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Research question #1:

@ Can we construct numerical discretizations of the Navier-Stokes

equations suitable for complex geometries, such that the symmetry
properties are exactly preserved?

1F X.Trias, A.Gorobets, A.Oliva. Turbulent flow around a square cylinder at Reynolds
number 22000: a DNS study, Computers&Fluids, 123:87-98, 2015.
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Research question #1:

@ Can we construct numerical discretizations of the Navier-Stokes

equations suitable for complex geometries, such that the symmetry
properties are exactly preserved?

DNS? of backward-facing step at Re; = 395 and expansion ratio 2

2A.Pont-Vilchez, F.X.Trias, A.Gorobets, A.Oliva. DNS of Backward-Facing Step flow
at Rer = 395 and expansion ratio 2. Journal of Fluid Mechanics, 863:341-363, 2019.
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Research question #2:
@ How can we develop portable and efficient CFD codes for large-scale
simulations on modern supercomputers?

1995 2000 2005 2010 2015 2020

CopLin oy

Technology Trends in HPC Cey

single-core CPU clusters ... multicore CPUclusters ...  hybrid clusters >

\ V\?"k \\3‘0{&

3X.Alvarez, A.Gorobets, F.X.Trias, R.Borrell, G.Oyarzun. HPC? - a fully portable algebra-dominant framework for
heterogeneous computing. Application to CFD. Computers & Fluids, 173:285-292, 2018.

4X.Alvarez, A.Gorobets, F.X.Trias. A hierarchical parallel implementation for heterogeneous computing. Application to
algebra-based CFD simulations on hybrid supercomputers. Computers & Fluids, 214:104768, 2021.

5X.A|varez, A.Gorobets, F.X.Trias, A.Oliva. NUMA-aware strategies for the efficient execution of CFD simulations on CPU
supercomputers ParCFD2021. Don't miss it! 4/27
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Research question #2:
@ How can we develop portable and efficient CFD codes for large-scale

simulations on modern supercomputers?
1995 2000 2005 2010 2015 2020

Lo Lo Ui,

Technology Trends in HPC 2
single-core CPU clusters = multi-core CPU clusters = hybrid clusters >
T
S W
T
CTTC resources and software _——_scalability up to 100k cores
DPC STG ] 7 HPC?
sequential structured parallel structured | termofluids heterogeneous algebr>

deep source of applied and
fundamental research

HPC?: portable, algebra-based framework3 for heterogeneous computing is being
developed4. Traditional stencil-based data and sweeps are replaced by algebraic
structures (sparse matrices and vectors) and kernels. NUMA-aware execution strategies
for CFD are presented in this conference®.

3X.Alvarez, A.Gorobets, F.X.Trias, R.Borrell, G.Oyarzun. HPC? - a fully portable algebra-dominant framework for
heterogeneous computing. Application to CFD. Computers & Fluids, 173:285-292, 2018.

4X.Alvarez, A.Gorobets, F.X.Trias. A hierarchical parallel implementation for heterogeneous computing. Application to
algebra-based CFD simulations on hybrid supercomputers. Computers & Fluids, 214:104768, 2021.

5X.A|varez, A.Gorobets, F.X.Trias, A.Oliva. NUMA-aware strategies for the efficient execution of CFD simulations on CPU
supercomputers ParCFD2021. Don't miss it! 27
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Frequently used general purpose CFD codes:

+ STARCCM+  (Liesaarce SIEMENS
« ANSYS-FLUENT TAWNSIE®

FLUENT

q
b - ‘3 €% CODE &
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* OpenFOAM  openVFOAM®
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Motivation

Frequently used general purpose CFD codes:

+ STARCCM+  (Liesaarce SIEMENS
« ANSYS-FLUENT TAWNSIE®

FLUENT

q
hd - ‘3 €% CODE &
cosesatume oM oo  [HEl

* OpenFOAM  OpenVFOAM® G’i’“

Main common characteristics of LES in such codes:

@ Unstructured finite volume method, collocated grid
@ Second-order spatial and temporal discretisation
o Eddy-viscosity type LES models

5
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OpenVFOAM® | ESCresults of a turbulent channel for at Re, = 180

25,

—— OpenFOAM - no model —— OpenFOAM - no model .
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+=+= OpenFOAM - Smagorinsky
—— Kim, Moin & Moser
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of i o
_ »
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r
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¥ ¥ v
13X76X20 197828 38X78x%57
Ax'=90,Ay,,=0.5Az =30 Ax"=60,A y,y=0.5Az"=20 Ax"=30,Ay,,;=0.5,Az =10

6E.M.J.Komen, L.H.Camilo, A.Shams, B.J.Geurts, B.Koren. A quantification method
for numerical dissipation in quasi-DNS and under-resolved DNS, and effects of numerical
dissipation in quasi-DNS and under-resolved DNS of turbulent channel flows, Journal of

Computational Physics, 345, 565-595, 2017.
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@ Are LES results are merit of the SGS model? Apparently NOT!!! X

6E.M.J.Komen, L.H.Camilo, A.Shams, B.J.Geurts, B.Koren. A quantification method
for numerical dissipation in quasi-DNS and under-resolved DNS, and effects of numerical
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dissipation in quasi-DNS and under-resolved DNS of turbulent channel flows, Journal of
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Symmetry-preserving discretization

Continuous Discrete
0 d
a—?+C(u,u)=uV2u—Tp Q#%—C(uh)uh:Duh—Gph
Vu=0 I\/Iuh = Oh
(a,b) = J;Z abd(} (anp, bh>h = a,,TQbh
T
<C<u7901)7§02> = - <C(u7902)7§01> C(Uh) =-C (Uh)
(V-a,p) = —(a, V) QG =-M"
(V?a,b) = (a,vb) D=DT def—



Preserving symmetries: collocated vs staggered
0®00000000

Collocated vs staggered




Preserving symmetries: collocated vs staggered
0®00000000

Collocated vs staggered

e o
uialle

L.
L.
L




Preserving symmetries: collocated vs staggered
0®00000000

Collocated vs staggered

e o
ulale

L.
L.
L

i
LAY




Preserving symmetries: collocated vs staggered
0®00000000

Collocated vs staggered




Preserving symmetries: collocated vs staggered
0®00000000

Collocated vs staggered

Staggered

e

. [ ) —t [ ) - [ ) I
]

—f~ e —+~ Fo N o —
1

- [ ) o [ ) — [ ] —_
L




Preserving symmetries: collocated vs staggered

O®@00000000

Collocated vs staggered

I
R [ ] = ——— [ ] —
} v 4
! ! |
e [ J 7__.__}_7‘______:" ‘ -
} L i
! [ 1
- [ ) o [ ) o [ ] —_
1




Preserving symmetries: collocated vs staggered
00e0000000

Why staggered?

+ C(us) us = Dus — Gp.; Mug = 0,

10/27



Preserving symmetries: collocated vs staggered
00e0000000

Why staggered?

dus

Q
S dt

+ C(us) us = Dus — Gp.; Mug = 0,

Let's consider we have us such as

Mus # 0.




Preserving symmetries: collocated vs staggered
00e0000000

Why staggered?

dus
dt

Qs + C(us) us = Dus — Gp.; Mug = 0,

Let's consider we have us such as
Mus # 0.
then, we can easily project us

us= us—Gp,




Preserving symmetries: collocated vs staggered
00e0000000

Why staggered?

Qs

dus
dt

+ C(us) us = Dus — Gp;

Mus = 0,

Let's consider we have us such as

Mus # 0.
then, we can easily project us

Mus = M(us — Gp,) = 0,

10/27



Preserving symmetries: collocated vs staggered
00e0000000

Why staggered?

+ C(us) us = Dus — Gp.; Mug = 0,

Let's consider we have us such as
Mug # 0,
then, we can easily project us
Mus = M(us — Gp,) = 0,

Finally, this leads to a Poisson eq.

MGp. = Mu;,

10/27



Preserving symmetries: collocated vs staggered

0O0@0000000

Why staggered?

Qs

dus
dt

+ C(us) us = Dus — Gp;

Mus = 0,

Let's consider we have us such as

Mus # 0.
then, we can easily project us
Mus = M(us — Gp,) = 0,

Finally, this leads to a Poisson eq.

MGp. = Mu;,

If Q.G =-M"
<V-a, 90> = - (a) V(,O>
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00e0000000

Why staggered? Everything seems to be in the right place!

dus

Q
S dt

+ C(us) us = Dus — Gp.; Mug = 0,

Let's consider we have us such as
Mug # 0,
then, we can easily project us
Mus = M(us — Gp,) = 0,

Finally, this leads to a Poisson eq.

MGp. = Mu;,

If QG =-M" = (us,Gp.), = ul QsCp. = —(Mus) " p, =
(V-a,p) =—(a,Vy) = (u,Vp)=—(V-u,p)=0
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But is this discrete Laplacian accurate?
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© 0.0001 0.01 = $0.0001 F 0.01 =
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1le-05 - - 0.001 le-05 - - 0.001
0.01 0.1 0.01 0.1
Average step-size Average step-size

V2p = f(x,y) with f(x,y) = V2(k~2sin(kx)sin(ky)) and k = 257

11 /27



Preserving symmetries: collocated vs staggered
0008000000

But is this discrete Laplacian accurate?

Yes, even for distorted unstructured meshes! And symmetries are preserved!

Without stretching With stretching
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El 3 2 K 2
= s = =
£ gz E
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Local truncation error 4 Local truncation error 4
Global truncation error & Global truncation error &
1le-05 - - 0.001 le-05 - - 0.001
0.01 0.1 0.01 0.1
Average step-size Average step-size

V2p = f(x,y) with f(x,y) = V2(k~2sin(kx)sin(ky)) and k = 257

11 /27



Preserving symmetries: collocated vs staggered

0O000@00000

Then, why collocated arrangements are so popular?

STAR-CCM+  (Ltacerce SIEMENS
ANSYS-FLUENT JAWNES)

FLUENT - )
. - " @ ODE L)
Code-Saturne @wum =~ EDF m
* OpenFOAM  OpenVFOAM® GE.'U

Qs% + C(us) us = Dus — Gp,; Mus = 0, dh

In staggered meshes m
@ p-us coupling is naturally solved v

e C(us) and D difficult to discretize X AA
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Then, why collocated arrangements are so popular?

Everything is easy except the pressure-velocity coupling...
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Pressure-velocity coupling on collocated grids
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Pressure-velocity coupling on collocated grids

Examples of simulations

Despite these inherent limitations, symmetry-preserving collocated
formulation has been successfully used for DNS/LES simulations!?:

AN AR RRS
e N NNy AV AVAVAVAVAY.
SR e SRy SAAYYAvay; AN
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Y
> o,

VS
ay,
N
0

:
:
SR AV
R
RS
“‘\%Xég% SRS
VAN

RN %
SN Ag&v*{\t'
Wy vy, : 5
avy)
QA
S,

19R Borrell, O.Lehmkuhl, F.X.Trias, A.Oliva. Parallel Direct Poisson solver for
discretizations with one Fourier diagonalizable direction. Journal of Computational

Physics, 230:4723-4741, 2011.
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10F X.Trias and O.Lehmkuhl. A self-adaptive strategy for the time-integration of
Navier-Stokes equations. Numerical Heat Transfer, part B, 60(2):116-134, 2011.
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Building a staggered formulation
[ JeJele]e]

Are staggered and collocated so different at the end?
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D o SEEE
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Collocated:  u™! = (Ic =T . Q. 'P.Tc o) [le +0S]ul = F.T. u?
N ~ W_/ \Wg_/
Fc Te c
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Building a staggered formulation
[ JeJele]e]

Are staggered and collocated so different at the end?
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Building a staggered formulation
[e] Je]e]e]

Can we have a staggered formulation based only on

collocated operators?

Then, it could be easily implemented in existing collocated codes such as OpenFOAM

u?
Staggered: wu*! = (I, —Q_'P, [Is + M ess0fTsc] u;
F, T,

Similar approaches have been proposed in the literature before!!:12,13,14,15

B.Perot. Conservative properties of unstructured staggered meshs chemes. Journal of Comp. Physics, 159: 58-89, 2000

X.Zhang, D.Schmidt, B.Perot. Accuracy and conservation properties of a three-dimensional unstructured staggered mesh
scheme for fluid dynamics. Journal of Computational Physics, 175: 764-791, 2002.
13K,Mahesh, G.Constantinescu, P.Moin. A numerical method for large-eddy simulation in complex geometries. Journal of
Computational Physics,197: 215-240, 2004.

J.E.Hicken, F.E.Ham, J.Militzer, M.Koksal. A shift transformation for fully conservative methods: turbulence simulation
on complex, unstructured grids. Journal of Computational Physics, 208:704-734, 2005.

L.Jofre, O.Lehmkuhl, J.Ventosa, F.X.Trias, A.Oliva. Conservation properties of unstructured finite-volume mesh schemes
for the Navier-Stokes equations. Numerical Heat Transfer, Part B, 65:1-27, 2014. 1927
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Dispersion errors analysis
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Portability and beyond
@00

Algebra-based approach naturally leads to portability

Research question #2:
@ How can we develop portable and efficient CFD codes for large-scale

simulations on modern supercomputers?

1995 2000 2005 2010 2015 2020
V4 4 13
Technology Trends in HPC G &
single-core CPU clusters ...  multicore CPU clusters ... hybrid clusters >
o
\\,&“»" \\@‘v“
CTTC resources and software _—scalability up to 100k cores
DPC STG : HPC?
ial structured parallel structured rmofluids heterogeneous algebr>

deep source of applied and
Tundamental rescarch

HPCZ: portable, algebra-based framework for heterogeneous computing is being
developed. Traditional stencil-based data and sweeps are replaced by algebraic
structures (sparse matrices and vectors) and kernels. NUMA-aware execution strategies
for CFD are presented in this conference®

16X Alvarez, A.Gorobets, F.X.Trias, A.Oliva. NUMA-aware strategies for the efficient execution of CFD simulations on CPU
supercomputers ParCFD2021. Don’t miss it! 27



Portability and beyond
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Algebra-based approach naturally leads to portability, to

simple and analyzable formulations

e e e e ’\/\/\/\/\/
IREVAVAVAY/SEN IRVAVAVAV/SuN
e VT ARSI ‘
‘ BVAVAVARE \ /\ /\ / o
LA o \/\/ 1
uE T
—
Collocated:  uf™ = (le — 5.0 p sleos) [le + 0F]ud = FoTe ug
Fe Tc NSC
ug
Staggered: u*! = (Is— Qs_lPs) [Is + M ess0fTsc] u;

24 /27



Portability and beyond
ooe

Algebra-based approach naturally leads to portability, to
simple and analyzable formulations and opens the door to
new strategies!’ to improve its perfomance...

7A.Alsalti, X.Alvarez, F.X.Trias, A.Gorobets, A.Oliva. A highly portable heterogeneous implementation of a Poisson solver
for flows with one periodic direction ParCFD2021. Don't miss it!
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collocated formulations is the key point for reliable
LES/DNS simulations.
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On-going research:
o Complete the analysis for higher Re;

@ Test for complex geometries using unstructured meshes
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Thank you for your virtual
attendance
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