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Portability. Why?

Software
Legacy codes
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New architectures
Hybrid platforms
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Portability. How?

Idea
Mathematics are always portable!

“The reason MATLAB is so good at signal processing is that it
was not designed for signal processing. It was designed to do
mathematics.“

Jim McClellan
GeorgiaTech

May approaching dedicated scientific computing codes from an
algebraic perspective help?
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Portability. What for?

Casting computational operations into algebraic forms provides
with several advantages:

fewer number of computing kernels → portability
mathematical formality → analysis

Remark1

For a typical DNS simulation of an incompressible flow, almost
90% of the operations can be cast into 3 basic kernels:

SpMV

DOT

axpy

1Guillermo Oyarzun et al. “Portable implementation model for CFD simulations. Application to hybrid
CPU/GPU supercomputers”. In: Int. J. Comut. Fluid Dyn. 31.9 (2017), pp. 396–411.
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Scope

How to design a flux limiter kernel from an algebraic approach?

Advantages
With this approach we aim at:

High portability
High degree of abstraction

Disclaimer
We are not after:

Discussing Flux Limiters
Optimize performance
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Algebraic Topology

Your mesh. A starting point.
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Figure 1: Primal mesh
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Algebraic Topology
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DeRahm Cohomology

R → Λ0(Ω) → Λ1(Ω) → Λ2(Ω) → Λ3(Ω) → 0
l ? l ? l ? l ?

0 ← Λ3(Ω) ← Λ2(Ω) ← Λ1(Ω) ← Λ0(Ω) ← R
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Algebraic Topology
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DeRahm Cohomology
Under the hood of:

Staggered grid
Symmetry preserving
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A graph to rule them all

Operators
Operators can be constructed
from graph information.
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Tcf =


f1 f2 f3 f4 f5 f6 f7 f8 f9

c1 0 0 +1 −1 −1 0 0 0 0
c2 +1 +1 −1 0 0 0 0 0 0
c3 −1 0 0 0 0 +1 −1 0 0
c4 0 −1 0 0 0 0 0 −1 −1


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A graph to rule them all

Example: Gradient operator∫ c2
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A graph to rule them all

Example: Divergence operator

∫
c2
∇ · ~u =

∫
∂c2
~un̂f ≈

∑
f ∈c2

Sf uf
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Summary

Metric
Development of numerical method in terms of geometric entities.

Ωf = ∆xSf

Symmetry-preserving

GRAD = −Ω−1f DIV T = −(∆xSf )−1(Tcf Sf )T = −(∆x )−1TT
cf

Highlights
The definition of star (?) determines dual operators
Preserve important quantities
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Flux Limiters

Typically, flux limiters are stated in the following form:

θf = θC + Ψ(r)
(
θD − θU

2

)

rf = θC − θU
θD − θC

= ∆Uθc
∆uθc

U C D

~v

i + 1/2

Figure 3: Classical stencil for the computation of the gradient ratio at face i + 1/2. U,
C and D correspond to the upstream, centered and downstream nodes.
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Flux Limiters

Reformulation in terms of matrices 2

Rearrangement:

θf = θD + θU
2 + Ψ(r)− 1

2 (θD − θU)

Matrix formulation:

θf = (ΠC→F + F (r)C→F ) θc

Dynamic addition of artificial diffusivity as a function of r

2F.X. Trias et al. “Symmetry-preserving discretization of Navier–Stokes equations on collocated
unstructured grids”. In: J. Comput. Phys. 258 (Feb. 2014), pp. 246–267.
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Gradient Ratio
How to compute the gradient ratio?

i − 1 i i + 1 i + 2

~v

i + 1/2

i − 1 i i + 1 i + 2

~v

i + 1/2

Figure 4: Switched stencil for a typical flux limiter

i − 1 i i + 1 i + 2

~v

i + 1/2

Figure 5: Algebraic stencil for an algebraic
flux limiter

rf = θC − θU
θD − θC

= ∆Uθc
∆uθc

∆u = S(u)Tcf θc

How to compute ∆U?
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Gradient Ratio
Computing ∆U
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Figure 6: Upstream and Downstream adjacency faces
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Gradient Ratio

Idea
1 Vectorize differences
2 Sum up upstream faces
3 Project over the normal

∆U = N
(
Id ⊗ AU

FF (u)

)
NT ∆

N =

n1x 0 0 n1y . . . 0
...

. . .
...

...
. . .

...
0 0 n9x 0 . . . n9y
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AU

FF (u) = 1
2
(
S(u)AFF − AD

FF
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Computational framework

The code has been implemented into HPC2 - a fully-portable,
algebra-based framework for heterogeneous computing 3.

Operation SpMV axpy axdy shft scal vmax
vmin

smax
smin

sign

S(u) 0 0 0 0 0 0 0 1
∆U θ 3 1 0 0 0 0 0 0
∆uθ 2 0 0 0 0 0 0 0

rf 0 0 1 0 0 0 0 0
SUPERBEE(r) 0 0 0 1 1 1 3 0

F (r)C→F 0 0 0 0 1 0 0 0
Euler 6 2 0 0 0 0 0 0
total 11 3 1 1 2 1 3 1

Table 1: Operation count per time step with SUPERBEE and Euler integration 4.

3X Álvarez et al. “HPC2 - a fully-portable, algebra-based framework for heterogeneous computing.
Application to CFD”. . In: Comput. Fluids (published online) (2018).

4X Álvarez et al. “Integration of a flux limiter into a fully-portable, algebra-based framework for
heterogeneous computing”. In: Tenth Int. Conf. Comput. Fluid Dyn. Barcelona, 2018.
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Advection of a scalar field
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Profiles
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Figure 7: Left column corresponds to a meshes with a characteristic lenght of
∆x = 1/32, while right columns are produced with a characteristic length of
∆x = 1/64. 20 / 22
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Conclusions

Highlights
Flux limiters have been implemented into a portable platform
Flux limiters CAN be cast in an algebraic form
New conceptual platform developed

Future Work
Analyze flux limiters properties
Assess flux limiters design
Improve gradient reconstruction strategies
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Conclusions

Thank you for your attention!
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