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CFD applications – 1

Figure: Simulation of flow around a square cylinder1 and Rayleigh-Bénard convection2.

1F.X. Trias et al. (2015). “Turbulent flow around a square cylinder at Reynolds number 22000:
a DNS study” in Computers and Fluids.

2F. Dabbagh et al. (2017). “A priori study of subgrid-scale features in turbulent
Rayleigh-Bénard convection” in Physics of Fluids.
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CFD applications – 2

Figure: Simulation of turbulent flow over the DrivAer fastback vehicle model3.

3D. E. Aljure et al. (2018). “Flow over a realistic car model: Wall modeled large eddy
simulations assessment and unsteady effects” in Journal of Wind Engineering and Industrial
Aerodynamics.
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CFD applications – 3

Figure: Simulation of brazed and expanded tube-fin heat exchangers4.

4L. Paniagua et al. (2014). “Large Eddy Simulations (LES) on the Flow and Heat Transfer in a
Wall-Bounded Pin Matrix” in Numerical Heat Transfer, Part B: Fundamentals.
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CFD applications – 4

Figure: Simulation of wind plant5 and array of “buildings”6.

5M. Calaf et al. (2010). “Large eddy simulation study of fully developed wind-turbine array
boundary layers” in Physics of Fluids.

6P. A. Mirzaei (2021). “CFD modeling of micro and urban climates: Problems to be solved in
the new decade” in Sustainable Cities and Society.
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Poisson’s equation in incompressible CFD

Fractional Step Method (FSM)

1 Evaluate the auxiliar vector field r(vn) := −(v · ∇)v + ν∆v

2 Evaluate the predictor velocity vp := vn +∆t
(
3
2
r(vn)− 1

2
r(vn−1)

)
3 Obtain the pressure field by solving a Poisson equation:

∇ ·
(
1

ρ
∇pn+1

)
=

1

∆t
∇ · vp

4 Obtain the new divergence-free velocity vn+1 = vp −∇pn+1

Poisson’s equation for incompressible single-phase flows

Continuous:
∆p =

ρ

∆t
∇ · vp

Discrete:
Lph =

ρ

∆t
Mvph
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Solving Poisson’s equation
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Meshes with symmetries

(a) 1 symmetry (b) 2 symmetries

Figure: 2D meshes with varying number of symmetries.
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“Mirrored” unknowns’ ordering

(a) 1 symmetry (b) 2 symmetries

Figure: “Mirrored” ordering on 2D meshes with a varying no. of symmetries.
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Discrete Laplace operator and mesh symmetries

Let L be the discrete Laplace operator arising from a mesh with s symmetries,
and let us define the following change of basis7:

P =
1√
2s

[
p⊗

i=1

(
1 1
1 −1

)]
⊗ In/2s ∈ Rn×n

7A. Alsalti-Baldellou et al. (2023). “Exploiting spatial symmetries for solving Poisson’s
equation” in Journal of Computational Physics.
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Discrete Laplace operator and mesh symmetries

Let L be the discrete Laplace operator arising from a mesh with s symmetries,
and let us define the following change of basis7:

P =
1√
2s

[
p⊗

i=1

(
1 1
1 −1

)]
⊗ In/2s ∈ Rn×n

Then, thanks to the “mirrored” ordering, P transforms L:

L =

 L1−1 . . . L1−2s

...
. . .

...
L2s−1 . . . L2s−2s

 ∈ Rn×n

into 2s decoupled subsystems:

L̂ =

L̂1

. . .

L̂2s

 ∈ Rn×n

7A. Alsalti-Baldellou et al. (2023). “Exploiting spatial symmetries for solving Poisson’s
equation” in Journal of Computational Physics.
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(a) L (b) L̂ = PLP−1

Figure: 3D structured mesh exploiting s = 1 symmetries.

7A. Alsalti-Baldellou et al. (2023). “Exploiting spatial symmetries for solving Poisson’s
equation” in Journal of Computational Physics.
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(
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(a) L (b) L̂ = PLP−1

Figure: 3D structured mesh exploiting s = 2 symmetries.

7A. Alsalti-Baldellou et al. (2023). “Exploiting spatial symmetries for solving Poisson’s
equation” in Journal of Computational Physics.
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(
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(a) L (b) L̂ = PLP−1

Figure: 3D structured mesh exploiting s = 3 symmetries.

7A. Alsalti-Baldellou et al. (2023). “Exploiting spatial symmetries for solving Poisson’s
equation” in Journal of Computational Physics.
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In general, L̂ can be split as:

L̂ = · · · =

Linn

. . .

Linn

+
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L
(1)
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. . .

L
(2s)
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

7A. Alsalti-Baldellou et al. (2023). “Exploiting spatial symmetries for solving Poisson’s
equation” in Journal of Computational Physics.

12



Context of the work Solving Poisson’s equation Preconditioning Poisson’s equation Concluding remarks

Discrete Laplace operator and mesh symmetries

Let L be the discrete Laplace operator arising from a mesh with s symmetries,
and let us define the following change of basis7:

P =
1√
2s

[
p⊗

i=1

(
1 1
1 −1

)]
⊗ In/2s ∈ Rn×n

In general, L̂ can be split as:

L̂ = · · · =

Linn

. . .

Linn

+


L
(1)
out
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L
(2s)
out


In particular, compact stencils only coupling adjacent nodes result in:

L̂v = (I2s ⊗ Linn)v︸ ︷︷ ︸
Sparse matrix-matrix

product (SpMM)

+ diag (lout)v︸ ︷︷ ︸
Element-wise product

of vectors (axty)

7A. Alsalti-Baldellou et al. (2023). “Exploiting spatial symmetries for solving Poisson’s
equation” in Journal of Computational Physics.
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2s
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Given v ∈ Rn, the products by L̂ can be accelerated by replacing:

SpMV:

Linn

. . .

Linn


 v1

...
v2s



with SpMM: Linn (v1 . . .v2s)

7A. Alsalti-Baldellou et al. (2023). “Exploiting spatial symmetries for solving Poisson’s
equation” in Journal of Computational Physics.
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Linn

. . .

Linn


 v1

...
v2s

 with SpMM: Linn (v1 . . .v2s)

Hence:

Since SpMV and SpMM are memory-bound kernels, SpMM’s acceleration
equals ISpMM/ISpMV

SpMM reads Linn once, whereas SpMV reads Linn 2s times.

7A. Alsalti-Baldellou et al. (2023). “Exploiting spatial symmetries for solving Poisson’s
equation” in Journal of Computational Physics.
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Resulting algorithm

Algorithm Poisson solver exploiting s mesh symmetries

1 Transform forward the RHS: b̂ = Pb

2 Decoupled solution of the 2s subsystems: L̂x̂ = b̂

3 Transform backward the solution: x = P−1x̂

where:

P =
1√
2s

[
p⊗

i=1

(
1 1
1 −1

)]
⊗ In/2s , P−1 = P,

and Step 2 corresponds to inverting:L̂1

. . .

L̂2s


 x̂1

...
x̂2s

 =

 b̂1

...

b̂2s


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Summary

Summary:

The overhead of the two (communication-free) transforms is negligible.

Exploiting symmetries reduces the setup costs of the matrices.

Exploiting symmetries reduces the memory footprint of the matrices.

Exploiting symmetries reduces the time complexity of the solvers.

SpMM naturally applies to all operators of the form Â = I2s ⊗ A.

SpMM increases considerably the I of all the matrix multiplications.

Still missing...

Since all the subsystems are (slightly) different, so are their preconditioners,
and SpMM cannot be applied with them!
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Preconditioning Poisson’s equation
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Right, left and split preconditioning

Let A ∈ Rn and x, b ∈ Rn. Then, given the linear system Ax = b, we can
consider the following preconditioning techniques:

Left preconditioning

Given the preconditioner M−1 ≃ A−1, the left-preconditioned system is:

M−1Ax = M−1b

Right preconditioning

Given the preconditioner M−1 ≃ A−1, the right-preconditioned system is:

AM−1y = b, where Mx = y

Split preconditioning

Given the preconditioner M−1 = M−1
1 M−1

2 ≃ A−1, the split-preconditioned
system is:

M−1
1 AM−1

2 y = M−1
1 b, where M2x = y

Thus, preconditioning reduces to operations of the type: y = M−1x
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“Full-rank” corrections – 1

“Full-rank” corrections8

Given two SPD matrices A and B, let the Cholesky decomposition of B be
B = LLt. Then, given Y := (I− L−1AL−t), the following holds:

A−1 = L−tL−1 +WΘW t,

where Y = UΣU t is the eigendecomposition of Y , and:

Θ := Σ (I− Σ)−1 and W := L−tU.

Taking a closer look to the spectral decomposition of Y , we have:

Y = UΣU t, where Σ =

λ1 0
. . .

0 λn

 .

8R. Li and Y. Saad (2013). “Divide and conquer low-rank preconditioners for symmetric
matrices” in SIAM Journal on Scientific Computing.
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“Full-rank” corrections – 2

Figure: Example of rapidly decaying eigenvalues8.

8R. Li and Y. Saad (2013). “Divide and conquer low-rank preconditioners for symmetric
matrices” in SIAM Journal on Scientific Computing.
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Low-rank corrections

Hence, whenever Y ’s spectrum decays rapidly we can consider truncated
eigendecompositions accounting for its k most relevant eigenpairs:

Y = UΣU t ≃ UkΣkU
t
k ∈ Rn×n

where Σk ∈ Rk×k and Uk ∈ Rn×k.

Low-rank correction9

Given two SPD matrices A and B, let the Cholesky decomposition of B be
B = LLt. Then, given Y := (I− L−1AL−t), the following holds:

A−1 ≃ L−tL−1 +WkΘkW
t
k,

where Y ≃ UkΣkU
t
k and:

Θk := Σk (I−Σk)
−1 and Wk := L−tUk.
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A−1 ≃ L−tL−1 +WkΘkW
t
k,

where Y ≃ UkΣkU
t
k and:

Θk := Σk (I−Σk)
−1 and Wk := L−tUk.

9A. Franceschini et al. (2018). “A robust multilevel approximate inverse preconditioner for
symmetric positive definite matrices” in SIAM Journal on Matrix Analysis and Applications.
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Low-rank corrected FSAI
As we saw, s symmetric directions allow decomposing Poisson’s equation,
Lx = b, into 2s decoupled subsystems with the following structure:

Linn + L
(1)
out 0

. . .

0 Linn + L
(2s)
out


 x̂1

...
x̂2s

 =

 b̂1

...

b̂2s

 ,

and such that:

rank(L
(i)
out) = nifc ≪ rank(Linn) = n
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 b̂1

...

b̂2s

 ,

and such that:

rank(L
(i)
out) = nifc ≪ rank(Linn) = n

Eureka!

Let Minn be a preconditioner for Linn, i.e., M
−1
inn ≃ L−1

inn . Then, we can seek
low-rank corrections for Minn such that:

L̂−1 ≃ I2s ⊗Minn +


W

(1)
k Θ

(1)
k W

(1)
k

t
0

. . .

0 W
(2s)
k Θ

(2s)
k W

(2s)
k

t

 ,

As a result: lower setup costs, decoupled corrections and SpMM!
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inn . Then, we can seek
low-rank corrections for Minn such that:

L̂−1 ≃ I2s ⊗Minn +


W

(1)
k Θ

(1)
k W

(1)
k

t
0

. . .

0 W
(2s)
k Θ

(2s)
k W

(2s)
k

t

 ,

As a result: lower setup costs, decoupled corrections and SpMM!
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Low-rank corrected FSAI
As we saw, s symmetric directions allow decomposing Poisson’s equation,
Lx = b, into 2s decoupled subsystems with the following structure:

Linn + L
(1)
out 0

. . .

0 Linn + L
(2s)
out


 x̂1

...
x̂2s

 =

 b̂1

...

b̂2s

 ,

and such that:

rank(L
(i)
out) = nifc ≪ rank(Linn) = n

LRCFSAI(k): Low-rank corrected FSAI

Let the aFSAI10 of Linn be Gt
innGinn ≃ L−1

inn .

For each subsystem L̂i = Linn + L
(i)
out, let Y := (I−GinnL̂iG

t
inn).

Then:
L̂−1
i ≃ Gt

innGinn +WkΘkW
t
k,

where Y ≃ UkΣkU
t
k and Θk := Σk (I− Σk)

−1 and Wk := L−tUk.

10C. Janna and M. Ferronato (2011). “Adaptive pattern research for block FSAI
preconditioning” in SIAM Journal on Scientific Computing.
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Low-rank corrected FSAI: residual convergence
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Figure: Convergence of PCG+LRCFSAI(k) on a 323 mesh with s = 1 symmetries.
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Low-rank corrected FSAI: residual convergence
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Figure: Convergence of PCG+LRCFSAI(k) on a 323 mesh with s = 2 symmetries.
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Low-rank corrected FSAI: residual convergence
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Figure: Convergence of PCG+LRCFSAI(k) on a 323 mesh with s = 3 symmetries.
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Low-rank corrected FSAI: eigensolvers’ accuracy

DOF k 10−1 10−2 10−3 10−4 10−5 10−6

16.8M 1 406 413 399 385 372 359
2 454 431 369 320 327 327
8 388 228 205 206 205 205
16 357 184 169 161 160 160

134M 1 960 853 838 803 770 744
2 927 881 842 663 665 664
8 921 497 425 426 425 425
16 898 405 348 333 328 327

Table: Influence of Lanczos tolerance on the PCG iterations.
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Low-rank corrected FSAI: time per iteration

Figure: Normalised time per PCG+LRCFSAI(k) iteration on MARCONI.

25



Context of the work Solving Poisson’s equation Preconditioning Poisson’s equation Concluding remarks

Low-rank corrected FSAI: time per iteration

Figure: Normalised time per PCG+LRCFSAI(k) iteration on MARCONI.

26



Context of the work Solving Poisson’s equation Preconditioning Poisson’s equation Concluding remarks

Low-rank corrected FSAI: time per iteration

Figure: Normalised time per PCG+LRCFSAI(k) iteration on MARCONI.

27



Context of the work Solving Poisson’s equation Preconditioning Poisson’s equation Concluding remarks

Low-rank corrected FSAI: overview

Figure: Normalised time per PCG+LRCFSAI(k) iteration on MARCONI.

In summary, LRCFSAI(k) enhances the standard FSAI in many aspects:

LRCFSAI(k) has up to 2.6x lower memory requirements.

LRCFSAI(k) requires up to 5.7x fewer iterations

LRCFSAI(k) results in up to 4.4x overall speed-ups.
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Concluding remarks
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Conclusions

Summary:

Low-rank corrections make FSAI compatible with SpMM.

Need for a balance with higher-rank corrections: fewer vs slower iterations.

LRCFSAI(k) reduces the setup costs of FSAI.

LRCFSAI(k) reduces the memory footprint of FSAI.

LRCFSAI(k) reduces the time-to-solution of FSAI.

Ongoing work:

Extend SpMM’s use to AMG.

Extend SpMM’s use to repeated geometries.

Extend SpMM’s use to structural mechanics.
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Thanks for your attention!
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