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BACKGROUND
An algebraic approach for CFD simulations
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The Heat and Mass Transfer Technological Center
is a research group of the Technical University of Catalonia highly concerned about the
environmental sustainability. Specifically, researchers at the CTTC have been enrolled in both
fundamental and applied research, studying several phenomena: natural and forced convection,
multi-phase flow, aerodynamics, among many others.
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Since the beginning,
researchers of CTTC have developed and adapted CFD codes for the state-of-the art computer
resources.
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Since the beginning,
researchers of CTTC have developed and adapted CFD codes for the state-of-the art computer
resources.

Currently,
a fully-portable, algebra-based framework for heterogeneous computing is being developed.
Namely, the traditional stencil data structures and sweeps are replaced by algebraic data
structures and kernels, and the discrete operators and mesh functions are then stored as sparse
matrices and vectors, respectively.

3



4

In an algebraic approach,
the traditional stencil data structures and sweeps are replaced by algebraic data structures and
kernels1.

𝛻 · 𝑢 = 0, 𝑢 + 𝑢 · 𝛻 𝑢 −
1
𝑅𝑒 ∆𝑢 + 𝛻𝑝 = 0

𝐌𝐮𝐬 = 𝟎𝐜, 𝛀𝑑#𝐮𝐜 +𝐌𝐔𝐬𝐮𝐜 − 𝐃𝐮𝐜 −𝐌𝐓𝐩𝐜 = 𝟎𝐜

1 F. Xavier Trias et al. “Symmetry-preserving discre8za8on of Navier–Stokes equa8ons on collocated unstructured grids”, JCP 258 (2014), 246–267.
2 Álvarez-Farré et al., HPC2–A fully-portable, algebra-based framework for heterogeneous compu8ng. Applica8on to CFD, Computers and Fluids, 173, 
285–292, 2018.
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In an algebraic approach,
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𝐌𝐮𝐬 = 𝟎𝐜, 𝛀𝑑#𝐮𝐜 +𝐌𝐔𝐬𝐮𝐜 − 𝐃𝐮𝐜 −𝐌𝐓𝐩𝐜 = 𝟎𝐜

• The discrete operators and mesh functions are stored as sparse matrices and vectors, respectively
(i.e., the numerical method results fully integrated into the data).

• The algorithm for the DNS and LES of incompressible turbulent flows relies on a set of only three
algebraic operations: SpMV, axpy and dot2.

1 F. Xavier Trias et al. “Symmetry-preserving discre8za8on of Navier–Stokes equa8ons on collocated unstructured grids”, JCP 258 (2014), 246–267.
2 Álvarez-Farré et al., HPC2–A fully-portable, algebra-based framework for heterogeneous compu8ng. Applica8on to CFD, Computers and Fluids, 173, 
285–292, 2018.

SpMV axpy



Stencil-based method Algebra-based method
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Stencil-based method
Given a mesh,
specific stencil loops or kernels are designed to
compute quantities such as Gradient or
Divergence.

Algebra-based method
Given a mesh,
specific sparse matrices are built to represent
discrete operators such as Gradient or
Divergence.
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Stencil-based method
Given a mesh,
specific stencil loops or kernels are designed to
compute quantities such as Gradient or
Divergence.

Multiple computing kernels
are required to implement different numerical
methods.

Complex kernels
minimize intermediate calculations and help
to increase the arithmetic intensity.

Algebra-based method
Given a mesh,
specific sparse matrices are built to represent
discrete operators such as Gradient or
Divergence.

Unique computing kernels
are required to implement different numerical
methods.

Simple kernels
are reusable and exist in many optimized
libraries. Thus, an algebra-based framework is
naturally portable.
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IMPLEMENTATION
Hierarchical implementation of the HPC2 framework
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High-performance computing systems
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multiple nodes interconnected via
high-bandwidth network

we use MPI at this level

multiple accelerators per node
we use OpenCL/CUDA at this level

multiple multi-core CPU 
per node

we use OpenMP at this
level

High-performance computing systems
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Multilevel workload distribution
consists of dividing the computational
domain (mesh) into subsets recursively to
distribute it among the hardware of a
computing system.
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Multilevel workload distribution
consists of dividing the computational
domain (mesh) into subsets recursively to
distribute it among the hardware of a
computing system.

First-level
decomposition divides the workload among
the computing nodes, that is, the MPI
processes.

Second-level
decomposition divides the first-level
partitions to share each MPI’s workload
among its available hardware, that is, the
host and co-processors.

Third-level
decomposition divides the second-level
partitions to distribute the workload of a
device whose shared-memory space
introduces a significant NUMA factor, that
is, multiple NUMA nodes in a manycore
CPU.
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Sparse matrices and vectors
blocks represent the second-level

partition of sparse matrix and vector 
instances assigned to each device.
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Sparse matrices and vectors
represent discrete operators and mesh
functions in our algebra-based framework,
respectively. Thus, sparse matrix rows and
vector elements are distributed among
subdomains, and classified into three
subsets:

Inner
subset is composed of local elements which
are coupled with local elements only.

Interface
subset is composed of local elements which
are coupled with an element from other
subdomain.

Halo
subset is composed of elements from other
subdomains which are coupled with local
elements.

blocks represent the second-level
partition of sparse matrix and vector 
instances assigned to each device.
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coloring represent the third-level
partition (i.e., distribution among

OpenMP threads)

Third-level partition
consists of sharing the device’s workload in a
shared-memory space. This can be implicitly
achieved with the OpenMP scheduler.
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instances assigned to each device.
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coloring represent the third-level
partition (i.e., distribution among

OpenMP threads)

Third-level partition
consists of sharing the device’s workload in a
shared-memory space. This can be implicitly
achieved with the OpenMP scheduler.

However, in NUMA configurations, a thread
accessing to the memory allocated by
another memory controller goes through a
much slower bus.

Since SpMV is executed separately for inner
and interface, our third-level partitioning
distributes the inner and interface subsets
among threads separately too. In other
words, each OpenMP thread is assigned a
chunk of inner and a chunk of interface.

Thread migration must be avoided to ensure
an efficient memory access!

blocks represent the second-level
partition of sparse matrix and vector 
instances assigned to each device.



PERFORMANCE STUDY
Execution of SpMV on different modern supercomputers
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Testing setup

MareNostrum 4 TSUBAME3.0

rank #42
3456 nodes with:

2× Intel Xeon 8160
1× Intel Omni-Path

rank #31
540 nodes with:

2× Intel Xeon E5-2680 v4
4× NVIDIA Tesla P100
4× Intel Omni-Path
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Test case 1:
Single-node performance of SpMV kernel vs number of cores on MareNostrum 4. The sparse matrix
used arise from the symmetry-preserving discretization1 of the Laplacian operator on unstructured
hex-dominant mesh of 17 million cells. The sparse matrix storage format used is ELLPACK2.

1 F. Xavier Trias et al. “Symmetry-preserving discre8za8on of Navier–Stokes equa8ons on collocated unstructured grids”, JCP 258 (2014), 246–267.
2 G. Oyarzun et al. “Portable implementa8on model for CFD simula8ons. Applica8on to hybrid CPU/GPU supercomputers“, IJCFD 31 (2017), 396–411.
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without thread
binding, the static
scheduling is still

in troubles

binding to cores
does not guarantee
the balanced use of 
memory bandwidth

thread binding to 
sockets and threaded
memory initialization

is our choice
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Test case 2:
Multi-node strong (left) and weak (right) scaling of SpMV kernel on MareNostrum 4. The sparse
matrix used arise from the symmetry-preserving discretization1 of the Laplacian operator on
unstructured hex-dominant mesh of 17 million cells (results for 110 million cells are also reported in
strong scaling). The sparse matrix storage format used is ELLPACK2.

1 F. Xavier Trias et al. “Symmetry-preserving discre8za8on of Navier–Stokes equa8ons on collocated unstructured grids”, JCP 258 (2014), 246–267.
2 G. Oyarzun et al. “Portable implementa8on model for CFD simula8ons. Applica8on to hybrid CPU/GPU supercomputers“, IJCFD 31 (2017), 396–411.
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to superlinear scaling due

to cache effects
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Test case 4:
Single-node performance of SpMV kernel vs number of cores on TSUBAME3.0 for both sequential
and parallel management of communications. The sparse matrix used arise from the symmetry-
preserving discretization1 of the Laplacian operator on unstructured hex-dominant mesh of 17
million cells. The sparse matrix storage format used is block-transposed ELLPACK2.

1 F. Xavier Trias et al. “Symmetry-preserving discre8za8on of Navier–Stokes equa8ons on collocated unstructured grids”, JCP 258 (2014), 246–267.
2 G. Oyarzun et al. “Portable implementa8on model for CFD simula8ons. Applica8on to hybrid CPU/GPU supercomputers“, IJCFD 31 (2017), 396–411.
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Test case 5:
Multi-node strong (left) and weak (right) scaling of SpMV kernel on TSUBAME3.0. The sparse
matrix used arise from the symmetry-preserving discretization1 of the Laplacian operator on
unstructured hex-dominant mesh of 110 million cells (results for 17 million cells are also reported in
weak scaling). The sparse matrix storage format used is the block-transposed ELLPACK2.

1 F. Xavier Trias et al. “Symmetry-preserving discre8za8on of Navier–Stokes equa8ons on collocated unstructured grids”, JCP 258 (2014), 246–267.
2 G. Oyarzun et al. “Portable implementa8on model for CFD simula8ons. Applica8on to hybrid CPU/GPU supercomputers“, IJCFD 31 (2017), 396–411.
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Multi-node strong (left) and weak (right) scaling of SpMV kernel on TSUBAME3.0. The sparse
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kernel is too fast and 
there is no space for
communication hiding

synchronous mode reveals
that data exchanges takes

twice the kernel
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implementing numerical simulation codes.

ii. A hierarchical parallel implementation of the SpMV has been detailed, and its
performance evaluated on various HPC systems.

iii. A multithreaded, NUMA-aware strategy has been described, and its efficiency on multi-
CPU architectures has been proven.

iv. HPC systems with extremely high ratios of memory bandwidth to network bandwidth are
harmful for computationaly light, memory bound kernels such as SpMV; the calculations
become too fast to hide the communications with naive schemes.

Future work
• To design a new update mechanism to accelerate the data exchanges, for instance, taking

into account NUMA factor in inter- and intra-node exchanges.
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