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Abstract. In the last decades, CFD has become a standard design tool in many fields
such as automotive, aeronautical and wind power industries. The driven force behind
this is the development of numerical techniques in conjunction with the progress of high
performance computing (HPC) systems. However, nowadays we can say that its legacy
from the 90-2000s is hindering its progress. The reasons are two-fold: (i) codes designed
for CPUs cannot be easily ported and optimized to new architectures (GPUs, ARM...)
and (ii) legacy numerical methods chosen to solve (quasi)steady problems using RANS
models are not appropriate for more accurate (and more expensive) techniques such as
LES or DNS. This work aims to interlace these two pillars with the final goal to enable
LES/DNS of industrial applications to be efficiently carried out on modern HPC sys-
tems while keeping codes easy to port and maintain. In this regard, a fully-conservative
discretization for collocated unstructured grids is used: namely, it exactly preserves the
symmetries of the underlying differential operators and is based on only five discrete oper-
ators (i.e. matrices): the cell-centered and staggered control volumes (diagonal matrices),
Ωc and Ωs, the face normal vectors, Ns, the cell-to-face interpolation, Πc→s and the cell-to-
face divergence operator, M. Therefore, it constitutes a robust approach that can be easily
implemented in already existing codes. Then, for the sake of cross-platform portability
and optimization, CFD algorithms must rely on a very reduced set of (algebraic) kernels
(e.g. sparse-matrix vector product, SpMV; dot product; linear combination of vectors).
This imposes restrictions and challenges that need to be addressed such as the inherent
low arithmetic intensity of the SpMV, the reformulation of flux limiters and boundary con-
ditions or the efficient computation of eigenbounds to determine the time-step. Results
showing the benefits of symmetry-preserving discretizations will be presented together
with novel methods aiming to keep a good balance between portability and performance.

1 INTRODUCTION

The essence of turbulence are the smallest scales of motion [1]. They result from a
subtle balance between convective transport and diffusive dissipation. Mathematically,
these terms are governed by two differential operators differing in symmetry: the convec-
tive operator is skew-symmetric, whereas the diffusive is symmetric and negative-definite.
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At discrete level, operator symmetries must be retained to preserve the analogous (in-
variant) properties of the continuous equations [2, 3]: namely, the convective operator is
represented by a skew-symmetric coefficient matrix, the diffusive operator by a symmet-
ric, negative-definite matrix and the divergence is minus the transpose of the gradient
operator. Therefore, even for coarse grids, the energy of the resolved scales of motion is
convected in a stable manner, i.e. the discrete convective operator transports energy from
a resolved scale of motion to other resolved scales without dissipating any energy, as it
should be from a physical point-of-view. Furthermore, high-order symmetry-preserving
discretizatons can be constructed for Cartesian staggered grids [2]. It is noteworthy to
mention that in the last decade, many DNS reference results have been successfully gen-
erated using this type of discretization (see Figure 1, for example).

However, for unstructured meshes, it is (still) a common argument that accuracy should
take precedence over the properties of the operators. Contrary to this, our philosophy
is that operator symmetries are critical to the dynamics of turbulence and must be pre-
served. With this in mind, a fully-conservative discretization method for general unstruc-
tured grids was proposed in Ref. [3]: it exactly preserves the symmetries of the underlying
differential operators on a collocated mesh. In summary, and following the same notation
than in Ref. [3], the method is based on a set of five basic operators: the cell-centered
and staggered control volumes (diagonal matrices), Ωc and Ωs, the matrix containing
the face normal vectors, Ns, the cell-to-face scalar field interpolation, Πc→s and the cell-
to-face divergence operator, M. Once these operators are constructed, the rest follows
straightforwardly from them. Therefore, the proposed method constitutes a robust and
easy-to-implement approach to solve incompressible turbulent flows in complex configura-
tions that can be easily implemented in already existing codes such as OpenFOAMR© [4].

2 RETHINKING CFD FOR PRESENT AND FUTURE PORTABILITY

Building codes on top of a minimal set of basic kernels is the cornerstone for portability
and optimization. This became even more crucial due to the increasing variety of compu-
tational architectures competing in the exacale race. Moreover, the hybridization of HPC
systems imposes additional constraints, since heterogeneous computations are needed to
efficiently engage processors and massively-parallel accelerators. This involves different
parallel paradigms and computing frameworks and requires complex data exchanges be-
tween computing units. However, (legacy) CFD codes usually rely on sophisticated data
structures and computing subroutines, making portability terribly cumbersome.

In this context, we proposed [6] a completely different approach: for the sake of cross-
platform portability and optimization, CFD algorithms must rely on a very reduced set of
(algebraic) kernels (e.g. sparse-matrix vector product, SpMV; dot product; linear combina-
tion of vectors). This imposes restrictions and challenges that need to be addressed such
as the inherent low arithmetic intensity (AI) of the SpMV, the reformulation of flux lim-
iters [7] and boundary conditions or the efficient computation of eigenbounds to determine
the time-step, ∆t.
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Figure 1: Examples of DNSs computed using symmetry-preserving discretizations. Top: air-
filled (Pr = 0.7) Rayleigh-Bénard configuration studied in Ref. [1]. Instantaneous temperature
field at Ra = 1010 (left) and instantaneous velocity magnitude at Ra = 1011 (right) for a span-
wise cross section are shown. The latter was computed on 8192 CPU cores of the MareNostrum 4
supercomputer on a mesh of 5.7 billion grid points. Bottom: DNS of the turbulent flow around a
square cylinder at Re = 22000 computed on 784 CPU cores of the MareNostrum 3 supercomputer
on a mesh of 323 million grid points [5] .

3 CHALLENGES AND OPPORTUNITIES

Relying on a very reduced set of algebraic kernels enables code portability and facil-
itates its maintenance and optimization. However, it comes together with two types of
challenges and restrictions. Firstly, computational challenges such as the inherent low AI
of the SpMV. This can be strongly aliviated by using the sparse matrix-matrix product,
SpMM, which has a much higher AI and, therefore, performance. This can be done in a
great variety of situations: e.g. multiple transport equations, cases with spatial reflec-
tion symmetries, parallel-in-time simulations and, in general, in any situation where a
matrix, Â ∈ R

N×N , can be viewed as a Kronecker product between a diagonal matrix
C ≡ diag(c) ∈ R

K×K and a sparse matrix, A ∈ R
N/K×N/K , i.e.

y = Âx (with SpMV) {y1, . . . ,yK} = A {c1x1, . . . , cKxK} (with SpMM), (1)

where Â = C⊗A and xi,yi ∈ R
N/K . In this way, matrix coefficients are re-used leading to a

significantly higher AI and lower memory consumption. Details about the implementation
and performance analysis of the SpMM on different architectures and its impact on the
solution of Poisson’s equation will be presented in two companion works [8, 9].

Secondly, algorithmic challenges such as the reformulation of classical flux limiters [7]
or the boundary conditions also have to be addressed. The latter can be naturally solved
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by casting boundary conditions into an affine transformation

ϕh → Aϕh + bh, (2)

which allows a purely algebraic treatment of virtually all existing boundary conditions
for both explicit and implicit time-integration methods. Furthermore, a new accurate
and portable (only based on the above explained algebraic kernels) approach à la CFL

for bounding the eigenvalues of the convective and diffusive operators will be presented.
Results will be presented during the conference.
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[9] À. Alsalti-Baldellou, X. Álvarez-Farré, A. Gorobets, A. Oliva, and F. X. Trias. Strate-
gies to increase the arithmetic intensity of linear solvers. In Parallel Computational Fluids

Dynamics, Alba, Italy, May 2022.


	INTRODUCTION
	RETHINKING CFD FOR PRESENT AND FUTURE PORTABILITY
	CHALLENGES AND OPPORTUNITIES

