Exploiting symmetries for preconditioning Poisson's equation in CFD simulations

Àdel Alsalti-Baldellou^{1,2} Carlo Janna^{3,4} Xavier Álvarez-Farré⁵ F. Xavier Trias¹

¹Heat and Mass Transfer Technological Center, Polytechnic University of Catalonia

²Termo Fluids SL, http://www.termofluids.com/

³Department of Civil, Environmental and Architectural Engineering, University of Padova

⁴M3E s.r.l., http://www.m3eweb.it/

⁵High-Performance Computing Team, SURF

Platform for Advanced Scientific Computing Conference (PASC23) June 26-28 2023 – Davos, Switzerland

Solving Poisson's equation

Preconditioning Poisson's equation

Concluding remarks 000

Index

Context of the work

- Targetted applications
- Poisson's equation in CFD
- 2 Solving Poisson's equation
 - Block diagonal Laplace operator
- Operation Preconditioning Poisson's equation
 - Corrections for improving preconditioners
 - Low-rank corrected FSAI
 - Numerical results
- 4 Concluding remarks

Context of the work \bullet

Solving Poisson's equation

Preconditioning Poisson's equation

Concluding remarks

Context of the work

Solving Poisson's equation

Preconditioning Poisson's equation

Concluding remarks

CFD applications - 1

Figure: Simulation of flow around a square cylinder¹ and Rayleigh-Bénard convection².

 $^{^1\}mathsf{F.X.}$ Trias et al. (2015). "Turbulent flow around a square cylinder at Reynolds number 22000: a DNS study" in *Computers and Fluids*.

²F. Dabbagh et al. (2017). "A priori study of subgrid-scale features in turbulent Rayleigh-Bénard convection" in *Physics of Fluids*.

Solving Poisson's equation

Preconditioning Poisson's equation

Concluding remarks

CFD applications - 2

Figure: Simulation of turbulent flow over the DrivAer fastback vehicle model³.

³D. E. Aljure et al. (2018). "Flow over a realistic car model: Wall modeled large eddy simulations assessment and unsteady effects" in *Journal of Wind Engineering and Industrial Aerodynamics*.

Solving Poisson's equation 000000

Preconditioning Poisson's equation

Concluding remarks

CFD applications – 3

Figure: Simulation of brazed and expanded tube-fin heat exchangers⁴.

⁴L. Paniagua et al. (2014). "Large Eddy Simulations (LES) on the Flow and Heat Transfer in a Wall-Bounded Pin Matrix" in *Numerical Heat Transfer, Part B: Fundamentals*.

Solving Poisson's equation

Preconditioning Poisson's equation

Concluding remarks

CFD applications – 4

Figure: Simulation of wind plant⁵ and array of "buildings"⁶.

⁵M. Calaf et al. (2010). "Large eddy simulation study of fully developed wind-turbine array boundary layers" in *Physics of Fluids*.

⁶P. A. Mirzaei (2021). "CFD modeling of micro and urban climates: Problems to be solved in the new decade" in *Sustainable Cities and Society*.

Context of the work ○○○○○● Solving Poisson's equation

Preconditioning Poisson's equation

Concluding remarks 000

Poisson's equation in incompressible CFD

Fractional Step Method (FSM)

- **9** Evaluate the auxiliar vector field $\mathbf{r}(\mathbf{v}^n) \coloneqq -(\mathbf{v} \cdot \nabla)\mathbf{v} + \nu \Delta \mathbf{v}$
- $\textbf{@} \text{ Evaluate the predictor velocity } \mathbf{v}^p \coloneqq \mathbf{v}^n + \Delta t \left(\frac{3}{2} \mathbf{r}(\mathbf{v}^n) \frac{1}{2} \mathbf{r}(\mathbf{v}^{n-1}) \right)$
- **Obtain the pressure field by solving a Poisson equation**:

$$\nabla \cdot \left(\frac{1}{\rho} \nabla p^{n+1}\right) = \frac{1}{\Delta t} \nabla \cdot \mathbf{v}^{p}$$

 $\textcircled{O} \text{ Obtain the new divergence-free velocity } \mathbf{v}^{n+1} = \mathbf{v}^p - \nabla p^{n+1}$

Context of the work ○○○○○● Solving Poisson's equation

Preconditioning Poisson's equation

Concluding remarks 000

Poisson's equation in incompressible CFD

Fractional Step Method (FSM)

- **9** Evaluate the auxiliar vector field $\mathbf{r}(\mathbf{v}^n) \coloneqq -(\mathbf{v} \cdot \nabla)\mathbf{v} + \nu \Delta \mathbf{v}$
- $\textbf{@} \text{ Evaluate the predictor velocity } \mathbf{v}^p \coloneqq \mathbf{v}^n + \Delta t \left(\frac{3}{2} \mathbf{r}(\mathbf{v}^n) \frac{1}{2} \mathbf{r}(\mathbf{v}^{n-1}) \right)$
- **Obtain the pressure field by solving a Poisson equation**:

$$\nabla \cdot \left(\frac{1}{\rho} \nabla p^{n+1}\right) = \frac{1}{\Delta t} \nabla \cdot \mathbf{v}^p$$

③ Obtain the new divergence-free velocity $\mathbf{v}^{n+1} = \mathbf{v}^p - \nabla p^{n+1}$

Poisson's equation for incompressible single-phase flows

Continuous:

$$\Delta p = \frac{\rho}{\Delta t} \nabla \cdot \mathbf{v}^p$$

Context of the work ○○○○○● Solving Poisson's equation

Preconditioning Poisson's equation

Concluding remarks 000

Poisson's equation in incompressible CFD

Fractional Step Method (FSM)

- **9** Evaluate the auxiliar vector field $\mathbf{r}(\mathbf{v}^n) \coloneqq -(\mathbf{v} \cdot \nabla)\mathbf{v} + \nu \Delta \mathbf{v}$
- $\textbf{@} \text{ Evaluate the predictor velocity } \mathbf{v}^p \coloneqq \mathbf{v}^n + \Delta t \left(\frac{3}{2} \mathbf{r}(\mathbf{v}^n) \frac{1}{2} \mathbf{r}(\mathbf{v}^{n-1}) \right)$
- **③** Obtain the pressure field by solving a **Poisson equation**:

$$\nabla \cdot \left(\frac{1}{\rho} \nabla p^{n+1}\right) = \frac{1}{\Delta t} \nabla \cdot \mathbf{v}^p$$

③ Obtain the new divergence-free velocity $\mathbf{v}^{n+1} = \mathbf{v}^p - \nabla p^{n+1}$

Poisson's equation for incompressible single-phase flows

Continuous:

$$\Delta p = \frac{\rho}{\Delta t} \nabla \cdot \mathbf{v}^p$$

Discrete:

$$\mathsf{L}p_h = \frac{\rho}{\Delta t} \mathsf{M} v_h^p$$

Solving Poisson's equation

Preconditioning Poisson's equation

Concluding remarks

Solving Poisson's equation

Solving Poisson's equation

Preconditioning Poisson's equation

Concluding remarks

Meshes with symmetries

· · · · · · · · · · · · · · · · · · ·								
××× ×	x x	. I . I . I.I.W						
xx x x x	× ×	· · · · · · · · · · · · · · · · · · ·						
жих х	х х							
xx x x x	× ×	· · · · · · · · · · · · · · · · · · ·						
жих х	х х		*** * * * * • • • • • • • • • • • • • •					
xxx x	× ×							
xx x x x	х х							
	* × * *							
	(a) 1 sy	mmetry	(b) 2 symmetries					

Figure: 2D meshes with varying number of symmetries.

Solving Poisson's equation

Preconditioning Poisson's equation

Concluding remarks

"Mirrored" unknowns' ordering

····							7	_					L					
Ш					jth	jth				<u>e</u>	판표	E = = = =	EEEE	333	E35;	E ⊒ E :	£∃≔∃	王臣團
h	×	×	×	×	×	•	· · ·	·	1 . 1. 1.	<u>er</u> 1	<u></u>	L_'	L _ · _ 4	! - - -		L_*	Ļ	
Ш	Ц								+ +	100		·		·	L .:	· · .	<u> </u>	
Ш							i		i iii		1.1	ith					íth	
h	×	×	×	×	×	•	· · ·	•	1111		·: • :	•	•	•	•	•	•	: - :- XX
Ш	н						+ +		i+		4 - 1				/			
Ш							I 1		1 1 11		i i						i	
h	×	×	×	×	×	•	ı † 1	· ·	1110	iii iii	-i - i	•	•	•	•	•	÷	i • i•iii
н	н						⊢ +	L	+ 1+	HI	-i - i				1		+	
Ш							I I	1	1 1 11	111	jth						i i	jth
h	×	×	×	×	×	•	· • ·	· ·	1.1.0.	nn.	• I • I	· ·		· ·	•	· ·	· ·	i • i * m
н	H	_					+ +		+ - ⊢l+		-							
Ш									i.i.ü		jth							jth
m	×	×	×	×	×	•		··	1 1 11	PG×	× 🗙	×	×	×	•	•		•••••
H	H	_							+ i+	Щ								
Ш							ι, Ι	ι.	1.1.0.								i	i ini
m	î	^	î î	l î	Ŷ	•	i i i	· ·	1111	NGN	××	×	×	×	·	•	i ·	
H	H	-					+ +	+	+ - + ++	HH	-						+	IH
Ш			ith 🖌				. I	ith	1.1.11			ith					ith	с т ш
m	î.	î	•	Î	î		1 ⁻ 1	•	1.1.0.	×¢×	××		×	×	•	· ·	ı •	(°(°∭
H	H	-							+ 1+	H	-					⊢	+	I – I-I II
Ê	×	×	×	×	×	L		· · ·	1 • 1• !*	××	××	×	×	×	•	· ·	· ·	I • I• PPP
圕	×	×	*	×	×	L = =			노도명	××	××	×	×	×	E 3 2 1	<u> </u>	I I:I I	[준 도 년 년
0.0	x	×	×	×	×	F = =	= = = :	c =•=	그 고 단地	00	<u> </u>	Ŷ	÷	Ŷ	⊨ ≓ = :	╘╧═╴	t =:= :	t主じ噛
	(a) 1 augus at us							(1) 2										
	(a) I symmetry								(D) 2 symmetries									

Preconditioning Poisson's equation

Concluding remarks

Discrete Laplace operator and mesh symmetries

Let L be the discrete Laplace operator arising from a mesh with s symmetries, and let us define the following change of $basis^7$:

$$\mathsf{P} = \frac{1}{\sqrt{2^s}} \begin{bmatrix} p \\ \bigotimes_{i=1}^p \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \end{bmatrix} \otimes \mathbb{I}_{n/2^s} \in \mathbb{R}^{n \times n}$$

⁷A. Alsalti-Baldellou et al. (2023). "Exploiting spatial symmetries for solving Poisson's equation" in *Journal of Computational Physics*.

Solving Poisson's equation

Preconditioning Poisson's equation

Concluding remarks

Discrete Laplace operator and mesh symmetries

Let L be the discrete Laplace operator arising from a mesh with s symmetries, and let us define the following change of $basis^7$:

$$\mathsf{P} = \frac{1}{\sqrt{2^s}} \begin{bmatrix} \sum_{i=1}^p \begin{pmatrix} 1 & 1\\ 1 & -1 \end{pmatrix} \end{bmatrix} \otimes \mathbb{I}_{n/2^s} \in \mathbb{R}^{n \times n}$$

Then, thanks to the "mirrored" ordering, P transforms L:

$$\mathsf{L} = \begin{pmatrix} \mathsf{L}_{1-1} & \dots & \mathsf{L}_{1-2^s} \\ \vdots & \ddots & \vdots \\ \mathsf{L}_{2^s-1} & \dots & \mathsf{L}_{2^s-2^s} \end{pmatrix} \in \mathbb{R}^{n \times n}$$

into 2^s decoupled subsystems:

$$\hat{\mathsf{L}} = \begin{pmatrix} \hat{\mathsf{L}}_1 & & \\ & \ddots & \\ & & \hat{\mathsf{L}}_{2^s} \end{pmatrix} \in \mathbb{R}^{n \times n}$$

⁷A. Alsalti-Baldellou et al. (2023). "Exploiting spatial symmetries for solving Poisson's equation" in *Journal of Computational Physics*.

Solving Poisson's equation

Preconditioning Poisson's equation

Concluding remarks

Discrete Laplace operator and mesh symmetries

Let L be the discrete Laplace operator arising from a mesh with s symmetries, and let us define the following change of $basis^7$:

$$\mathsf{P} = \frac{1}{\sqrt{2^s}} \begin{bmatrix} p \\ \bigotimes_{i=1}^p \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \end{bmatrix} \otimes \mathbb{I}_{n/2^s} \in \mathbb{R}^{n \times n}$$

Figure: 3D structured mesh exploiting s = 1 symmetries.

⁷A. Alsalti-Baldellou et al. (2023). "Exploiting spatial symmetries for solving Poisson's equation" in *Journal of Computational Physics*.

Solving Poisson's equation

Preconditioning Poisson's equation

Concluding remarks

Discrete Laplace operator and mesh symmetries

Let L be the discrete Laplace operator arising from a mesh with s symmetries, and let us define the following change of $basis^7$:

$$\mathsf{P} = \frac{1}{\sqrt{2^s}} \begin{bmatrix} p \\ \bigotimes_{i=1}^p \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \end{bmatrix} \otimes \mathbb{I}_{n/2^s} \in \mathbb{R}^{n \times n}$$

Figure: 3D structured mesh exploiting s = 2 symmetries.

⁷A. Alsalti-Baldellou et al. (2023). "Exploiting spatial symmetries for solving Poisson's equation" in *Journal of Computational Physics*.

Solving Poisson's equation

Preconditioning Poisson's equation

Concluding remarks

Discrete Laplace operator and mesh symmetries

Let L be the discrete Laplace operator arising from a mesh with s symmetries, and let us define the following change of $basis^7$:

$$\mathsf{P} = \frac{1}{\sqrt{2^s}} \begin{bmatrix} p \\ \bigotimes_{i=1}^p \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \end{bmatrix} \otimes \mathbb{I}_{n/2^s} \in \mathbb{R}^{n \times n}$$

Figure: 3D structured mesh exploiting s = 3 symmetries.

⁷A. Alsalti-Baldellou et al. (2023). "Exploiting spatial symmetries for solving Poisson's equation" in *Journal of Computational Physics*.

Solving Poisson's equation

Preconditioning Poisson's equation

Concluding remarks

Discrete Laplace operator and mesh symmetries

Let L be the discrete Laplace operator arising from a mesh with s symmetries, and let us define the following change of $basis^7$:

$$\mathsf{P} = \frac{1}{\sqrt{2^s}} \begin{bmatrix} \sum_{i=1}^p \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \end{bmatrix} \otimes \mathbb{I}_{n/2^s} \in \mathbb{R}^{n \times n}$$

In general, \hat{L} can be split as:

$$\hat{L} = \dots = \begin{pmatrix} L_{inn} & & \\ & \ddots & \\ & & L_{inn} \end{pmatrix} + \begin{pmatrix} L_{out}^{(1)} & & \\ & \ddots & \\ & & L_{out}^{(2^s)} \end{pmatrix}$$

⁷A. Alsalti-Baldellou et al. (2023). "Exploiting spatial symmetries for solving Poisson's equation" in *Journal of Computational Physics*.

Solving Poisson's equation

Preconditioning Poisson's equation

Concluding remarks

Discrete Laplace operator and mesh symmetries

Let L be the discrete Laplace operator arising from a mesh with s symmetries, and let us define the following change of $basis^7$:

$$\mathsf{P} = \frac{1}{\sqrt{2^s}} \begin{bmatrix} \sum_{i=1}^p \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \end{bmatrix} \otimes \mathbb{I}_{n/2^s} \in \mathbb{R}^{n \times n}$$

In general, \hat{L} can be split as:

$$\hat{L} = \dots = \begin{pmatrix} L_{inn} & & \\ & \ddots & \\ & & L_{inn} \end{pmatrix} + \begin{pmatrix} L_{out}^{(1)} & & \\ & \ddots & \\ & & L_{out}^{(2^s)} \end{pmatrix}$$

In particular, compact stencils only coupling adjacent nodes result in:

$$\hat{L}\mathbf{v} = \underbrace{(\mathbb{I}_{2^s} \otimes L_{inn}) \mathbf{v}}_{\substack{\text{Sparse matrix-matrix}\\ \text{product (SpMM)}}} + \underbrace{\operatorname{diag}(\mathbf{l}_{out}) \mathbf{v}}_{\substack{\text{Element-wise product}\\ \text{of vectors (axty)}}}$$

⁷A. Alsalti-Baldellou et al. (2023). "Exploiting spatial symmetries for solving Poisson's equation" in *Journal of Computational Physics*.

Solving Poisson's equation

Preconditioning Poisson's equation

Concluding remarks

Discrete Laplace operator and mesh symmetries

Let L be the discrete Laplace operator arising from a mesh with s symmetries, and let us define the following change of $basis^7$:

$$\mathsf{P} = \frac{1}{\sqrt{2^s}} \begin{bmatrix} \bigotimes_{i=1}^p \begin{pmatrix} 1 & 1\\ 1 & -1 \end{pmatrix} \end{bmatrix} \otimes \mathbb{I}_{n/2^s} \in \mathbb{R}^{n \times n}$$

Given $\mathbf{v} \in \mathbb{R}^n$, the products by $\hat{\mathsf{L}}$ can be accelerated by replacing:

$$SpMV: \begin{pmatrix} L_{inn} & & \\ & \ddots & \\ & & L_{inn} \end{pmatrix} \begin{pmatrix} \mathbf{v}_1 \\ \vdots \\ \mathbf{v}_{2^s} \end{pmatrix}$$

⁷A. Alsalti-Baldellou et al. (2023). "Exploiting spatial symmetries for solving Poisson's equation" in *Journal of Computational Physics*.

Solving Poisson's equation

Preconditioning Poisson's equation

Concluding remarks

Discrete Laplace operator and mesh symmetries

Let L be the discrete Laplace operator arising from a mesh with s symmetries, and let us define the following change of $basis^7$:

$$\mathsf{P} = \frac{1}{\sqrt{2^s}} \begin{bmatrix} \sum_{i=1}^p \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \end{bmatrix} \otimes \mathbb{I}_{n/2^s} \in \mathbb{R}^{n \times n}$$

Given $\mathbf{v} \in \mathbb{R}^n$, the products by $\hat{\mathsf{L}}$ can be accelerated by replacing:

$$\begin{array}{ccc} \text{SpMV:} & \begin{pmatrix} \mathsf{L}_{\mathsf{inn}} & & \\ & \ddots & \\ & & \mathsf{L}_{\mathsf{inn}} \end{pmatrix} \begin{pmatrix} \mathbf{v}_1 \\ \vdots \\ \mathbf{v}_{2^s} \end{pmatrix} \text{ with SpMM: } \mathsf{L}_{\mathsf{inn}} \left(\mathbf{v}_1 \dots \mathbf{v}_{2^s} \right) \end{array}$$

⁷A. Alsalti-Baldellou et al. (2023). "Exploiting spatial symmetries for solving Poisson's equation" in *Journal of Computational Physics*.

Solving Poisson's equation

Preconditioning Poisson's equation

Concluding remarks

Discrete Laplace operator and mesh symmetries

Let L be the discrete Laplace operator arising from a mesh with s symmetries, and let us define the following change of $basis^7$:

$$\mathsf{P} = \frac{1}{\sqrt{2^s}} \begin{bmatrix} \sum_{i=1}^p \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \end{bmatrix} \otimes \mathbb{I}_{n/2^s} \in \mathbb{R}^{n \times n}$$

Given $\mathbf{v} \in \mathbb{R}^n$, the products by $\hat{\mathsf{L}}$ can be accelerated by replacing:

$$\begin{array}{ccc} \text{SpMV:} & \begin{pmatrix} \mathsf{L}_{\mathsf{inn}} & & \\ & \ddots & \\ & & \mathsf{L}_{\mathsf{inn}} \end{pmatrix} \begin{pmatrix} \mathbf{v}_1 \\ \vdots \\ \mathbf{v}_{2^s} \end{pmatrix} \text{ with SpMM: } \mathsf{L}_{\mathsf{inn}} \left(\mathbf{v}_1 \dots \mathbf{v}_{2^s} \right) \end{array}$$

Hence:

- \bullet Since SpMV and SpMM are memory-bound kernels, SpMM's acceleration equals I_{SpMM}/I_{SpMV}
- SpMM reads L_{inn} once, whereas SpMV reads $L_{inn} 2^s$ times.

⁷A. Alsalti-Baldellou et al. (2023). "Exploiting spatial symmetries for solving Poisson's equation" in *Journal of Computational Physics*.

Solving Poisson's equation

Preconditioning Poisson's equation

Concluding remarks

Resulting algorithm

Algorithm Poisson solver exploiting s mesh symmetries

- **1** Transform forward the RHS: $\hat{b} = Pb$
- 2 Decoupled solution of the 2^s subsystems: $\hat{L}\hat{x} = \hat{b}$
- **③** Transform backward the solution: $x = P^{-1}\hat{x}$

where:

$$\mathsf{P} = \frac{1}{\sqrt{2^s}} \begin{bmatrix} \sum_{i=1}^p \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \end{bmatrix} \otimes \mathbb{I}_{n/2^s}, \ \ \mathsf{P}^{-1} = \mathsf{P},$$

and Step 2 corresponds to inverting:

$$\begin{pmatrix} \hat{\mathsf{L}}_1 & & \\ & \ddots & \\ & & \hat{\mathsf{L}}_{2^s} \end{pmatrix} \begin{pmatrix} \hat{\mathbf{x}}_1 \\ \vdots \\ \hat{\mathbf{x}}_{2^s} \end{pmatrix} = \begin{pmatrix} \hat{\mathbf{b}}_1 \\ \vdots \\ \hat{\mathbf{b}}_{2^s} \end{pmatrix}$$

Solving Poisson's equation ○○○○○● Concluding remarks

Summary:

• The overhead of the two (communication-free) transforms is negligible.

Solving Poisson's equation ○○○○○● Preconditioning Poisson's equation

Concluding remarks 000

Summary

Summary:

- The overhead of the two (communication-free) transforms is negligible.
- Exploiting symmetries reduces the setup costs of the matrices.
- Exploiting symmetries reduces the memory footprint of the matrices.
- Exploiting symmetries reduces the time complexity of the solvers.

Solving Poisson's equation

Preconditioning Poisson's equation

Concluding remarks

Summary

Summary:

- The overhead of the two (communication-free) transforms is negligible.
- Exploiting symmetries reduces the setup costs of the matrices.
- Exploiting symmetries reduces the memory footprint of the matrices.
- Exploiting symmetries reduces the time complexity of the solvers.
- SpMM naturally applies to all operators of the form $\hat{A} = \mathbb{I}_{2^s} \otimes A$.
- SpMM increases considerably the I of *all* the matrix multiplications.

Solving Poisson's equation ○○○○○● Preconditioning Poisson's equation

Concluding remarks 000

Summary

Summary:

- The overhead of the two (communication-free) transforms is negligible.
- Exploiting symmetries reduces the setup costs of the matrices.
- Exploiting symmetries reduces the memory footprint of the matrices.
- Exploiting symmetries reduces the time complexity of the solvers.
- SpMM naturally applies to all operators of the form $\hat{A} = \mathbb{I}_{2^s} \otimes A$.
- SpMM increases considerably the I of *all* the matrix multiplications.

Still missing ...

Since all the subsystems are (slightly) different, so are their preconditioners, and SpMM cannot be applied with them!

Solving Poisson's equation

Preconditioning Poisson's equation

Concluding remarks

Preconditioning Poisson's equation

Solving Poisson's equation

Preconditioning Poisson's equation

Concluding remarks 000

Right, left and split preconditioning

Let $A \in \mathbb{R}^n$ and $x, b \in \mathbb{R}^n$. Then, given the linear system Ax = b, we can consider the following preconditioning techniques:

Left preconditioning

Given the preconditioner $M^{-1} \simeq A^{-1}$, the left-preconditioned system is:

 $M^{-1}Ax = M^{-1}b$

Solving Poisson's equation

Preconditioning Poisson's equation

Concluding remarks 000

Right, left and split preconditioning

Let $A \in \mathbb{R}^n$ and $x, b \in \mathbb{R}^n$. Then, given the linear system Ax = b, we can consider the following preconditioning techniques:

Left preconditioning

Given the preconditioner $M^{-1} \simeq A^{-1}$, the left-preconditioned system is:

$$M^{-1}Ax = M^{-1}b$$

Right preconditioning

Given the preconditioner $M^{-1} \simeq A^{-1}$, the right-preconditioned system is:

$$AM^{-1}y = b$$
, where $Mx = y$

Solving Poisson's equation

Preconditioning Poisson's equation

Concluding remarks 000

Right, left and split preconditioning

Let $A \in \mathbb{R}^n$ and $x, b \in \mathbb{R}^n$. Then, given the linear system Ax = b, we can consider the following preconditioning techniques:

Left preconditioning

Given the preconditioner $M^{-1} \simeq A^{-1}$, the left-preconditioned system is:

$$M^{-1}Ax = M^{-1}b$$

Right preconditioning

Given the preconditioner $M^{-1} \simeq A^{-1}$, the right-preconditioned system is:

$$AM^{-1}y = b$$
, where $Mx = y$

Split preconditioning

Given the preconditioner $M^{-1}=M_1^{-1}M_2^{-1}\simeq A^{-1},$ the split-preconditioned system is:

$$M_1^{-1}AM_2^{-1}y = M_1^{-1}b$$
, where $M_2x = y$

Solving Poisson's equation

Preconditioning Poisson's equation

Concluding remarks 000

Right, left and split preconditioning

Let $A \in \mathbb{R}^n$ and $x, b \in \mathbb{R}^n$. Then, given the linear system Ax = b, we can consider the following preconditioning techniques:

Left preconditioning

Given the preconditioner $M^{-1} \simeq A^{-1}$, the left-preconditioned system is:

$$M^{-1}Ax = M^{-1}b$$

Right preconditioning

Given the preconditioner $M^{-1} \simeq A^{-1}$, the right-preconditioned system is:

$$AM^{-1}y = b$$
, where $Mx = y$

Split preconditioning

Given the preconditioner $M^{-1}=M_1^{-1}M_2^{-1}\simeq A^{-1},$ the split-preconditioned system is:

$$M_1^{-1}AM_2^{-1}y = M_1^{-1}b$$
, where $M_2x = y$

Thus, preconditioning reduces to operations of the type: $y = M^{-1}x$

Solving Poisson's equation

Preconditioning Poisson's equation

Concluding remarks

"Full-rank" corrections – 1

"Full-rank" corrections⁸

Given two SPD matrices A and B, let the Cholesky decomposition of B be $B = LL^t$. Then, given $Y := (\mathbb{I} - L^{-1}AL^{-t})$, the following holds:

$$A^{-1} = L^{-t}L^{-1} + W\Theta W^t,$$

where $Y = U\Sigma U^t$ is the eigendecomposition of Y, and:

$$\Theta \coloneqq \Sigma \left(\mathbb{I} - \Sigma \right)^{-1} \text{ and } W \coloneqq L^{-t} U.$$

⁸R. Li and Y. Saad (2013). "Divide and conquer low-rank preconditioners for symmetric matrices" in *SIAM Journal on Scientific Computing*.

Solving Poisson's equation

Preconditioning Poisson's equation

Concluding remarks

"Full-rank" corrections – 1

"Full-rank" corrections⁸

Given two SPD matrices A and B, let the Cholesky decomposition of B be $B = LL^t$. Then, given $Y := (\mathbb{I} - L^{-1}AL^{-t})$, the following holds:

$$A^{-1} = L^{-t}L^{-1} + W\Theta W^t,$$

where $Y = U\Sigma U^t$ is the eigendecomposition of Y, and:

$$\Theta \coloneqq \Sigma \left(\mathbb{I} - \Sigma \right)^{-1} \text{ and } W \coloneqq L^{-t} U.$$

Taking a closer look to the spectral decomposition of Y, we have:

$$Y = U\Sigma U^t$$
, where $\Sigma = \begin{pmatrix} \lambda_1 & 0 \\ & \ddots & \\ 0 & & \lambda_n \end{pmatrix}$

⁸R. Li and Y. Saad (2013). "Divide and conquer low-rank preconditioners for symmetric matrices" in *SIAM Journal on Scientific Computing*.

Solving Poisson's equation

 $\begin{array}{c} \mbox{Preconditioning Poisson's equation} \\ \mbox{OO} \bullet \mbox{OO} \circ \mb$

Concluding remarks

"Full-rank" corrections - 2

⁸R. Li and Y. Saad (2013). "Divide and conquer low-rank preconditioners for symmetric matrices" in *SIAM Journal on Scientific Computing*.

Solving Poisson's equation

Preconditioning Poisson's equation

Concluding remarks

Low-rank corrections

Hence, whenever Y's spectrum decays rapidly we can consider truncated eigendecompositions accounting for its k most relevant eigenpairs:

 $Y = U\Sigma U^t \simeq U_k \Sigma_k U_k^t \in \mathbb{R}^{n \times n}$

where $\Sigma_k \in \mathbb{R}^{k \times k}$ and $U_k \in \mathbb{R}^{n \times k}$.

Solving Poisson's equation

Preconditioning Poisson's equation

Concluding remarks 000

Low-rank corrections

Hence, whenever Y's spectrum decays rapidly we can consider truncated eigendecompositions accounting for its k most relevant eigenpairs:

 $Y = U\Sigma U^t \simeq U_k \Sigma_k U_k^t \in \mathbb{R}^{n \times n}$

where $\Sigma_k \in \mathbb{R}^{k \times k}$ and $U_k \in \mathbb{R}^{n \times k}$.

Low-rank correction⁹

Given two SPD matrices A and B, let the Cholesky decomposition of B be $B = LL^t$. Then, given $Y \coloneqq (\mathbb{I} - L^{-1}AL^{-t})$, the following holds:

$$A^{-1} \simeq L^{-t} L^{-1} + \mathbf{W}_{\mathbf{k}} \Theta_{\mathbf{k}} \mathbf{W}_{\mathbf{k}}^{\mathbf{t}}$$

where $\mathbf{Y}\simeq \mathbf{U_k}\boldsymbol{\Sigma_k}\mathbf{U_k^t}$ and:

$$\Theta_{\mathbf{k}}\coloneqq \boldsymbol{\Sigma}_{\mathbf{k}}\left(\mathbb{I}-\boldsymbol{\Sigma}_{\mathbf{k}}\right)^{-1} \text{ and } \mathbf{W}_{\mathbf{k}}\coloneqq \mathbf{L}^{-\mathbf{t}}\mathbf{U}_{\mathbf{k}}.$$

⁹A. Franceschini et al. (2018). "A robust multilevel approximate inverse preconditioner for symmetric positive definite matrices" in *SIAM Journal on Matrix Analysis and Applications*.

Solving Poisson's equation 000000

Preconditioning Poisson's equation

Concluding remarks

Low-rank corrected FSAI

As we saw, s symmetric directions allow decomposing Poisson's equation, Lx = b, into 2^s decoupled subsystems with the following structure:

$$\begin{pmatrix} \mathsf{L}_{\mathsf{inn}} + \mathsf{L}_{\mathsf{out}}^{(1)} & 0 \\ & \ddots & \\ 0 & & \mathsf{L}_{\mathsf{inn}} + \mathsf{L}_{\mathsf{out}}^{(2^s)} \end{pmatrix} \begin{pmatrix} \hat{\mathbf{x}}_1 \\ \vdots \\ \hat{\mathbf{x}}_{2^s} \end{pmatrix} = \begin{pmatrix} \hat{\mathbf{b}}_1 \\ \vdots \\ \hat{\mathbf{b}}_{2^s} \end{pmatrix},$$

and such that:

$$\mathrm{rank}(\mathsf{L}_{\mathsf{out}}^{(i)}) = n_{\mathsf{ifc}} \ll \mathrm{rank}(\mathsf{L}_{\mathsf{inn}}) = n$$

Solving Poisson's equation 000000

Preconditioning Poisson's equation

Concluding remarks

Low-rank corrected FSAI

As we saw, s symmetric directions allow decomposing Poisson's equation, Lx = b, into 2^s decoupled subsystems with the following structure:

$$\begin{pmatrix} \mathsf{L}_{\mathsf{inn}} + \mathsf{L}_{\mathsf{out}}^{(1)} & 0 \\ & \ddots & \\ 0 & & \mathsf{L}_{\mathsf{inn}} + \mathsf{L}_{\mathsf{out}}^{(2^s)} \end{pmatrix} \begin{pmatrix} \hat{\mathbf{x}}_1 \\ \vdots \\ \hat{\mathbf{x}}_{2^s} \end{pmatrix} = \begin{pmatrix} \hat{\mathbf{b}}_1 \\ \vdots \\ \hat{\mathbf{b}}_{2^s} \end{pmatrix},$$

and such that:

$$\mathrm{rank}(\mathsf{L}_{\mathsf{out}}^{(i)}) = n_{\mathsf{ifc}} \ll \mathrm{rank}(\mathsf{L}_{\mathsf{inn}}) = n$$

Eureka!

Let M_{inn} be a preconditioner for L_{inn} , *i.e.*, $M_{\text{inn}}^{-1} \simeq L_{\text{inn}}^{-1}$. Then, we can seek low-rank corrections for M_{inn} such that:

$$\hat{\mathsf{L}}^{-1} \simeq \mathbb{I}_{2^{s}} \otimes M_{\mathsf{inn}} + \begin{pmatrix} W_{k}^{(1)} \Theta_{k}^{(1)} W_{k}^{(1)^{t}} & 0 \\ & \ddots & \\ 0 & & W_{k}^{(2^{s})} \Theta_{k}^{(2^{s})} W_{k}^{(2^{s})^{t}} \end{pmatrix}$$

Solving Poisson's equation 000000

Preconditioning Poisson's equation

Concluding remarks

Low-rank corrected FSAI

As we saw, s symmetric directions allow decomposing Poisson's equation, Lx = b, into 2^s decoupled subsystems with the following structure:

$$\begin{pmatrix} \mathsf{L}_{\mathsf{inn}} + \mathsf{L}_{\mathsf{out}}^{(1)} & 0 \\ & \ddots & \\ 0 & & \mathsf{L}_{\mathsf{inn}} + \mathsf{L}_{\mathsf{out}}^{(2^s)} \end{pmatrix} \begin{pmatrix} \hat{\mathbf{x}}_1 \\ \vdots \\ \hat{\mathbf{x}}_{2^s} \end{pmatrix} = \begin{pmatrix} \hat{\mathbf{b}}_1 \\ \vdots \\ \hat{\mathbf{b}}_{2^s} \end{pmatrix},$$

and such that:

$$\mathrm{rank}(\mathsf{L}_{\mathsf{out}}^{(i)}) = n_{\mathsf{ifc}} \ll \mathrm{rank}(\mathsf{L}_{\mathsf{inn}}) = n$$

Eureka!

Let M_{inn} be a preconditioner for L_{inn} , *i.e.*, $M_{\text{inn}}^{-1} \simeq L_{\text{inn}}^{-1}$. Then, we can seek low-rank corrections for M_{inn} such that:

$$\hat{\mathsf{L}}^{-1} \simeq \mathbb{I}_{2^{s}} \otimes M_{\mathsf{inn}} + \begin{pmatrix} W_{k}^{(1)} \Theta_{k}^{(1)} W_{k}^{(1)^{t}} & 0 \\ & \ddots & \\ 0 & & W_{k}^{(2^{s})} \Theta_{k}^{(2^{s})} W_{k}^{(2^{s})^{t}} \end{pmatrix}$$

As a result: lower setup costs, decoupled corrections and SpMM!

Solving Poisson's equation 000000

Preconditioning Poisson's equation

Concluding remarks

Low-rank corrected FSAI

As we saw, s symmetric directions allow decomposing Poisson's equation, Lx = b, into 2^s decoupled subsystems with the following structure:

$$\begin{pmatrix} \mathsf{L}_{\mathsf{inn}} + \mathsf{L}_{\mathsf{out}}^{(1)} & 0 \\ & \ddots & \\ 0 & & \mathsf{L}_{\mathsf{inn}} + \mathsf{L}_{\mathsf{out}}^{(2^s)} \end{pmatrix} \begin{pmatrix} \hat{\mathbf{x}}_1 \\ \vdots \\ \hat{\mathbf{x}}_{2^s} \end{pmatrix} = \begin{pmatrix} \hat{\mathbf{b}}_1 \\ \vdots \\ \hat{\mathbf{b}}_{2^s} \end{pmatrix},$$

and such that:

$$\mathrm{rank}(\mathsf{L}_{\mathsf{out}}^{(i)}) = n_{\mathsf{ifc}} \ll \mathrm{rank}(\mathsf{L}_{\mathsf{inn}}) = n$$

LRCFSAI(k): Low-rank corrected FSAI

Let the aFSAI¹⁰ of L_{inn} be $G_{inn}^t G_{inn} \simeq L_{inn}^{-1}$. For each subsystem $\hat{L}_i = L_{inn} + L_{out}^{(i)}$, let $Y \coloneqq (\mathbb{I} - G_{inn}\hat{L}_i G_{inn}^t)$. Then:

$$\hat{\mathsf{L}}_i^{-1} \simeq G_{\mathsf{inn}}^t G_{\mathsf{inn}} + W_k \Theta_k W_k^t,$$

where $Y \simeq U_k \Sigma_k U_k^t$ and $\Theta_k \coloneqq \Sigma_k (\mathbb{I} - \Sigma_k)^{-1}$ and $W_k \coloneqq L^{-t} U_k$.

¹⁰C. Janna and M. Ferronato (2011). "Adaptive pattern research for block FSAI preconditioning" in *SIAM Journal on Scientific Computing*.

Solving Poisson's equation

Preconditioning Poisson's equation

Concluding remarks

Low-rank corrected FSAI: residual convergence

Figure: Convergence of PCG+LRCFSAI(k) on a 32^3 mesh with s = 1 symmetries.

Solving Poisson's equation

Concluding remarks

Low-rank corrected FSAI: residual convergence

Figure: Convergence of PCG+LRCFSAI(k) on a 32^3 mesh with s = 2 symmetries.

Solving Poisson's equation

Concluding remarks

Low-rank corrected FSAI: residual convergence

Figure: Convergence of PCG+LRCFSAI(k) on a 32^3 mesh with s = 3 symmetries.

Solving Poisson's equation 000000

Preconditioning Poisson's equation

Concluding remarks

Low-rank corrected FSAI: eigensolvers' accuracy

DOF	k	$ 10^{-1}$	10^{-2}	10^{-3}	10^{-4}	10^{-5}	10^{-6}
16.8M	1	406	413	399	385	372	359
	2	454	431	369	320	327	327
	8	388	228	205	206	205	205
	16	357	184	169	161	160	160
134M	1	960	853	838	803	770	744
	2	927	881	842	663	665	664
	8	921	497	425	426	425	425
	16	898	405	348	333	328	327

Table: Influence of Lanczos tolerance on the PCG iterations.

Solving Poisson's equation

Concluding remarks

Low-rank corrected FSAI: time per iteration

Figure: Normalised time per PCG+LRCFSAI(k) iteration on MARCONI.

Solving Poisson's equation

Preconditioning Poisson's equation

Concluding remarks

Low-rank corrected FSAI: time per iteration

Figure: Normalised time per PCG+LRCFSAI(k) iteration on MARCONI.

Solving Poisson's equation

Preconditioning Poisson's equation

Concluding remarks

Low-rank corrected FSAI: time per iteration

Figure: Normalised time per PCG+LRCFSAI(k) iteration on MARCONI.

Solving Poisson's equation

Preconditioning Poisson's equation

Concluding remarks

Low-rank corrected FSAI: overview

Figure: Normalised time per PCG+LRCFSAI(k) iteration on MARCONI.

Figure: Normalised time per PCG+LRCFSAI(k) iteration on MARCONI.

Symmetries

3

0.06

0.04

0

Symmetries

3

In summary, LRCFSAI(k) enhances the standard FSAI in many aspects:

• LRCFSAI(k) has up to **2.6x lower memory requirements**.

200

100 0

2

0

2

Symmetries

Symmetries

Figure: Normalised time per PCG+LRCFSAI(k) iteration on MARCONI.

0.04

0

Symmetries

3

In summary, LRCFSAI(k) enhances the standard FSAI in many aspects:

• LRCFSAI(k) has up to 2.6x lower memory requirements.

0

2

Symmetries

0

• LRCFSAI(k) requires up to 5.7x fewer iterations

0.04

0

Symmetries

3

Symmetries

Figure: Normalised time per PCG+LRCFSAI(k) iteration on MARCONI.

In summary, LRCFSAI(k) enhances the standard FSAI in many aspects:

• LRCFSAI(k) has up to 2.6x lower memory requirements.

0

0

Symmetries

- LRCFSAI(k) requires up to 5.7x fewer iterations
- LRCFSAI(k) results in up to 4.4x overall speed-ups.

Solving Poisson's equation

Preconditioning Poisson's equation

Concluding remarks ●○○

Concluding remarks

Solving Poisson's equation

Preconditioning Poisson's equation

Concluding remarks ○●○

Summary:

• Low-rank corrections make FSAI compatible with SpMM.

Solving Poisson's equation

Preconditioning Poisson's equation

Concluding remarks ○●○

Conclusions

Summary:

- Low-rank corrections make FSAI compatible with SpMM.
- Need for a balance with higher-rank corrections: fewer vs slower iterations.

Solving Poisson's equation

Preconditioning Poisson's equation

Concluding remarks O●○

Conclusions

Summary:

- Low-rank corrections make FSAI compatible with SpMM.
- Need for a balance with higher-rank corrections: fewer vs slower iterations.
- LRCFSAI(k) reduces the setup costs of FSAI.
- LRCFSAI(k) reduces the memory footprint of FSAI.
- LRCFSAI(k) reduces the time-to-solution of FSAI.

Solving Poisson's equation

Preconditioning Poisson's equation

Concluding remarks O●○

Summary:

- Low-rank corrections make FSAI compatible with SpMM.
- Need for a balance with higher-rank corrections: fewer vs slower iterations.
- LRCFSAI(k) reduces the setup costs of FSAI.
- LRCFSAI(k) reduces the memory footprint of FSAI.
- LRCFSAI(k) reduces the time-to-solution of FSAI.

Ongoing work:

• Extend SpMM's use to AMG.

Solving Poisson's equation

Preconditioning Poisson's equation

Concluding remarks O●○

Summary:

- Low-rank corrections make FSAI compatible with SpMM.
- Need for a balance with higher-rank corrections: fewer vs slower iterations.
- LRCFSAI(k) reduces the setup costs of FSAI.
- LRCFSAI(k) reduces the memory footprint of FSAI.
- LRCFSAI(k) reduces the time-to-solution of FSAI.

Ongoing work:

- Extend SpMM's use to AMG.
- Extend SpMM's use to repeated geometries.

Solving Poisson's equation

Preconditioning Poisson's equation

Concluding remarks O●○

Summary:

- Low-rank corrections make FSAI compatible with SpMM.
- Need for a balance with higher-rank corrections: fewer vs slower iterations.
- LRCFSAI(k) reduces the setup costs of FSAI.
- LRCFSAI(k) reduces the memory footprint of FSAI.
- LRCFSAI(k) reduces the time-to-solution of FSAI.

Ongoing work:

- Extend SpMM's use to AMG.
- Extend SpMM's use to repeated geometries.
- Extend SpMM's use to structural mechanics.

Solving Poisson's equation

Preconditioning Poisson's equation

Concluding remarks

Thanks for your attention!