
A PURE VIRTUAL APPROACH FOR MANAGING PLATFORM
PORTABILITY ON HYBRID SUPERCOMPUTERS

Xavier ÁLVAREZ-FARRÉ1 , Andrey GOROBETS2 , Àdel ALSATI1 AND F. Xavier TRIAS1

In the 31st International Conference on Parallel Computational Fluid Dynamics (ParCFD2019)
May 14th, 2019, Antalya (Turkey)

1Heat and Mass Transfer Technological Center, Technical University of Catalonia (UPC)
2Keldysh Institute of Applied Mathematics, Russian Academy of Science (RAS)



Background



Research at CTTC Laboratory

The Heat and Mass Transfer Technological Center (CTTC) in Technical University of Cat-
alonia (UPC) has been working on CFD for more than 20 years. Our research activities
are focused on two main lines:

• Fundamental research on fluid dynamics and heat and mass transfer phenomena.
• Applied research on thermal and fluid dynamic optimization of thermal system and
equipment.

1/18



HPC at CTTC Laboratory

2/18



Emerging architectures

Continuous enhancement
in hardware technologies enables scientific computing to advance incessantly to reach
further aims. A ter hitting petascale speeds in 2008, several organisations and insti-
tutions began the well-known global race for exascale high-performance computing
(HPC).

Massively-parallel devices of various architectures are being incorporated into the newest
supercomputers, causing the hybridisation of HPC systems and making the design of
computing applications a rather complex problem. The kernels conforming the algo-
rithms must be compatible with distributed- and shared-memory SIMD and MIMD par-
allelism, and with stream processing (SP), which is a very restrictive parallel paradigm.

3/18



Emerging architectures

Continuous enhancement
in hardware technologies enables scientific computing to advance incessantly to reach
further aims. A ter hitting petascale speeds in 2008, several organisations and insti-
tutions began the well-known global race for exascale high-performance computing
(HPC).

Massively-parallel devices of various architectures are being incorporated into the newest
supercomputers, causing the hybridisation of HPC systems and making the design of
computing applications a rather complex problem. The kernels conforming the algo-
rithms must be compatible with distributed- and shared-memory SIMD and MIMD par-
allelism, and with stream processing (SP), which is a very restrictive parallel paradigm.

3/18



The future of scientific computing codes

¿Is it necessary to use the new hardware architectures?

• In our opinion, yes. New hardware is designed to overcome the power constraint
in the context of the exascale challenge.

¿Do the traditional implementation models facilitate code portability?

• In our opinion, no. Legacy codes were not designed portable simply because it
was not necessary before; these codes usually contain a large number of complex
kernels suitable for CPU architectures.

¿Do we need to change the way we look at scientific computing in general?

• In our opinion, yes. There is a huge amount of hardware architectures and it is
difficult to determine which are going to prevail. The scientific computing so tware
should be designed somehow so that computing kernels can operate indepen-
dently.

4/18



The future of scientific computing codes

¿Is it necessary to use the new hardware architectures?

• In our opinion, yes. New hardware is designed to overcome the power constraint
in the context of the exascale challenge.

¿Do the traditional implementation models facilitate code portability?

• In our opinion, no. Legacy codes were not designed portable simply because it
was not necessary before; these codes usually contain a large number of complex
kernels suitable for CPU architectures.

¿Do we need to change the way we look at scientific computing in general?

• In our opinion, yes. There is a huge amount of hardware architectures and it is
difficult to determine which are going to prevail. The scientific computing so tware
should be designed somehow so that computing kernels can operate indepen-
dently.

4/18



The future of scientific computing codes

¿Is it necessary to use the new hardware architectures?

• In our opinion, yes. New hardware is designed to overcome the power constraint
in the context of the exascale challenge.

¿Do the traditional implementation models facilitate code portability?

• In our opinion, no. Legacy codes were not designed portable simply because it
was not necessary before; these codes usually contain a large number of complex
kernels suitable for CPU architectures.

¿Do we need to change the way we look at scientific computing in general?

• In our opinion, yes. There is a huge amount of hardware architectures and it is
difficult to determine which are going to prevail. The scientific computing so tware
should be designed somehow so that computing kernels can operate indepen-
dently.

4/18



The algebra-based approach

Algebra-based implementations only rely on a reduced number of universal algebraic kernels and data 

structures, allowing the use of standard optimised libraries and, therefore, providing portability. As a 

counterpart, the formulation of the numerical method becomes more complex and could even lead to an 

increase in the number of operations.

Stencil-based

Algebra-based

Traditionally, the stencil-based implementations are used by the scientific computing community. These 

implementations arise straightforward from the formulation of the numerical method. However, they re-

quire specific stencil sweeps and data structures for each numerical method.

5/18



The algebra-based approach

Following an algebra-based approach, we replace the traditional stencil data structures
and sweeps by algebraic data structures and kernels1 . For instance, the algebra-based,
finite-volume discretisation of NS and continuity equations on an arbitrary collocated
mesh can be written as2

∇ · u = 0, ∂tu + (u · ∇)u −
1

Re
∆u +∇p = 0,

Mus = 0c, Ωdtuc + MUsuc + Duc − MTpc = 0c.

1. The discrete variables are stored in vectors and the discrete operators in sparse
matrices.

2. The numerical method results fully integrated into the data structures somehow
so that computing kernels can operate independently.

3. The discrete operators can be built directly from the inherent incidence matrices
that define the mesh mimicking the properties of the continuum operators.

1Álvarez-Farré et al., HPC2–A fully-portable, algebra-based framework for heterogeneous computing. Application to CFD, Computers and
Fluids, 173, 285–292, 2018.
2Trias et al., Symmetry-preserving discretization of Navier-Stokes equations on collocated unstructured grids, J.Comp.Phys., 258, 246-267,
2014.

6/18



The algebra-based approach

Following an algebra-based approach, we replace the traditional stencil data structures
and sweeps by algebraic data structures and kernels1 . For instance, the algebra-based,
finite-volume discretisation of NS and continuity equations on an arbitrary collocated
mesh can be written as2

∇ · u = 0, ∂tu + (u · ∇)u −
1

Re
∆u +∇p = 0,

Mus = 0c, Ωdtuc + MUsuc + Duc − MTpc = 0c.

1. The discrete variables are stored in vectors and the discrete operators in sparse
matrices.

2. The numerical method results fully integrated into the data structures somehow
so that computing kernels can operate independently.

3. The discrete operators can be built directly from the inherent incidence matrices
that define the mesh mimicking the properties of the continuum operators.

1Álvarez-Farré et al., HPC2–A fully-portable, algebra-based framework for heterogeneous computing. Application to CFD, Computers and
Fluids, 173, 285–292, 2018.
2Trias et al., Symmetry-preserving discretization of Navier-Stokes equations on collocated unstructured grids, J.Comp.Phys., 258, 246-267,
2014.

6/18



The algebra-based approach

Following an algebra-based approach, we replace the traditional stencil data structures
and sweeps by algebraic data structures and kernels1 . For instance, the algebra-based,
finite-volume discretisation of NS and continuity equations on an arbitrary collocated
mesh can be written as2

∇ · u = 0, ∂tu + (u · ∇)u −
1

Re
∆u +∇p = 0,

Mus = 0c, Ωdtuc + MUsuc + Duc − MTpc = 0c.

1. The discrete variables are stored in vectors and the discrete operators in sparse
matrices.

2. The numerical method results fully integrated into the data structures somehow
so that computing kernels can operate independently.

3. The discrete operators can be built directly from the inherent incidence matrices
that define the mesh mimicking the properties of the continuum operators.

1Álvarez-Farré et al., HPC2–A fully-portable, algebra-based framework for heterogeneous computing. Application to CFD, Computers and
Fluids, 173, 285–292, 2018.
2Trias et al., Symmetry-preserving discretization of Navier-Stokes equations on collocated unstructured grids, J.Comp.Phys., 258, 246-267,
2014.

6/18



The algebra-based approach

Following an algebra-based approach, we replace the traditional stencil data structures
and sweeps by algebraic data structures and kernels1 . For instance, the algebra-based,
finite-volume discretisation of NS and continuity equations on an arbitrary collocated
mesh can be written as2

∇ · u = 0, ∂tu + (u · ∇)u −
1

Re
∆u +∇p = 0,

Mus = 0c, Ωdtuc + MUsuc + Duc − MTpc = 0c.

1. The discrete variables are stored in vectors and the discrete operators in sparse
matrices.

2. The numerical method results fully integrated into the data structures somehow
so that computing kernels can operate independently.

3. The discrete operators can be built directly from the inherent incidence matrices
that define the mesh mimicking the properties of the continuum operators.

1Álvarez-Farré et al., HPC2–A fully-portable, algebra-based framework for heterogeneous computing. Application to CFD, Computers and
Fluids, 173, 285–292, 2018.
2Trias et al., Symmetry-preserving discretization of Navier-Stokes equations on collocated unstructured grids, J.Comp.Phys., 258, 246-267,
2014.

6/18



The HPC2 framework



The HPC2 framework

The HPC2 (Heterogeneous Portable Code for HPC) is a fully-portable, algebra-based
framework with many potential applications in the fields of computational physics and
mathematics. Its algebraic approach combinedwith amultilevel MPI + OpenMP +OpenCL
+ CUDA parallelisation naturally provides modularity and portability.

t=2.0 t=2.5 t=3.0

t=1.5t=1.0t=0.5

7/18



The HPC2 framework

The HPC2 (Heterogeneous Portable Code for HPC) is a fully-portable, algebra-based
framework with many potential applications in the fields of computational physics and
mathematics. Its algebraic approach combinedwith amultilevel MPI + OpenMP +OpenCL
+ CUDA parallelisation naturally provides modularity and portability.

t=2.0 t=2.5 t=3.0

t=1.5t=1.0t=0.5

7/18



The HPC2 framework

The HPC2 (Heterogeneous Portable Code for HPC) is a fully-portable, algebra-based
framework with many potential applications in the fields of computational physics and
mathematics. Its algebraic approach combinedwith amultilevel MPI + OpenMP +OpenCL
+ CUDA parallelisation naturally provides modularity and portability.

Using our algebra-based framework, a numerical algorithm relies on a few computing
kernels, grouped in the following three types of algebraic operations:

• spmv: sparse matrix-vector operations.
• nary: n-ary vector operations require n input vectors and return an output vector.
• sred: reduction operations require n input vectors and return a scalar value.

Besides, having a reduced set of simple kernels, the arithmetic intensity of an algo-
rithm3 can be estimated easily and thus its relative performance.

Kernel Work Read Write AI
spmv 13N 64N 8N 13/72
axpy N 8N 8N 1/16
sdot 2N 16N 8 1/8

3Álvarez-Farré et al., HPC2–A fully-portable, algebra-based framework for heterogeneous computing. Application to CFD, Computers and
Fluids, 173, 285–292, 2018.

8/18



The HPC2 pure-virtual core

The HPC2 is organised as follows: vector, matrix and unit are pure virtual classes;
derived classesmay be developed for OpenMP, OpenCL, CUDA, etc. The handlers VECTOR,
MATRIX and NODE may contain several instances of virtual objects.

Core-Block

9/18



The HPC2 pure-virtual core

The HPC2 is organised as follows: vector, matrix and unit are pure virtual classes;
derived classesmay be developed for OpenMP, OpenCL, CUDA, etc. The handlers VECTOR,
MATRIX and NODE may contain several instances of virtual objects.

Core-Block

vector matrix

9/18



The HPC2 pure-virtual core

The HPC2 is organised as follows: vector, matrix and unit are pure virtual classes;
derived classesmay be developed for OpenMP, OpenCL, CUDA, etc. The handlers VECTOR,
MATRIX and NODE may contain several instances of virtual objects.

Core-Block

vector matrix

unit

9/18



The HPC2 pure-virtual core

The HPC2 is organised as follows: vector, matrix and unit are pure virtual classes;
derived classesmay be developed for OpenMP, OpenCL, CUDA, etc. The handlers VECTOR,
MATRIX and NODE may contain several instances of virtual objects.

Core-Block

vector matrix

unit

MATRIXVECTOR

9/18



The HPC2 pure-virtual core

The HPC2 is organised as follows: vector, matrix and unit are pure virtual classes;
derived classesmay be developed for OpenMP, OpenCL, CUDA, etc. The handlers VECTOR,
MATRIX and NODE may contain several instances of virtual objects.

Core-Block

vector matrix

unit

MATRIXVECTOR

NODE

9/18



First-level decomposition, distributed-memory parallelisation

The first-level domain decomposition distributes the workload among the computing
nodes. Subdomain elements are classified into inner and interface categories. Conse-
quently, the adjacent elements from other subdomains form a halo.

Inner HaloInterface

Computational domain Subdomain 1 Subdomain 2

10/18



Second-level decomposition, intra-node parallelisation

The second-level domain decomposition distributes the workload of each MPI process
among its computing hardware, namely host and devices. The interface and halo ele-
ments are further classified as external and internal.

Host

Host

D1

D2D1

HostHost

D1

D2

D1

Subdomain 1 Subdomain 2 Subdomain 1 Subdomain 2

Inner Exterior Halo Exterior Interface Interior Interface Interior Halo

Second-level decomposition reduces the volume of the expensive device-host-MPI-
host-device communications several times!

11/18



Second-level decomposition, intra-node parallelisation

The second-level domain decomposition distributes the workload of each MPI process
among its computing hardware, namely host and devices. The interface and halo ele-
ments are further classified as external and internal.

Host

Host

D1

D2D1

HostHost

D1

D2

D1

Subdomain 1 Subdomain 2 Subdomain 1 Subdomain 2

Inner Exterior Halo Exterior Interface Interior Interface Interior Halo

Second-level decomposition reduces the volume of the expensive device-host-MPI-
host-device communications several times!

11/18



Multithreaded overlap strategies

The strategies for an efficient heterogeneous execution of large-scale simulations on
hybrid supercomputers that are part of the HPC2 core are shown in the flowchart below:

Simple Overlap Double Overlap

MPI

OpenMP nested [th
d
]OpenMP nested [th

h
]

OpenMP nested [th
d
]OpenMP nested [th

h
]

OpenMP parallel [2]

barrier

INN

IFC

INN INN

D2H D2H

INN INN

D2H D2H

IFC IFC

H2D H2D

MPI

OpenMP nested [th
d
]OpenMP nested [th

h
]

OpenMP nested [th
d
]OpenMP nested [th

h
]

OpenMP parallel [3]

barrier

INN

IFC

H2D H2D

IFC IFC

12/18



Performance analysis



Single-node, roofline study

The roofline model is an intuitive performance analysis model used to estimate the
maximum performance of a given computing kernel depending on the actual hardware
specifications: the memory bandwidth, π, and the peak performance, β:

Rk = min(π, β · AIk).

0.25

1

4

16

64

256

1024

4096

1/32 1/16 1/8 1/4 1/2 1 2 4 8 16 32 64 128

G
F

L
O

P
s

Arithmetic intensity

Nvidia V100

unry

bnry

sred

spmv

13/18



Single-node, heterogeneous performance study

The heterogeneous performance study shows an increase of 32% compared to GPU-only
mode, which corresponds to a 98% of heterogeneous efficiency if compared to the sum
of the performance of the CPU-only and the GPU-only modes.

 0

 5

 10

 15

 20

 25

 30

E5 2697v3 Tesla K40 Heterogeneous

G
FL

O
P/

s

14/18



Multi-node, heterogeneous performance study

The strong scalability study (ran on nodes equipped with an Intel E5-2697v3 and a NVIDIA
Tesla K40M) shows that the simple overlap strategy improves the performance by hiding
the communications. The scalability decays faster in the heterogeneous mode because
the computational load per GPU is smaller and the CPU is loaded with computations
which may interfere with MPI library routines, reducing the overlapping operational
range.

0

100

200

300

400

500

5 10 15 20 25 30

G
FL

O
P/

s

Number of Nodes

10M Heterogeneous

10M GPU, overlap

10M GPU, synchronous

5

10

15

20

25

30

5 10 15 20 25 30

St
ro

ng
 S

ca
lin

g

Number of Nodes

Linear Speedup

10M Heterogeneous

10M GPU, overlap

10M GPU, synchronous

15/18



Conclusions



Design of modular frameworks

Making an effort to
design modular frameworks composed of a reduced number of independent and well-
defined code blocks is worth it:

• On the one hand, this allows researchers to develop different code blocks avoid-
ing interferences, reduces the generation and propagation of errors and facilitates
debugging. The progress of a modular code may be accumulative.

• On the other hand, modular applications are user-friendly and more comfortable
for porting to new architectures (the fewer the kernels of an application, the easier
it is to provide portability). Furthermore, if the majority of kernels represent lin-
ear algebra operations, then standard optimised libraries (e.g. ATLAS, clBLAST) or
specific in-house implementations can be used and easily switched.

16/18



Design of modular frameworks

Making an effort to
design modular frameworks composed of a reduced number of independent and well-
defined code blocks is worth it:

• On the one hand, this allows researchers to develop different code blocks avoid-
ing interferences, reduces the generation and propagation of errors and facilitates
debugging. The progress of a modular code may be accumulative.

• On the other hand, modular applications are user-friendly and more comfortable
for porting to new architectures (the fewer the kernels of an application, the easier
it is to provide portability). Furthermore, if the majority of kernels represent lin-
ear algebra operations, then standard optimised libraries (e.g. ATLAS, clBLAST) or
specific in-house implementations can be used and easily switched.

16/18



Design of modular frameworks

Making an effort to
design modular frameworks composed of a reduced number of independent and well-
defined code blocks is worth it:

• On the one hand, this allows researchers to develop different code blocks avoid-
ing interferences, reduces the generation and propagation of errors and facilitates
debugging. The progress of a modular code may be accumulative.

• On the other hand, modular applications are user-friendly and more comfortable
for porting to new architectures (the fewer the kernels of an application, the easier
it is to provide portability). Furthermore, if the majority of kernels represent lin-
ear algebra operations, then standard optimised libraries (e.g. ATLAS, clBLAST) or
specific in-house implementations can be used and easily switched.

16/18



The algebra-based approach

The algebra-based implementation introduces an interesting discussion about its ad-
vantages and disadvantages.

PROS

• It is a flexible, elegant approach in which algorithms can be represented as a com-
bination of a few algebraic operations.

• It allows for a flawless discrete mimicking of the continuum operators. In particular,
it allows for the exact conservation of important secondary properties,

• It relies on a reduced set of computing kernels and guarantees that the compu-
tational implementation is completely independent of the numerical method and
the mathematical model. Therefore it naturally provides portability.

CONS

• The use of several kernels may result in many intermediate in/out datamovements;
this reduces the arithmetic intensity and may be a huge disadvantage for memory
bounded applications.

• It also requires a larger use of data since the numerical method is completely
integrated into data structures.

• The implementation of complex boundary conditions is challenging. Are the bound-
ary conditions an operator property or variable one?

17/18



The algebra-based approach

The algebra-based implementation introduces an interesting discussion about its ad-
vantages and disadvantages.

PROS

• It is a flexible, elegant approach in which algorithms can be represented as a com-
bination of a few algebraic operations.

• It allows for a flawless discrete mimicking of the continuum operators. In particular,
it allows for the exact conservation of important secondary properties,

• It relies on a reduced set of computing kernels and guarantees that the compu-
tational implementation is completely independent of the numerical method and
the mathematical model. Therefore it naturally provides portability.

CONS

• The use of several kernels may result in many intermediate in/out datamovements;
this reduces the arithmetic intensity and may be a huge disadvantage for memory
bounded applications.

• It also requires a larger use of data since the numerical method is completely
integrated into data structures.

• The implementation of complex boundary conditions is challenging. Are the bound-
ary conditions an operator property or variable one?

17/18



The algebra-based approach

The algebra-based implementation introduces an interesting discussion about its ad-
vantages and disadvantages.

PROS

• It is a flexible, elegant approach in which algorithms can be represented as a com-
bination of a few algebraic operations.

• It allows for a flawless discrete mimicking of the continuum operators. In particular,
it allows for the exact conservation of important secondary properties,

• It relies on a reduced set of computing kernels and guarantees that the compu-
tational implementation is completely independent of the numerical method and
the mathematical model. Therefore it naturally provides portability.

CONS

• The use of several kernels may result in many intermediate in/out datamovements;
this reduces the arithmetic intensity and may be a huge disadvantage for memory
bounded applications.

• It also requires a larger use of data since the numerical method is completely
integrated into data structures.

• The implementation of complex boundary conditions is challenging. Are the bound-
ary conditions an operator property or variable one?

17/18



The algebra-based approach

The algebra-based implementation introduces an interesting discussion about its ad-
vantages and disadvantages.

PROS

• It is a flexible, elegant approach in which algorithms can be represented as a com-
bination of a few algebraic operations.

• It allows for a flawless discrete mimicking of the continuum operators. In particular,
it allows for the exact conservation of important secondary properties,

• It relies on a reduced set of computing kernels and guarantees that the compu-
tational implementation is completely independent of the numerical method and
the mathematical model. Therefore it naturally provides portability.

CONS

• The use of several kernels may result in many intermediate in/out datamovements;
this reduces the arithmetic intensity and may be a huge disadvantage for memory
bounded applications.

• It also requires a larger use of data since the numerical method is completely
integrated into data structures.

• The implementation of complex boundary conditions is challenging. Are the bound-
ary conditions an operator property or variable one?

17/18



The algebra-based approach

The algebra-based implementation introduces an interesting discussion about its ad-
vantages and disadvantages.

PROS

• It is a flexible, elegant approach in which algorithms can be represented as a com-
bination of a few algebraic operations.

• It allows for a flawless discrete mimicking of the continuum operators. In particular,
it allows for the exact conservation of important secondary properties,

• It relies on a reduced set of computing kernels and guarantees that the compu-
tational implementation is completely independent of the numerical method and
the mathematical model. Therefore it naturally provides portability.

CONS

• The use of several kernels may result in many intermediate in/out datamovements;
this reduces the arithmetic intensity and may be a huge disadvantage for memory
bounded applications.

• It also requires a larger use of data since the numerical method is completely
integrated into data structures.

• The implementation of complex boundary conditions is challenging. Are the bound-
ary conditions an operator property or variable one?

17/18



The algebra-based approach

The algebra-based implementation introduces an interesting discussion about its ad-
vantages and disadvantages.

PROS

• It is a flexible, elegant approach in which algorithms can be represented as a com-
bination of a few algebraic operations.

• It allows for a flawless discrete mimicking of the continuum operators. In particular,
it allows for the exact conservation of important secondary properties,

• It relies on a reduced set of computing kernels and guarantees that the compu-
tational implementation is completely independent of the numerical method and
the mathematical model. Therefore it naturally provides portability.

CONS

• The use of several kernels may result in many intermediate in/out datamovements;
this reduces the arithmetic intensity and may be a huge disadvantage for memory
bounded applications.

• It also requires a larger use of data since the numerical method is completely
integrated into data structures.

• The implementation of complex boundary conditions is challenging. Are the bound-
ary conditions an operator property or variable one?

17/18



The algebra-based approach

The algebra-based implementation introduces an interesting discussion about its ad-
vantages and disadvantages.

PROS

• It is a flexible, elegant approach in which algorithms can be represented as a com-
bination of a few algebraic operations.

• It allows for a flawless discrete mimicking of the continuum operators. In particular,
it allows for the exact conservation of important secondary properties,

• It relies on a reduced set of computing kernels and guarantees that the compu-
tational implementation is completely independent of the numerical method and
the mathematical model. Therefore it naturally provides portability.

CONS

• The use of several kernels may result in many intermediate in/out datamovements;
this reduces the arithmetic intensity and may be a huge disadvantage for memory
bounded applications.

• It also requires a larger use of data since the numerical method is completely
integrated into data structures.

• The implementation of complex boundary conditions is challenging. Are the bound-
ary conditions an operator property or variable one?

17/18



Thank you for your attention

18/18


