
ParCFD’2020
32nd International Conference on Parallel Computational Fluid Dynamics

May-11-13 2020, Nice FRANCE

A HIGHLY PORTABLE HETEROGENEOUS
IMPLEMENTATION OF A POISSON SOLVER FOR FLOWS

WITH ONE PERIODIC DIRECTION
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Abstract. The portability of codes has become a major advantage given the continuous
development of new architectures for numerical applications, as well as the progressive
incorporation of accelerators in modern supercomputers. Following this trend, we have
adopted an algebraic approach in the implementation of a Poisson solver for incompress-
ible flows with one periodic direction. This approach, which basically consists of adapting
a reduced set of fundamental operations to any architecture (such as the sparse matrix-
vector product or the dot product of two vectors), allows us to efficiently port our appli-
cations to any heterogeneous supercomputers in an easy manner. More particularly, our
three-dimensional solver takes advantage of the existing periodic dimension (by means of
a Fourier decomposition) to later execute overlapped data transpositions among devices,
which conveniently share the workload with their CPU hosts, and solve the resulting
two-dimensional decoupled subsystems.

1 INTRODUCTION

As the HPCG Benchmarck [1] shows, the increasing unbalance between the memory
bandwidth and the floating point operations per second (FLOPS) leads, in most scientific
applications, to very poor sustained performances. Hence, in the race towards exascale
high-performance computing (HPC), the need for higher bandwidths together with more
energetically efficient systems, has resulted into the development and use of massively-
parallel accelerators such as GPUs, Intel Xeon Phi co-processors or fused CPU-GPU
devices.

In this varying context, the portability of codes has become crucial in order to perform
efficiently on most heterogeneous platforms. With the aim of overcoming this difficulty,
we developed the HPC2 framework [2] to reduce the number of operations involved in
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a simulation to a set of three fundamental ones: sparse matrix-vector product (SPMV),
the linear combination (AXPY) and the dot product (DOT) of two vectors. Despite
its simplicity, the multilevel MPI+OpenMP+OpenCL+CUDA implementation provides
a natural adaptation to most current platforms.

The aim of this work is, then, to present a linear solver that successfully follows this
algebraic approach and, consequently, is efficiently portable to most current heterogeneous
supercomputers. More concretely, the solver presented here has been developed for three-
dimensional incompressible flows with one periodic dimension, which are governed by
the coupled Navier-Stokes and continuity equations. The application of the well known
fractional-step method leads to the implicit solution of the Poisson equation (arising from
the incompressibility constraint), which, after an appropriate discretization [3], can be
written as:

A3Dx3D = b3D (1)

where x and b correspond, respectively, to the discretized pressure field and minus the
divergence of the predictor velocity. A3D stands for the discretized Laplace operator
accordingly changed of sign (so that A3D is symmetric and positive semidefinite).

The present work is devoted to the solution of Equation 1 for incompressible flows
with one periodic direction, where Fourier decomposition can be applied to boost its
solution. A mathematical description of the method is given in Section 2, whereas its
implementation is tackled in Section 3.

2 FOURIER DECOMPOSITION OF THE PERIODIC DIRECTION

If we aim to apply a Fourier decomposition along the periodic direction, we are forced
to discretize it uniformly. In consequence, we will also assume that our three-dimensional
domain arises from a uniform extrusion (along the periodic direction) of a two-dimensional
mesh.

As shown in [3], assuming that x is the periodic direction leads to the following de-
composition of A3D in terms of the Kronecker product:

A3D =
(
A2D ⊗ Ωx

)
+
(
Ω2D ⊗ Ax

)
(2)

where A2D ∈ RN2D×N2D
is the discretized Laplace (changed of sign) corresponding to

the two-dimensional mesh that is extruded, and Ω2D ∈ RN2D×N2D
is a diagonal matrix

whose elements are the areas of the N2D control volumes of that mesh. Analogously,
Ωx = ∆xINx ∈ RNx×Nx and Ax ∈ RNx×Nx is a symmetric circulant matrix.

Let QNx ∈ RNx×Nx be the one-dimensional inverse Fourier transform matrix (along the
periodic direction). Then, as detailed in [3], Ax can be diagonalized as follows:

Λ = Q−1Nx
AxQNx = diag (λ1, . . . , λNx) (3)

Therefore, we can define:

Â3D := (IN2D ⊗QNx)−1A3D (IN2D ⊗QNx) (4)
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which can straightforwardly be rewritten as:

Â3D = ∆x
(
A2D ⊗ INx

)
+
(
Ω2D ⊗ Λ

)
(5)

and, reordering the unknowns, we finally reach the following block diagonal expression:

Â3D = diag
(
Â2D

1 , . . . , Â2D
Nx

)
=

Nx⊕
i=1

Â2D
i , where Â2D

i = ∆xA2D + λiΩ
2D (6)

Hence, we have been able to transform the original coupled three-dimensional system
of NxN

2D unknowns of Equation 1 into a set of Nx decoupled two-dimensional subsystems
of N2D unknowns (in the Fourier space):

Â2D
i x̂2Di = b̂2Di ∀i ∈ {1, . . . , Nx} (7)

such that x̂3D =
(
x̂2D1 , . . . , x̂2DNx

)
and b̂3D =

(
b̂2D1 , . . . , b̂2DNx

)
.

3 HIGHLY PORTABLE IMPLEMENTATION

We can, therefore, decompose our Poisson solver into the following steps:

Algorithm 1 Poisson solver for flows with one periodic direction

1. Fourier transform along the periodic direction: b̂jk = Q−1Nx
bjk

2. Data transposition: pencil-like → plane-like

3. Parallel solution of the Nx decoupled two-dimensional subsystems: Â2D
i x2Di = b2Di

4. Data transposition: plane-like → pencil-like

5. Inverse Fourier transform along the periodic direction: x̂jk = QNxxjk

If we wish to make use of the library HPC2 [2] in order to inherit its high portability, we
will need to adopt its algebraic approach in a way that provides us its highest performance.
To do so, we overlap communications and calculations while making an extensive use of
the highly optimized kernels of HPC2, in order to preserve its portability.

3.1 One-dimensional Fast Fourier Transform

When it comes to the calculation of the forward and backward discrete Fourier trans-
forms, we will take advantage of the well known Fast Fourier Transform (FFT) algorithm,
which can be found implemented in many open-access libraries.

More concretely, we will firstly distribute data in a pencil-like fashion along the periodic
direction to increase data locality. The number of one-dimensional FFTs to be calculated
by each device will be conveniently set seeking a proper load balancing. Then, each device
will compute its one-dimensional FFTs using external libraries (such as FFTW for CPUs,
clFFT for OpenCL devices or cuFFT for NVIDIA GPUs).
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3.2 Data transposition

One data transposition will need to be executed at every shift from physical to Fourier
space, or vice versa. Its high computational cost makes its efficient implementation a
crucial property of the solver, forcing the implementation to overlap, as much as possible,
FFTs with non-blocking data communications.

With this aim, we have implemented data transpositions (between pencil and plane-
like distributions) as SPMVs between permutation matrices and the vectors to be redis-
tributed.

3.3 Solution of decoupled two-dimensional subsystems

Finally, the solution of the decoupled two-dimensional systems may be executed differ-
ently depending on the computational resources available. If an iterative method such as
the Preconditioned Conjugate Gradient (PCG) is chosen (note that Â3D is a symmetric
positive semidefinite matrix), then it has to be born in mind that, as shown in [3], the
spectral condition number of each submatrix Â2D

i varies depending on the plane and,
consequently, also the number of iterations needed to solve each subsystem.

Hence, the workload corresponding to each plane will present discrepancies that may
negatively affect load balancing if the implementation does not deal conveniently with the
most ill-conditioned planes.

In the conference, we are going to present the Poisson solver in detail, to give the results
of the performance analysis executed on different computing systems and to discuss lines
of improvement of the numerical algorithm itself. For instance, a particular case of SpMV
that takes advantage of the block matrix structure to increase cache reuse.
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[2] X. Álvarez, A. Gorobets, F. X. Trias, R. Borrell, and G. Oyarzun, “HPC2 – A
fully-portable, algebra-based framework for heterogeneous computing. Application to
CFD,” Computers and Fluids, vol. 173, pp. 285–292, sep 2018.

[3] A. Gorobets, F. X. Trias, M. Soria, and A. Oliva, “A scalable parallel Poisson solver
for three-dimensional problems with one periodic direction,” Computers and Fluids,
vol. 39, no. 3, pp. 525–538, 2010.

4


