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ABSTRACT
Divergence constraints are present in the governing equations of

many physical phenomena, and they usually lead to a Poisson equa-

tion whose solution is one of the most challenging parts of scientific

simulation codes. Indeed, it is the main bottleneck of incompressible

Computational Fluid Dynamics (CFD) simulations, and developing

efficient and scalable Poisson solvers is a critical task. This work

presents an enhanced variant of the Factored Sparse Approximate

Inverse (FSAI) preconditioner. It arises from exploiting 𝑠 spatial

reflection symmetries, which are often present in academic and in-

dustrial configurations and allow transforming Poisson’s equation

into a set of 2
𝑠
fully-decoupled subsystems. Then, we introduce an-

other level of approximation by taking advantage of the subsystems’

close similarity and applying the same FSAI to all of them. This

leads to substantial memory savings and notable increases in the

arithmetic intensity resulting from employing the more compute-

intensive sparse matrix-matrix product. Of course, recycling the

same preconditioner on all the subsystems worsens its convergence.

However, this effect was much smaller than expected and made us

introduce relatively cheap but very effective low-rank corrections.

A key feature of these corrections is that thanks to being applied

to each subsystem independently, the more symmetries being ex-

ploited, the more effective they become, leading to up to 5.7x faster

convergences than the standard FSAI. Numerical experiments on up

to 1.07 billion grids confirm the quality of our low-rank corrected

FSAI, which, despite being 2.6x lighter, outperforms the standard

FSAI by a factor of up to 4.4x.
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1 INTRODUCTION
Divergence constraints are ubiquitous in physical problems. Under

certain assumptions, they follow basic conservation principles such

as mass conservation, electrical charge conservation or the con-

servation of probability in quantum mechanics. Such a constraint

leads to a Poisson equation for a sort of scalar potential. Hence, it

is not surprising that Poisson’s equation plays a fundamental role

in many areas of science and engineering, such as computational

fluid dynamics (CFD), linear elasticity, electrostatics and quantum

mechanical continuum solvation models. Additionally, it is usually

one of the most time-consuming and difficult to parallelise parts of

scientific simulation codes.

In order to develop efficient and scalable solvers, it is necessary

to identify the current computing devices’ limitations and develop

algorithms that overcome them. For instance, the low arithmetic in-

tensity of most (sparse) linear algebra kernels motivated strategies

like using mixed precision [4] or applying more compute-intensive

algorithms [10]. Similarly, the large ratio of network to memory

bandwidth led to implementations hiding or completely avoiding

inter-node communications [16, 19, 21]. On its side, the limited

available memory resulted in approaches like exploiting data spar-

sity [8, 3].

In this context, we focus on developing a parallel Poisson pre-

conditioner flexible enough to run efficiently on different kinds of

systems by mitigating several of the aforementioned limitations.

The targeted applications are incompressible CFD simulations. In

particular, direct numerical simulation (DNS) and large-eddy simu-

lation (LES) of turbulent flows. The following four aspects, which

are also relevant in the context of this paper, are commonly present

in many DNS and LES applications:
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Figure 1: Incompressible flow simulations presenting up to
three reflection symmetries. From top to bottom: Rayleigh-
Bénard convection [5], car geometry and fin-and-tube heat
exchanger.

• The same Poisson equation has to be solved repeatedly with

different right-hand-side terms, e.g., for DNS and LES prob-

lems the number of time-steps easily reach O(106). Hence,
a pre-processing stage with large computing demands can

be accepted.

• The solution obtained in the previous time step(s) can be used

as an initial guess for iterative solvers in order to accelerate

the convergence.

• The boundary conditions for the Poisson equation are ho-

mogeneous Neumann regardless of the boundary conditions

for the velocity and temperature fields.

• Domains with spatial reflection symmetries are often present

in canonical flows but also in many industrial applications.

Examples thereof are displayed in fig. 1.

A few works exploiting symmetries for solving Poisson’s equa-

tion already exist [2, 1, 9, 22]. In the present paper, we extend them

to propose an improved variant of the Factored Sparse Approximate

Inverse (FSAI) preconditioner [15]. Namely, given an arbitrarily

Figure 2: Single-symmetry 1D mesh with mirrored ordering.

complex geometry presenting 𝑠 reflection symmetries, we have

started by transforming the resulting Laplace operator into a set

of 2
𝑠
decoupled subsystems. Then, given their close similarity, we

have added an extra level of approximation by applying the same

FSAI to all the subsystems. Surprisingly enough, this did not result

in significantly slower convergences. Nevertheless, we introduced

relatively cheap but very effective low-rank corrections [17, 18]. A

key feature of these corrections is that, the more symmetries being

exploited, the more effective they are, resulting in considerably

faster convergences. On the other hand, exploiting symmetries and

recycling the same FSAI on all the subsystems allowed increas-

ing considerably the arithmetic intensity of our preconditioner.

This was done by applying it through the more compute-intensive

sparse matrix-matrix product (SpMM) instead of using the standard

sparse matrix-vector product (SpMV). Remarkably enough, the strat-

egy presented in this work is naturally extensible to virtually any

preconditioner explicitly factorisable such as those based on incom-

plete factorisations.

The remaining sections of this work are organised as follows.

Section 2 derives the proposed low-rank corrected FSAI, and details

its construction and application. Section 3 discusses its practical

implementation, which has been made publicly available. Section 4

analyses the benefits of our proposal by comparing it with a stan-

dard FSAI in meaningful numerical experiments. Finally, section 5

gives some concluding remarks.

2 INCREASED ARITHMETIC INTENSITY FSAI
The aim of this section is to show how to exploit spatial reflection

symmetries for preconditioning Poisson’s equation. First, we will

show how to transform the original Laplace operator into a set of

decoupled subsystems. Then, we will show how to take advantage

of their regular structure to improve the FSAI preconditioner.

2.1 Exploiting symmetries
Given an arbitrary mesh presenting a single reflection symmetry,

e.g., such as fig. 2, let us order its grid points by first indexing the

ones lying on one half and then those in the other. If we impose to

the resulting two subdomains the same local ordering (mirrored

by the symmetry’s hyperplane), we ensure that all the scalar fields

satisfy:

𝑥 =

(
𝑥1
𝑥2

)
∈ R𝑛, (1)

where𝑛 stands for themesh size and 𝑥1, 𝑥2 ∈ R𝑛/2 for 𝑥 ’s restriction
to each of the subdomains. Mirrored grid points are in the same

position within the subvectors, and the discrete Laplace operator

reads:

𝐴 =

(
𝐴inn 𝐴out

𝐴out 𝐴inn

)
∈ R𝑛×𝑛, (2)

where 𝐴inn, 𝐴out ∈ R𝑛/2×𝑛/2 correspond to the inner- and outer-

subdomain couplings, respectively.
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In such a context, by denoting with I𝑘 the identity matrix of

order 𝑘 , we can define the following change-of-basis matrix [9]:

𝑃 B
1

√
2

(
I𝑛/2 I𝑛/2
I𝑛/2 −I𝑛/2

)
∈ R𝑛×𝑛, (3)

which satisfies 𝑃−1 = 𝑃 . Then, applying this change of basis to 𝐴

leads to:

𝑃𝐴𝑃−1 =
(
𝐴inn +𝐴out 0

0 𝐴inn −𝐴out

)
, (4)

transforming eq. (2) into two fully-decoupled and half-sized sub-

systems, 𝐴1 B 𝐴inn +𝐴out and 𝐴2 B 𝐴inn −𝐴out.

This strategy to exploit symmetries can be applied recursively

by defining the following change of basis [2]:

𝑃𝑠 B
𝑠∏
𝑖=1

(
I
2
𝑖−1 ⊗ 1

√
2

(
1 1

1 −1

)
⊗ I𝑛/2𝑖

)
∈ R𝑛×𝑛, (5)

which satisfies 𝑃−1𝑠 = 𝑃𝑠 and allows transforming the original

Laplace operator, 𝐴, into 2
𝑠
decoupled subsystems:

𝐴 B 𝑃𝑠𝐴𝑃
−1
𝑠 =

©­­­«
𝐴1 0

. . .

0 𝐴2
𝑠

ª®®®¬ . (6)

This decomposition of Poisson’s equation is very beneficial. Leav-

ing the computational advantages for section 3, let us note that

reducing the size of the linear systems makes the time complexity

of the solvers considerably lower. For instance, solving separately

the 2
𝑠
decoupled subsystems 𝐴1, . . . , 𝐴2

𝑠 instead of the entire 𝐴

leads to faster convergence. Algorithm 1 summarises the resulting

algorithm.

Algorithm 1 Poisson solver exploiting 𝑠 reflection symmetries

Require: 𝐴1, . . . , 𝐴2
𝑠 , 𝑃𝑠 and 𝑏 ∈ range(𝐴) ⊆ R𝑛

1: procedure Solve(𝑏)
2: Transform forward:

ˆ𝑏 = 𝑃𝑠𝑏

3: Decoupled solution of 𝐴𝑖𝑥𝑖 = ˆ𝑏𝑖 ∀𝑖 ∈ {1, . . . , 2𝑠 }
4: Transform backward: 𝑥 = 𝑃𝑠𝑥

5: return 𝑥

6: end procedure

2.2 Low-Rank Corrections for FSAI
Our aim now is to show how to exploit symmetries for enhancing

the FSAI preconditioner by means of low-rank corrections.

Let us start noting that, similarly to eq. (4), the matrix 𝐴 defined

in eq. (6) can be split as follows:

𝐴 = I2𝑠 ⊗ 𝐴inn +
©­­«
𝐴out,1 0

. . .

0 𝐴out,2𝑠

ª®®¬ , (7)

where all the outer-couplings,𝐴out,𝑖 ∈ R𝑛/2
𝑠×𝑛/2𝑠

, are substantially

sparser than 𝐴inn, and generally present the same sparsity pattern,

approximately having as many non-zeros as grid points adjacent

to any of the symmetries’ hyperplanes. Therefore, rank(𝐴out,𝑖 ) is
of the order of O((𝑛/2𝑠 )2/3) and:

rank

(
𝐴out,𝑖

)
≪ rank (𝐴inn) ∀𝑖 ∈ {1, . . . , 2𝑠 }, (8)

where rank(𝐴inn) ≃ 𝑛/2𝑠 .
At this point, let us consider the FSAI of 𝐴inn. It provides an ap-

proximation to the inverse of 𝐴inn’s lower Cholesky factor, 𝐺inn ≃
𝐿−1
inn

, which ensures that:

𝐺𝑇
inn

𝐺inn ≃ 𝐴−1
inn

. (9)

Then, we can define the following auxiliary matrix for each

subsystem 𝐴𝑖 :

𝑌 B I𝑛/2𝑠 −𝐺inn𝐴𝑖𝐺
𝑇
inn

∈ R𝑛/2
𝑠×𝑛/2𝑠 , (10)

whose definition yields 𝑌 (I𝑛/2𝑠 − 𝑌 )−1 = (𝐺inn𝐴𝑖𝐺
𝑇
inn

)−1 − I𝑛/2𝑠 ,
finally leading to:

𝐴−1
𝑖 = 𝐺𝑇

inn
𝐺inn +𝐺𝑇

inn
𝑌 (I𝑛/2𝑠 − 𝑌 )−1𝐺inn . (11)

Although being very useful, eq. (11) cannot be applied given the

unaffordable costs of the “full-rank” correction it provides. However,

by virtue of eq. (8), we can expect such a correction to have a very

high data sparsity, i.e., its action can be well represented by a low-

rank approximation [17]. With this assumption, let us truncate 𝑌 ’s

eigendecomposition to account for its 𝑘 most relevant eigenpairs:

𝑌 ≃ 𝑉𝑘Σ𝑘𝑉
𝑇
𝑘

(12)

such that 𝑉𝑘 ∈ R𝑛/2𝑠×𝑘 and Σ𝑘 ∈ R𝑘×𝑘 . Then, eqs. (11) and (12)

can be combined to give the following low-rank correction:

𝐴−1
𝑖 ≃ 𝐺𝑇

inn
𝐺inn +𝑊𝑘Θ𝑘𝑊

𝑇
𝑘
, (13)

where𝑊𝑘 B 𝐺𝑇
inn

𝑉𝑘 ∈ R𝑛/2𝑠×𝑘 and Θ𝑘 B Σ𝑘 (I𝑘 − Σ𝑘 )−1 ∈ R𝑘×𝑘 .
When it comes to selecting the most relevant eigenpairs, it is

worth remarking the numerical meaning of 𝑌 . Namely, it gives a

measure of how far it is each preconditioned subsystem,𝐺inn𝐴𝑖𝐺
𝑇
inn

,

from the identity matrix. Recalling the harmful effect of the small

eigenvalues in the Preconditioned Conjugate Gradient (PCG) con-

vergence [23], it becomes clear that the 𝑘 most effective eigenpairs

for the low-rank correction are those associated with the smallest

eigenvalues of 𝑋 B 𝐺inn𝐴𝑖𝐺
𝑇
inn

. Then, we can compute such a

low-rank representation of 𝑋 :

𝑋 ≃ 𝑈𝑘Λ𝑘𝑈
𝑇
𝑘
, (14)

which conveniently leads to:

𝑌 ≃ 𝑈𝑘 (I𝑘 − Λ𝑘 )𝑈𝑇
𝑘
. (15)

Note that computing the smallest eigenpairs of a matrix is gener-

ally a complex problem, often even more challenging than solving

a linear system. However, only rough and cost-effective approxi-

mations of𝑈𝑘 and Λ𝑘 are needed for preconditioning.

Hence, applying the above procedure to each of the 2
𝑠
subsys-

tems results in the following approximation of 𝐴−1
:

I2𝑠 ⊗ 𝐺𝑇
inn

𝐺inn +
©­­­«
𝑊𝑘,1Θ𝑘,1𝑊

𝑇
𝑘,1

0

. . .

0 𝑊𝑘,2𝑠Θ𝑘,2𝑠𝑊
𝑇
𝑘,2𝑠

ª®®®¬ , (16)
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which corresponds to a preconditioner henceforth named low-rank

corrected FSAI, and denoted by LRCFSAI(𝑘). Algorithm 2 sum-

marises its setup and application.

Algorithm 2 Low-rank corrected FSAI exploiting 𝑠 symmetries

Require: 𝐴inn, 𝐴out,1, . . . , 𝐴out,2𝑠 and 𝑘 ≥ 0

1: procedure Setup(𝑘,𝐴1, . . . , 𝐴2
𝑠 )

2: Compute FSAI factors of 𝐴inn: 𝐺inn and 𝐺𝑇
inn

3: for 𝑖 = 1, . . . , 2𝑠 do
4: Compute rank-𝑘 decomposition of 𝑋 ≃ 𝑈𝑘Λ𝑘𝑈

𝑇
𝑘

5: Compute Σ𝑘 = I𝑘 − Λ𝑘

6: Compute rank-𝑘 correction:

Θ𝑘,𝑖 = Σ𝑘 (I𝑘 − Σ𝑘 )−1 and𝑊𝑘,𝑖 = 𝑈𝑘

7: end for
8: end procedure
9: procedure Apply(r)
10: Apply FSAI: 𝑝 = (I2𝑠 ⊗ 𝐺𝑇

inn
𝐺inn)𝑟

11: for 𝑖 = 1, . . . , 2𝑠 do
12: Extract 𝑟𝑖 from 𝑟 = (𝑟𝑇

1
, . . . , 𝑟𝑇

2
𝑠 )𝑇

13: Apply 𝑖th rank-𝑘 correction: 𝑞𝑖 =𝑊𝑘,𝑖Θ𝑘,𝑖𝑊
𝑇
𝑘,𝑖
𝑟𝑖

14: end for
15: Reconstruct 𝑞 = (𝑞𝑇

1
, . . . , 𝑞𝑇

2
𝑠 )𝑇

16: return 𝑧 = 𝑝 + 𝑞
17: end procedure

Taking a look at line 10 in algorithm 2, the main motivation

for developing LRCFSAI(𝑘) is to allow replacing the SpMV with

the SpMM, a considerably more compute-intensive kernel (see sec-

tion 3). Additionally, by reusing the same FSAI on all the subsystems,

we reduce the approximate inverses’ memory footprint and setup

costs by a factor of 2
𝑠
. Of course, this comes at the price of using

lower quality approximations since 𝐺inn does not account for their

outer-subdomain couplings, 𝐴out,𝑖 . However, the rapidly decaying

spectrums of 𝐴−1
𝑖

−𝐴−1
inn

make it possible to overcome this draw-

back by introducing low-rank corrections, representing a relatively

small overhead. Of course, a balance must be sought in terms of

improving convergence by applying higher-rank corrections and

bearing their increased costs. Finally, let us remark that the ap-

proach presented in section 2.1 to exploit symmetries is particularly

well-suited for low-rank corrections (or for similar techniques like

deflation or augmentation [6]). Indeed, applying a rank-𝑘 correction

to each of the 2
𝑠
subsystems separately, corresponds to applying a

rank-(2𝑠𝑘) correction on the global system, 𝐴.

3 PRACTICAL IMPLEMENTATION
The aim of this section is to address the most important aspects re-

garding the distributed memory implementation of the LRCFSAI(𝑘)

preconditioner, which has been made publicly available on GitHub
1
.

Firstly, we will detail how to discretise domains with symmetries

in order to effectively save memory, reduce communications, and

increase the arithmetic intensity of the matrix multiplications. Sec-

ondly, we will present the FSAI preconditioner and Lanczos eigen-

solver on top of which LRCFSAI(𝑘) has been built.

1
Source code publicly available at https://github.com/adalbal/LRCFSAI.

3.1 Adequate domain partitioning
Discretising complex geometries becomes considerably simpler

and more affordable when exploiting reflection symmetries. Indeed,

the current approach only requires meshing a 1/2𝑠 fraction of the

entire domain, henceforth named base mesh. Then, the algorithm
will mirror it (implicitly) by each of the symmetries’ hyperplanes,

thus not having to worry about building exactly symmetric meshes

and saving a considerable amount of memory and computational

effort.

Figure 3 illustrates the above procedure on an arbitrary unstruc-

tured grid. It also shows an adequate domain partitioning allowing

for several computational advantages. Roughly, the user is free to

distribute the base mesh among the available computing resources,

but then such a distribution is mirrored to the rest of subdomains.

Figure 3: Adequate partitioning of amesh with 2 symmetries.

3.1.1 Communication-free transforms. The first advantage granted
by such a domain partitioning is to make communication-free the

two transforms of lines 2 and 4 in algorithm 1. Indeed, 𝑃𝑠 only cou-

ples spatially symmetric nodes that, thanks to the partitioning, will

always belong to the same memory space. Recalling that forward

and backward transforms are computed as matrix multiplications

by 𝑃𝑠 , it becomes clear that they do not entail any communication

and, therefore, represent a negligible overhead.

3.1.2 Sparse matrix-matrix multiplication. When exploiting sym-

metries, practically all the operators involved in the simulations

exhibit the following (or a very similar and compatible) block struc-

ture:

𝐻̂ = I2𝑠 ⊗ 𝐻, (17)

where 𝐻̂ ∈ R𝑛×𝑛 stands for the operator itself and 𝐻 ∈ R𝑛/2𝑠×𝑛/2𝑠

for its restriction to the base mesh.

The standard approach for applying 𝐻̂ to a vector is through an

SpMV call, which performs the following operation:

𝑦 =
©­­«
𝐻

. . .

𝐻

ª®®¬
©­­«
𝑥1
.
.
.

𝑥2𝑠

ª®®¬ ∈ R𝑛, (18)

However, it is possible to take advantage of eq. (17) to replace

SpMV with SpMM, algebraically corresponding to:

(𝑦1 . . . 𝑦2𝑠 ) = 𝐻 (𝑥1 . . . 𝑥2𝑠 ) ∈ R𝑛/2
𝑠×2𝑠 . (19)

https://github.com/adalbal/LRCFSAI
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Although both kernels are memory-bound, SpMV needs to read

𝐻 2
𝑠
times, whereas SpMM only once. As a result, SpMM’s arithmetic

intensity is considerably higher and, therefore, so is its performance.

Remarkably enough, eq. (17) also leads to substantial reductions in

thememory footprint of the matrices, since only their restrictions to

the base mesh are required. Examples of matrices satisfying eq. (17)

include, among many others, I2𝑠 ⊗𝐴inn in eq. (7) and I2𝑠 ⊗𝐺𝑇
inn

𝐺inn

in eq. (16).

3.2 Distributed memory implementation of
aFSAI and Lanczos

Besides the PCG, the two main ingredients required for the pro-

posed approach are an FSAI implementation able to get 𝐺inn from

𝐴inn and an effective eigensolver to approximate the smallest eigen-

pairs Λ𝑘 and 𝑈𝑘 . To this aim, we use the adaptive FSAI (aFSAI)

preconditioner proposed in [13] and the classical Lanczos itera-

tive method [20]. Although both algorithms are almost perfectly

parallel, their implementation in a distributed memory system is

not trivial as it involves a large volume of communications. Hence,

special care in its design is required to hide communication latency

by superposing computations. In this work, we rely on Chronos [11,

7], a linear algebra library for sparse matrix operations on high-

performance computers. Chronos implements CPU-only and GPU-

accelerated iterative methods and preconditioners for the solution

of large-size systems and eigenproblems. All the classical iterative

methods, such as PCG, GMRES, BiCGstab, Lanczos or Rayleigh quo-

tient minimisation, are provided. On the other hand, for scalability

reasons, preconditioning is mainly based on approximate inverses

and algebraic multigrid.

The approximate inverse we choose for this work is a factored

one based on the work [15], which will be denoted as aFSAI for

simplicity. Given a matrix 𝐴 (in this section, we omit the subindex

"inn" for simplicity), aFSAI aims to compute an approximation of

𝐴−1
in a factored form, that is:

𝐺𝑇𝐺 ≃ 𝐴−1, (20)

where 𝐺 is a lower triangular sparse matrix. The factor 𝐺 is com-

puted by minimising the Frobenius norm of:

∥𝐼 −𝐺𝐿∥ → min (21)

over all the matrices𝐺 having a prescribed non-zero pattern S and

𝐿 is the exact Cholesky factor of 𝐴, i.e., 𝐿𝐿𝑇 ≡ 𝐴. Since the parallel

computation of 𝐿 is not trivial at all and may be quite expensive, a

key feature of FSAI is that 𝐿 is not explicitly needed. In fact, after

some algebra it can be shown that 𝐿 disappears from the equations,

and the explicit computation of the 𝐺 entries can be performed by

solving the following entrywise equations:

[𝐺𝐴]𝑖 𝑗 = 𝛿𝑖 𝑗 ∀(𝑖, 𝑗) ∈ S (22)

where [·]𝑖 𝑗 denote the 𝑖 𝑗 component of a matrix and 𝛿 is the Kro-

necker delta. From a practical viewpoint, the condition imposed by

eq. (22) is satisfied by solving a long sequence of small and dense

linear systems. More precisely, we need to solve one dense system

for the computation of every row of𝐺 , hence the procedure exhibits

a very high degree of parallelism. The main drawback of the orig-

inal FSAI set-up was the choice of the non-zero pattern S which

is at the same time crucial and difficult. In fact, using a too sparse

S results in an inaccurate preconditioner while choosing a too

dense one may become exceedingly expensive. An effective remedy

to this has been proposed in [13], where a dynamic procedure is

implemented to choose the non-zero pattern dynamically during

preconditioner set-up. The position of most promising non-zeroes

is determined by estimating the variation of the Kaporin number

of the preconditioned matrix, which is an alternative measure to

estimate PCG convergence speed [14]. In [12], it is shown that an

efficient implementation of aFSAI on distributed memory systems

is possible, and its performance with up to 4096 CPU-cores and 512

GPUs has been proven in real industrial applications.

The other component needed for our approach is the estimation

of the smallest eigenpairs of 𝐺inn𝐴𝑖𝐺
𝑇
inn

. To this aim, we rely on a

classical Lanczos implementation without restarting. The choice

of avoiding restarting strategies in Lanczos was motivated by the

relatively low accuracy needed in the eigenpairs estimate. As the

numerical experiments will show, requiring a high level of accu-

racy does not contribute to accelerating PCG convergence, thus

resulting in a waste of resources. However, the numerical exper-

iments will also show that, when dealing with large problems,

the excessive memory demands of the non-restarted Lanczos may

require switching to a restarted implementation. Once the user

defines the rank of the correction, the dimension of the Lanczos

space is set accordingly, and a basis of the subspace is constructed

through the Gram-Schmidt procedure with the only simple care

of re-orthogonalising the base vectors whenever linear indepen-

dence is lost. The Lanczos eigensolver is a high-level procedure

in Chronos since, like most iterative solution algorithms, it only

requires basic linear algebra operations, such as matrix by vector

products, scalar products and vector updates, which are already

available in Chronos as low-level kernels.

4 NUMERICAL EXPERIMENTS
The aim of this section is to show the benefits of the LRCFSAI(𝑘) de-

veloped in the preceding sections by comparing it with a standard

application of the aFSAI in meaningful numerical experiments. All

the executions rely on combinedMPI andmultithreaded parallelism,

and have been conducted on the MARCONI100 supercomputer at

the Italian Center for High Performance Computing (CINECA). Its

non-uniform memory access (NUMA) nodes are equipped with two

IBM POWER9 AC922 (16 cores, 2.6 GHz, 27.5 MB and 120 GB/s

memory bandwidth), linked to 256 GB of RAM, and interconnected

through 12.5GB/s Mellanox IB EDR DragonFly++.

The domain considered for the experiments is analogous to that

of fig. 1. As discussed in section 3.1, we did only have to discre-

tise a fraction of it in accordance with the number of symmetries

being exploited. Namely, a half, a quarter and an eighth of the do-

main when exploiting 𝑠 = 1, 2, 3 symmetries, respectively. This was

done using a standard 7-point stencil and a refinement at the walls

defined by the following hyperbolic tangent function:

𝑥𝑖 =
1

2

©­­«1 +
tanh

(
𝛾𝑥

(
2
(𝑖−1)
𝑛𝑥

− 1

))
tanh (𝛾𝑥 )

ª®®¬ ∀𝑖 ∈ {1, . . . , 𝑛𝑥 + 1}, (23)

which was applied analogously in the 𝑦- and 𝑧-directions. Then,

the three test meshes considered were equally stretched according
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to: 𝛾 = (1.35, 1.2, 1.45), and of increasing size: 𝑛 = 256
3, 5123, 10243.

The right-hand side (RHS) vectors were randomly generated, and

the initial guesses assumed null. Regarding the convergence criteria,

we set a relative tolerance equal to 10
−8

without any limitation in

the iterations’ count.

It is worth remarking that, when exploiting symmetries, compact

stencils only coupling adjacent nodes give rise to a Laplace operator

with diagonal outer-couplings:

©­­«
𝐴out,1 0

. . .

0 𝐴out,2𝑠

ª®®¬ = diag(𝑎out) ∈ R𝑛×𝑛, (24)

which can be naturally stored like the rest of vectors:

𝑎out = (𝑎out,1 . . . 𝑎out,2𝑠 ) ∈ R𝑛/2
𝑠×2𝑠 . (25)

Then, by virtue of eq. (7), all the coefficient matrix multiplications

required by PCG can be computed as a combination of an SpMM and
an element-wise product of vectors (axty):

𝐴(𝑥1 . . . 𝑥2𝑠 ) = 𝐴inn (𝑥1 . . . 𝑥2𝑠 ) + (26)

+ (𝑎out,1 . . . 𝑎out,2𝑠 ) ⊙ (𝑥1 . . . 𝑥2𝑠 ),

therefore replacing the less compute-intensive SpMV.
Regarding the preconditioners, we compared the standard aFSAI:

𝐺𝑇𝐺 B
©­­­«
𝐺1𝐺

𝑇
1

0

. . .

0 𝐺2
𝑠𝐺𝑇

2
𝑠

ª®®®¬ ≃ 𝐴−1, (27)

satisfying 𝐺𝑖𝐺
𝑇
𝑖
≃ 𝐴−1

𝑖
for all 𝑖 ∈ {1, . . . , 2𝑠 }, with the LRCFSAI(𝑘)

of eq. (16) resulting from 𝑘 ∈ {0, 1, 2, 8, 16}.
As explained in section 3.2, for the estimation of the smallest

eigenpairs of 𝐺inn𝐴𝑖𝐺
𝑇
inn

, we relied on a classical non-restarted

Lanczos implementation. Remarkably enough, the similarity of

𝐴1, . . . , 𝐴2
𝑠 allows improving the eigensolvers convergence by re-

cycling previously calculated eigenpairs as initial guesses for sub-

sequent subsystems. This resulted very beneficial given the large

memory demands of performing too many non-restarted Lanczos

iterations. In fact, in the largest cases we were unable to meet the

desired accuracy in the computation of LRCFSAI(𝑘), making it clear

the need for a restarted implementation. Table 1 illustrates the

impact of the eigenpairs’ accuracy on the quality of LRCFSAI(𝑘).

According to it, a tolerance in between 10
−3

and 10
−4

is enough

to get the most out of the rank-𝑘 corrections. Therefore, in our

experiments we imposed to Lanczos a tolerance equal to 10
−3
, and

allowed as many iterations as permitted by the nodes capacity.

Regarding the memory footprint of the solver, i.e., the foot-

print of both the coefficient matrix and the preconditioner, fig. 4

summarises the very important reductions granted by exploiting

symmetries. In this sense, only having to store 𝐴inn, 𝑎out, 𝐺inn

and 𝐺𝑇
inn

made the extra space required by the low-rank correc-

tions,𝑊𝑘,1,Θ𝑘,1,𝑊
𝑇
𝑘,1

, . . . ,𝑊𝑘,1,Θ𝑘,2𝑠 ,𝑊
𝑇
𝑘,2𝑠

, more than acceptable.

Indeed, the heaviest preconditioner considered, LRCFSAI(16), re-

sulted in 2.6x memory savings with respect to aFSAI.

When it comes to the convergence of LRCFSAI(𝑘), the higher

the rank of the correction, the fewer the iterations required by

PCG. Additionally, thanks to being applied independently, a rank-𝑘

Table 1: Lanczos tolerance influence on the PCG iterations

𝑛 𝑘 10
−1

10
−2

10
−3

10
−4

10
−5

10
−6

16.8M 1 406 413 399 385 372 359

2 454 431 369 320 327 327

8 388 228 205 206 205 205

16 357 184 169 161 160 160

134M 1 960 853 838 803 770 744

2 927 881 842 663 665 664

8 921 497 425 426 425 425

16 898 405 348 333 328 327

correction on each subsystem corresponds to a correction on the

entire system of 2
𝑠
times higher rank. Therefore, the more symme-

tries being exploited, the more effective the low-rank corrections

are, as can be confirmed from fig. 4. These trends are clearly con-

firmed in fig. 4 by the 16.8M grid. The contradictory behaviour

of LRCFSAI(𝑘) on the 134M and 1.07B grids is solely due to the

aforementioned low accuracy in the calculation of the smallest

eigenpairs, which leads to ineffective corrections. For clarity, the

points corresponding to cases in which non-restarted Lanczos was

unable to meet the desired tolerance are left empty. The reason why

such cases are limited to higher-rank corrections on larger grids

and exploiting fewer (if any) symmetries is simple. The larger the

subsystems are, the more iterations non-restarted Lanczos requires

and, furthermore, the larger each vector of the Krylov subspace

basis is. As a result, the limited available memory results in poor

corrections. Remarkably enough, this can be easily addressed by

switching to a restarted Lanczos implementation, which is a subject

of ongoing work.

Some comments were already made about the existing trade-off

between the faster convergences granted by higher-rank correc-

tions and the extra overhead their application introduces. Figure 5

illustrates this by decomposing the time spent per PCG iteration

in multiplications by the coefficient matrix, aFSAI and low-rank

corrections. The advantages of replacing SpMM with SpMV are clear.

Indeed, applying the standard aFSAI of eq. (27), which is not com-

patible with SpMM, results almost twice as expensive as ignoring the

Laplacian’s outer-couplings and applying the same aFSAI,𝐺𝑇
inn

𝐺inn,

to all the subsystems. On top of that, fig. 4 confirms that introduc-

ing this extra level of approximation does not harm convergence,

generally requiring LRCFSAI(0) almost the same iterations as the

standard aFSAI. It is worth noting that the benefits of SpMM are not

so apparent for the coefficient matrix multiplications due to its high

sparsity, which makes them a very fast operation. Finally, it is clear

from fig. 5 the considerable overhead derived from the low-rank

corrections, especially for larger values of 𝑘 . LRCFSAI(𝑘) will only

be advantageous as long as the added cost of its rank-𝑘 corrections

is well hidden behind the fewer iterations and faster multiplications.

In this sense, the actual solution times presented in fig. 4 confirm the

benefits of LRCFSAI(𝑘). Indeed, while rank-1 and rank-2 corrections

are not so effective compared to LRCFSAI(0), the considerably faster

convergences attained by LRCFSAI(16) make it up to 2.5x faster

than the standard application of aFSAI exploiting 𝑠 = 3 symmetries,

and up to 4.4x faster than aFSAI without exploiting symmetries.
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Figure 4: Memory footprint, iterations’ count, and solution time normalised by the mesh size and CPU cores’ number.

5 CONCLUSIONS
The fact that hardware’s memory bandwidth tends to grow much

slower than its peak performance has led to strongly memory-

bound codes. Hence, increasing the arithmetic intensity of the

Poisson solvers, which are the main bottleneck of incompressible

CFD (and many other) simulations, is critical to develop efficient

HPC codes. It is in this context that we have developed LRCFSAI(𝑘),

a more compute-intensive variant of the FSAI preconditioner.

In particular, we have recalled a strategy to exploit 𝑠 spatial re-

flection symmetries for transforming the original Poisson equation

into a set of 2
𝑠
decoupled subsystems. Given their close similarity,

it has been possible to introduce an extra level of approximation

and apply the same preconditioner to all the subsystems. Surpris-

ingly enough, this did not harm convergence considerably. In fact,

it set the ground for applying relatively cheap but very effective

low-rank corrections. A key feature of these corrections is that,

thanks to being applied to each subsystem independently, they

correspond to a correction on the entire system of 2
𝑠
times higher

rank. Therefore, the more symmetries being exploited, the more

effective the low-rank corrections are. Indeed, LRCFSAI(16) reaches

up to 2.9x and 5.7x faster convergences compared to the standard

aFSAI exploiting 𝑠 = 3 and no symmetries, respectively.

Apart from allowing very effective low-rank corrections, exploit-

ing symmetries and recycling the same aFSAI on all the subsys-

tems allowed making its application considerably more compute-

intensive by replacing the standard SpMV with SpMM. On the one

hand, this made the FSAI’s application up to 1.7x faster. On the

other, it reduced considerably the memory footprint of LRCFSAI(𝑘).

For instance, its heaviest version considered, LRCFSAI(16), was 2.6x

lighter than aFSAI.

The combination of all the aforementioned factors made our

LRCFSAI(𝑘) outperform the standard aFSAI by a factor of up to 4.4x.

Remarkably enough, the strategy presented in this work is naturally

extensible to virtually any preconditioner explicitly factorisable,

e.g., those based on incomplete factorisations. Then, the usage of
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Figure 5: Decomposition of PCG iteration normalised by
mesh size and CPU cores’ number.

SpMM would be replaced by any other computational enhancement

derived from having 2
𝑠
right-hand sides.

Immediate lines of work include switching from a non-restarted

to a restarted Lanczos implementation, as well as improving our

current low-rank corrections to make their application computa-

tionally cheaper, and attain even higher speed-ups. Additionally,

we plan to port our current implementation of the LRCFSAI(𝑘) to

GPUs, and to evaluate its performance in large-scale CFD simu-

lations of complex geometries. Finally, we want to study ways to

apply similar strategies to preconditioners that cannot be explicitly

factored, such as Algebraic Multigrid, which would be particularly

benefited from using SpMM.
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