Delta_U = N \left(\begin{pmatrix} n_{1x} & 0 \\ \vdots & 0 \\ 0 & 0 \end{pmatrix} \right)$ $A_{FF(u)}^U = \frac{1}{2}$	e differences upstream faces over the normal $\mathbb{I}_{d} \otimes A_{FF(u)}^{U} N^{T} \Delta$ $\mathbb{O} \qquad 0 \qquad n_{1y} \qquad 0 \\ \therefore \qquad \vdots \qquad \vdots \qquad \ddots \qquad \vdots \\ \mathbb{O} \qquad n_{9x} \qquad 0 \qquad \dots \qquad n_{9y} N^{T} \Delta$		v_3 \dot{n} \dot{n} \dot{n}	¢ v4 n7 n7 17/22

Introduction 0000	Mathematical Machinery	Flux Limiters	Results 00	Conclusions
Gradient Ra	tio			
Idea Vectoriz Sum up Project $\Delta_U = N \left(\begin{pmatrix} n_{1x} & 0 \\ \vdots & 0 \\ 0 & 0 \end{pmatrix} \right)$ $A_{FF(u)}^U = \frac{1}{2}$	e differences upstream faces over the normal $\mathbb{I}_{d} \otimes A_{FF(u)}^{U} N^{T} \Delta$ $\mathbb{O} \qquad 0 \qquad n_{1y} \qquad 0^{Y}$ $\mathbb{O} \qquad 0 \qquad n_{1y} \qquad 0^{Y}$ $\mathbb{O} \qquad 0 \qquad n_{1y} \qquad 0^{Y}$ $\mathbb{O} \qquad 0 \qquad n_{9x} \qquad 0 \qquad \dots \qquad n_{9y}$ $\left(S(u)A_{FF} - A_{FF}^{D}\right)$		v_3 \hat{n} \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot	6 n̂ ₇ n̂ ₇ 17/22

Introduction 0000	Mathematical Machinery	Flux Limiters	Results 00	Conclusions
Gradient Ra	itio			
Idea Vectoriz Sum up Project $\Delta_U = N \left(\begin{pmatrix} n_{1x} & 0 \\ \vdots & 0 \\ 0 & 0 \end{pmatrix} \right)$ $A_{FF(u)}^U = \frac{1}{2}$	e differences upstream faces over the normal $\mathbb{I}_{d} \otimes A_{FF(u)}^{U} N^{T} \Delta$ $\mathbb{O} \qquad 0 \qquad n_{1y} \qquad 0$ $\mathbb{O} \qquad \mathbb{O} \qquad $	\hat{n}_{5} \hat{v}_{2} \hat{n}_{4} \hat{v}_{1} \hat{v}_{1}	v_3 \hat{n}_1 \hat{n}_2 \hat{n}_2 \hat{n}_2 \hat{n}_2 \hat{n}_3 \hat{n}_4 \hat{n}_5 \hat{n}_6 \hat{n}	\hat{n}_7

Computatio	nal framework			
Introduction	Mathematical Machinery	Flux Limiters	Results	Conclusions
0000	0000	00000●	00	

The code has been implemented into HPC^2 - a fully-portable, algebra-based framework for heterogeneous computing ³.

Operation	SpMV	axpy	axdy	shft	scal	vmax	smax	sign
						vmin	smin	
S(u)	0	0	0	0	0	0	0	1
$\Delta_U \theta$	3	1	0	0	0	0	0	0
$\Delta_u \theta$	2	0	0	0	0	0	0	0
r _f	0	0	1	0	0	0	0	0
SUPERBEE(r)	0	0	0	1	1	1	3	0
$F(r)_{C \to F}$	0	0	0	0	1	0	0	0
Euler	6	2	0	0	0	0	0	0
total	11	3	1	1	2	1	3	1

Table 1: Operation count per time step with SUPERBEE and Euler integration ⁴.

³X Álvarez et al. "HPC² - a fully-portable, algebra-based framework for heterogeneous computing. Application to CFD". . In: *Comput. Fluids (published online)* (2018).

⁴X Álvarez et al. "Integration of a flux limiter into a fully-portable, algebra-based framework for heterogeneous computing". In: *Tenth Int. Conf. Comput. Fluid Dyn.* Barcelona, 2018.

0000	0000 C I C I I	000000	•0		
Advection of a scalar field					

Introduction 0000	Mathematical Machinery	Flux Limiters 000000	Results 0●	Conclusions
Drafiles				

Figure 7: Left column corresponds to a meshes with a characteristic length of $\Delta x = 1/32$, while right columns are produced with a characteristic length of $\Delta x = 1/64$.

20 / 22

э.

Introduction 0000	Mathematical Machinery	Flux Limiters 000000	Results 00	Conclusions
Conclusions	;			

Highlights

- Flux limiters have been implemented into a portable platform
- Flux limiters CAN be cast in an algebraic form
- New conceptual platform developed

Future Work

- Analyze flux limiters properties
- Assess flux limiters design
- Improve gradient reconstruction strategies

Introduction 0000	Mathematical Machinery	Flux Limiters 000000	Results 00	Conclusions
Conclusions				

Thank you for your attention!