
On the benefits and applications of sparse matrix-matrix
product on various parallel architectures

Xavier Álvarez-Farré1 , Àdel Alsalti-Baldellou1,2 , Andrey Gorobets3 , Assensi Oliva1 , F. Xavier Trias1

In the 33rd International Conference on Parallel Computational Fluid Dynamics, May 25th–27th, 2022,
Alba, Italy

1Heat and Mass Transfer Technological Center, Technical University of Catalonia (BarcelonaTech)
2TermoFluids S.L.
3Who cares? e-mail: andrey.gorobets@gmail.com

Parallel Computational Fluid Dynamics



Background



Research at CTTC Laboratory

The Heat and Mass Transfer Technological Center (CTTC) is a research group of the
Technical University of Catalonia highly concerned about the environmental sustain-
ability. Specifically, researchers at the CTTC have been enrolled in both fundamen-
tal and applied research, studying several phenomena: natural and forced convection,
multi-phase flow, aerodynamics, among many others.

1/20



HPC at CTTC Laboratory

1995 2000 2005 2010 2015 2020

CTTC resources and software

DPC

sequential structured

STG

parallel structured
Oops! 404

Technology Trends in HPC
 GPU

 H
BM

 A
RM

 M
IC

 FPGA

 N
VLink

   single-core CPU clusters          . . .          multi-core CPU clusters          . . .          hybrid clusters

The evolution in hardware technologies
enables scientific computing to advance incessantly and reach further aims. Nowadays,
the use of HPC systems is rather common on the solution of both industrial and aca-
demic scale problems.

2/20



HPC at CTTC Laboratory

1995 2000 2005 2010 2015 2020

CTTC resources and software

DPC

sequential structured

STG

parallel structured
Oops! 404

Technology Trends in HPC
 GPU

 H
BM

 A
RM

 M
IC

 FPGA

 N
VLink

   single-core CPU clusters          . . .          multi-core CPU clusters          . . .          hybrid clusters

Since the beginning,
researchers of CTTC is devoted to develop and adapt CFD codes for the state-of-the art
computer resources, from sequential structured to parallel unstructured applications.

2/20



HPC at CTTC Laboratory

1995 2000 2005 2010 2015 2020

CTTC resources and software

DPC

sequential structured

STG

parallel structured

HPC2

heterogeneous

Technology Trends in HPC
 GPU

 H
BM

 A
RM

 M
IC

 FPGA

 N
VLink

   single-core CPU clusters          . . .          multi-core CPU clusters          . . .          hybrid clusters

Massively-parallel devices
of various architectures are incorporated into modern supercomputers, causing the hy-
bridisation of HPC systems and making the design of computing applications a rather
complex problem: the kernels conforming the algorithms must be compatible with
distributed- and shared-memory SIMD and MIMD parallelism, and stream processing.

2/20



HPC at CTTC Laboratory

1995 2000 2005 2010 2015 2020

CTTC resources and software

DPC

sequential structured

STG

parallel structured

HPC2

heterogeneous

Technology Trends in HPC
 GPU

 H
BM

 A
RM

 M
IC

 FPGA

 N
VLink

   single-core CPU clusters          . . .          multi-core CPU clusters          . . .          hybrid clusters

Currently,
a fully-portable, algebra-based framework for heterogeneous computing is being de-
veloped. Namely, the traditional stencil data structures and sweeps are replaced by
algebraic data structures and kernels, and the discrete operators and mesh functions
are then stored as sparse matrices and vectors, respectively.

2/20



The future of scientific computing codes

Is it necessary to use the new hardware architectures?

• In our opinion, yes. New hardware is designed to increase energy efficiency, an
imperative to overcome the power constraints in the context of the exascale chal-
lenge.

Do the traditional implementation models facilitate code portability?

• In our opinion, no. Legacy codes were not designed portable simply because it
was not necessary before; these codes usually contain a large number of complex
kernels and data structures mostly suitable for CPU architectures.

Do we need to change the way we look at scientific computing in general?

• In our opinion, yes. There is a large variety of hardware architectures and it is dif-
ficult to determine which are going to prevail. Therefore, sustainability and porta-
bility should become the center of scientific computing software design.

3/20



The future of scientific computing codes

Is it necessary to use the new hardware architectures?

• In our opinion, yes. New hardware is designed to increase energy efficiency, an
imperative to overcome the power constraints in the context of the exascale chal-
lenge.

Do the traditional implementation models facilitate code portability?

• In our opinion, no. Legacy codes were not designed portable simply because it
was not necessary before; these codes usually contain a large number of complex
kernels and data structures mostly suitable for CPU architectures.

Do we need to change the way we look at scientific computing in general?

• In our opinion, yes. There is a large variety of hardware architectures and it is dif-
ficult to determine which are going to prevail. Therefore, sustainability and porta-
bility should become the center of scientific computing software design.

3/20



The future of scientific computing codes

Is it necessary to use the new hardware architectures?

• In our opinion, yes. New hardware is designed to increase energy efficiency, an
imperative to overcome the power constraints in the context of the exascale chal-
lenge.

Do the traditional implementation models facilitate code portability?

• In our opinion, no. Legacy codes were not designed portable simply because it
was not necessary before; these codes usually contain a large number of complex
kernels and data structures mostly suitable for CPU architectures.

Do we need to change the way we look at scientific computing in general?

• In our opinion, yes. There is a large variety of hardware architectures and it is dif-
ficult to determine which are going to prevail. Therefore, sustainability and porta-
bility should become the center of scientific computing software design.

3/20



The algebraic approach



Towards portable implementation models

Traditionally, the development of scientific computing so�tware is based on calculations in iterative 
stencil loops over a discretized geometry—the mesh. Despite being intuitive and versatile, the interde-
pendency between algorithms and their computational implementations in stencil applications usua-
lly introduces an inevitable complexity when it comes to portability and sustainability.

Algebraic

Stencil

By casting discrete operators and mesh functions into sparse matrices and vectors, it has been shown 
that all the calculations in a typical CFD algorithm for the DNS and LES of incompressible turbulent 
flows boil down to a minimalist set of algebraic subroutines.

The idea is to use the stencils just for building data and leave the calculations to an algebraic fra-
mework; thus, legacy codes may be maintained indefinitely as preprocessing tools, and the calculation 
engines become easy to port and optimize.

4/20



Tailoring Navier–Stokes into an algebraic framework

Continuous, dimensionless Navier–Stokes equations read:

∇ · u = 0, ∂tu+ (u · ∇)u−
1

Re
∆u+∇p = 0.

Finite-volume, algebra-based discretization on arbitrary collocated mesh1 :

Mus = 0c, Ω3d
c dtuc + C3d

c (us)uc + D3d
c uc − Ω3d

c Gcpc = 0c,

where:
cells ∈ Rn faces ∈ Rm

pc ∈ Rn uc ∈ R3n = (u1,u2,u3)
T us ∈ Rm

Gc ∈ R3n×n M ∈ Rn×m

Ω3d
c ∈ R3n×3n = I3⊗Ωc C3d

c (us) ∈ R3n×3n = I3⊗Cc (us) D3d
c ∈ R3n×3n = I3⊗Dc

1Trias et al., Symmetry-preserving discretization of Navier-Stokes equations on collocated unstructured grids, J.Comp.Phys., 258, 246-267,
2014.

5/20



Tailoring Navier–Stokes into an algebraic framework

Continuous, dimensionless Navier–Stokes equations read:

∇ · u = 0, ∂tu+ (u · ∇)u−
1

Re
∆u+∇p = 0.

Finite-volume, algebra-based discretization on arbitrary collocated mesh1 :

Mus = 0c, Ω3d
c dtuc + C3d

c (us)uc + D3d
c uc − Ω3d

c Gcpc = 0c,

where:
cells ∈ Rn faces ∈ Rm

pc ∈ Rn uc ∈ R3n = (u1,u2,u3)
T us ∈ Rm

Gc ∈ R3n×n M ∈ Rn×m

Ω3d
c ∈ R3n×3n = I3⊗Ωc C3d

c (us) ∈ R3n×3n = I3⊗Cc (us) D3d
c ∈ R3n×3n = I3⊗Dc

1Trias et al., Symmetry-preserving discretization of Navier-Stokes equations on collocated unstructured grids, J.Comp.Phys., 258, 246-267,
2014.

5/20



Tailoring Navier–Stokes into an algebraic framework

Continuous, dimensionless Navier–Stokes equations read:

∇ · u = 0, ∂tu+ (u · ∇)u−
1

Re
∆u+∇p = 0.

Finite-volume, algebra-based discretization on arbitrary collocated mesh1 :

Mus = 0c, Ω3d
c dtuc + C3d

c (us)uc + D3d
c uc − Ω3d

c Gcpc = 0c,

where:
cells ∈ Rn faces ∈ Rm

pc ∈ Rn uc ∈ R3n = (u1,u2,u3)
T us ∈ Rm

Gc ∈ R3n×n M ∈ Rn×m

Ω3d
c ∈ R3n×3n = I3⊗Ωc C3d

c (us) ∈ R3n×3n = I3⊗Cc (us) D3d
c ∈ R3n×3n = I3⊗Dc

1Trias et al., Symmetry-preserving discretization of Navier-Stokes equations on collocated unstructured grids, J.Comp.Phys., 258, 246-267,
2014.

5/20



Tailoring Navier–Stokes into an algebraic framework

Continuous, dimensionless Navier–Stokes equations read:

∇ · u = 0, ∂tu+ (u · ∇)u−
1

Re
∆u+∇p = 0.

Finite-volume, algebra-based discretization on arbitrary collocated mesh1 :

Mus = 0c, Ω3d
c dtuc + C3d

c (us)uc + D3d
c uc − Ω3d

c Gcpc = 0c,

where:
cells ∈ Rn faces ∈ Rm

pc ∈ Rn uc ∈ R3n = (u1,u2,u3)
T us ∈ Rm

Gc ∈ R3n×n M ∈ Rn×m

Ω3d
c ∈ R3n×3n = I3⊗Ωc C3d

c (us) ∈ R3n×3n = I3⊗Cc (us) D3d
c ∈ R3n×3n = I3⊗Dc

1Trias et al., Symmetry-preserving discretization of Navier-Stokes equations on collocated unstructured grids, J.Comp.Phys., 258, 246-267,
2014.

5/20



Tailoring Navier–Stokes into an algebraic framework

Continuous, dimensionless Navier–Stokes equations read:

∇ · u = 0, ∂tu+ (u · ∇)u−
1

Re
∆u+∇p = 0.

Finite-volume, algebra-based discretization on arbitrary collocated mesh1 :

Mus = 0c, Ω3d
c dtuc + C3d

c (us)uc + D3d
c uc − Ω3d

c Gcpc = 0c,

where:
cells ∈ Rn faces ∈ Rm

pc ∈ Rn uc ∈ R3n = (u1,u2,u3)
T us ∈ Rm

Gc ∈ R3n×n M ∈ Rn×m

Ω3d
c ∈ R3n×3n = I3⊗Ωc C3d

c (us) ∈ R3n×3n = I3⊗Cc (us) D3d
c ∈ R3n×3n = I3⊗Dc

1Trias et al., Symmetry-preserving discretization of Navier-Stokes equations on collocated unstructured grids, J.Comp.Phys., 258, 246-267,
2014.

5/20



Tailoring Navier–Stokes into an algebraic framework

Continuous, dimensionless Navier–Stokes equations read:

∇ · u = 0, ∂tu+ (u · ∇)u−
1

Re
∆u+∇p = 0.

Finite-volume, algebra-based discretization on arbitrary collocated mesh1 :

Mus = 0c, Ω3d
c dtuc + C3d

c (us)uc + D3d
c uc − Ω3d

c Gcpc = 0c,

where:
cells ∈ Rn faces ∈ Rm

pc ∈ Rn uc ∈ R3n = (u1,u2,u3)
T us ∈ Rm

Gc ∈ R3n×n M ∈ Rn×m

Ω3d
c ∈ R3n×3n = I3⊗Ωc C3d

c (us) ∈ R3n×3n = I3⊗Cc (us) D3d
c ∈ R3n×3n = I3⊗Dc

1Trias et al., Symmetry-preserving discretization of Navier-Stokes equations on collocated unstructured grids, J.Comp.Phys., 258, 246-267,
2014.

5/20



Tailoring Navier–Stokes into an algebraic framework

Continuous, dimensionless Navier–Stokes equations read:

∇ · u = 0, ∂tu+ (u · ∇)u−
1

Re
∆u+∇p = 0.

Finite-volume, algebra-based discretization on arbitrary collocated mesh:

Mus = 0c, Ω3d
c dtuc + C3d

c (us)uc + D3d
c uc − Ω3d

c Gcpc = 0c,

• Discrete mesh functions and operators stored in vectors and sparse matrices.

• Numerical method is fully integrated into data structures and BLAS can be used2 :
  SpMV axpy dot

• Computational implementation is independent of spatial discretization.
• Discrete operators can be built to mimick the properties of the continuum opera-
tors.

2Álvarez-Farré et al., A hierarchical parallel implementation for heterogeneous computing. Application to algebra-based CFD simulations
on hybrid supercomputers, Computers & Fluids, 214, 104768, 2021.

6/20



Tailoring Navier–Stokes into an algebraic framework

Continuous, dimensionless Navier–Stokes equations read:

∇ · u = 0, ∂tu+ (u · ∇)u−
1

Re
∆u+∇p = 0.

Finite-volume, algebra-based discretization on arbitrary collocated mesh:

Mus = 0c, Ω3d
c dtuc + C3d

c (us)uc + D3d
c uc − Ω3d

c Gcpc = 0c,

• Discrete mesh functions and operators stored in vectors and sparse matrices.
• Numerical method is fully integrated into data structures and BLAS can be used2 :
  SpMV axpy dot

• Computational implementation is independent of spatial discretization.
• Discrete operators can be built to mimick the properties of the continuum opera-
tors.

2Álvarez-Farré et al., A hierarchical parallel implementation for heterogeneous computing. Application to algebra-based CFD simulations
on hybrid supercomputers, Computers & Fluids, 214, 104768, 2021.

6/20



Tailoring Navier–Stokes into an algebraic framework

Continuous, dimensionless Navier–Stokes equations read:

∇ · u = 0, ∂tu+ (u · ∇)u−
1

Re
∆u+∇p = 0.

Finite-volume, algebra-based discretization on arbitrary collocated mesh:

Mus = 0c, Ω3d
c dtuc + C3d

c (us)uc + D3d
c uc − Ω3d

c Gcpc = 0c,

• Discrete mesh functions and operators stored in vectors and sparse matrices.
• Numerical method is fully integrated into data structures and BLAS can be used2 :
  SpMV axpy dot

• Computational implementation is independent of spatial discretization.

• Discrete operators can be built to mimick the properties of the continuum opera-
tors.

2Álvarez-Farré et al., A hierarchical parallel implementation for heterogeneous computing. Application to algebra-based CFD simulations
on hybrid supercomputers, Computers & Fluids, 214, 104768, 2021.

6/20



Tailoring Navier–Stokes into an algebraic framework

Continuous, dimensionless Navier–Stokes equations read:

∇ · u = 0, ∂tu+ (u · ∇)u−
1

Re
∆u+∇p = 0.

Finite-volume, algebra-based discretization on arbitrary collocated mesh:

Mus = 0c, Ω3d
c dtuc + C3d

c (us)uc + D3d
c uc − Ω3d

c Gcpc = 0c,

• Discrete mesh functions and operators stored in vectors and sparse matrices.
• Numerical method is fully integrated into data structures and BLAS can be used2 :
  SpMV axpy dot

• Computational implementation is independent of spatial discretization.
• Discrete operators can be built to mimick the properties of the continuum opera-
tors.

2Álvarez-Farré et al., A hierarchical parallel implementation for heterogeneous computing. Application to algebra-based CFD simulations
on hybrid supercomputers, Computers & Fluids, 214, 104768, 2021.

6/20



A hierarchical parallel
implementation



Hybrid HPC systems

Modern HPC systems consist of multiple hybrid computing nodes interconnected via
a communication infrastructure. The nodes are composed of many hardware devices
of different architectures, such as central processing unit (CPU) or graphics processing
unit (GPU), among others.

HYBRID SYSTEM

Interconnect

multiple nodes interconnected 

via high-memory bandwidth network

we use MPI at this level

The algorithms must be compatible with distributed- and shared-memory multiple in-
struction, multiple data (DMMIMD and SMMIMD, respectively) parallelism, and more im-
portantly, with stream processing (SP).

7/20



Hybrid HPC systems

Modern HPC systems consist of multiple hybrid computing nodes interconnected via
a communication infrastructure. The nodes are composed of many hardware devices
of different architectures, such as central processing unit (CPU) or graphics processing
unit (GPU), among others.

HYBRID SYSTEM

Interconnect

multiple nodes interconnected 

via high-memory bandwidth network

we use MPI at this level

CPU CPU

Link

R
A
M

R
A
M

multiple multi-core CPU per node

we use OpenMP at this level

The algorithms must be compatible with distributed- and shared-memory multiple in-
struction, multiple data (DMMIMD and SMMIMD, respectively) parallelism, and more im-
portantly, with stream processing (SP).

7/20



Hybrid HPC systems

Modern HPC systems consist of multiple hybrid computing nodes interconnected via
a communication infrastructure. The nodes are composed of many hardware devices
of different architectures, such as central processing unit (CPU) or graphics processing
unit (GPU), among others.

HYBRID SYSTEM

Interconnect

multiple nodes interconnected 

via high-memory bandwidth network

we use MPI at this level

CPU CPU

Link

R
A
M

R
A
M

multiple multi-core CPU per node

we use OpenMP at this level

GPUGPU

RAM RAM RAM RAM

GPUGPU

BUS

multiple accelerators per node

we use OpenCL/CUDA at this level

The algorithms must be compatible with distributed- and shared-memory multiple in-
struction, multiple data (DMMIMD and SMMIMD, respectively) parallelism, and more im-
portantly, with stream processing (SP).

7/20



Hybrid HPC systems

Modern HPC systems consist of multiple hybrid computing nodes interconnected via
a communication infrastructure. The nodes are composed of many hardware devices
of different architectures, such as central processing unit (CPU) or graphics processing
unit (GPU), among others.

HYBRID SYSTEM

Interconnect

multiple nodes interconnected 

via high-memory bandwidth network

we use MPI at this level

CPU CPU

Link

R
A
M

R
A
M

multiple multi-core CPU per node

we use OpenMP at this level

GPUGPU

RAM RAM RAM RAM

GPUGPU

BUS

multiple accelerators per node

we use OpenCL/CUDA at this level

The algorithms must be compatible with distributed- and shared-memory multiple in-
struction, multiple data (DMMIMD and SMMIMD, respectively) parallelism, and more im-
portantly, with stream processing (SP).

7/20



Multilevel domain decomposition

Multilevel workload distribution consists of dividing the computational domain (mesh)
into subsets recursively to distribute it among the hardware of a computing system.

• First-level among computing nodes, i.e., MPI processes.
• Second-level among computing units, i.e., host and accelerators.
• Third-level among threads in NUMA shared-memory spaces.

A x

38

37

39

36

45

35

23

40

44

34

28

24

29

25

26

42

41

43

33

4

8

7

9

32

30

31

27

10

20

18

19

3

2

6

1

5

11

21

17

0

12

22

13

16

14

15

Mesh

8/20



Multilevel domain decomposition

Multilevel workload distribution consists of dividing the computational domain (mesh)
into subsets recursively to distribute it among the hardware of a computing system.

• First-level among computing nodes, i.e., MPI processes.

• Second-level among computing units, i.e., host and accelerators.
• Third-level among threads in NUMA shared-memory spaces.

A x

38

37

39

36

45

35

23

40

44

34

28

24

29

25

26

42

41

43

33

4

8

7

9

32

30

31

27

10

20

18

19

3

2

6

1

5

11

21

17

0

12

22

13

16

14

15

Mesh

8/20



Multilevel domain decomposition

Multilevel workload distribution consists of dividing the computational domain (mesh)
into subsets recursively to distribute it among the hardware of a computing system.

• First-level among computing nodes, i.e., MPI processes.
• Second-level among computing units, i.e., host and accelerators.

• Third-level among threads in NUMA shared-memory spaces.

A x

38

37

39

36

45

35

23

40

44

34

28

24

29

25

26

42

41

43

33

4

8

7

9

32

30

31

27

10

20

18

19

3

2

6

1

5

11

21

17

0

12

22

13

16

14

15

Mesh

8/20



Multilevel domain decomposition

Multilevel workload distribution consists of dividing the computational domain (mesh)
into subsets recursively to distribute it among the hardware of a computing system.

• First-level among computing nodes, i.e., MPI processes.
• Second-level among computing units, i.e., host and accelerators.
• Third-level among threads in NUMA shared-memory spaces.

A x

38

37

39

36

45

35

23

40

44

34

28

24

29

25

26

42

41

43

33

4

8

7

9

32

30

31

27

10

20

18

19

3

2

6

1

5

11

21

17

0

12

22

13

16

14

15

Mesh

8/20



Flat multithreaded execution strategies

To minimise the overhead of the communications, efficient multithreaded execution
strategies are required. Roughly, the idea is to overlap the communications with the
computations.

OpenMP

intra-node

management

inter-node

computing

9/20



Flat multithreaded execution strategies

To minimise the overhead of the communications, efficient multithreaded execution
strategies are required. Roughly, the idea is to overlap the communications with the
computations.

INNINN

DTH

INN INN

DTH

OpenMP

d
e
v
i
c
e
 
q
u
e
u
e
s

intra-node

management

inter-node

computing

9/20



Flat multithreaded execution strategies

To minimise the overhead of the communications, efficient multithreaded execution
strategies are required. Roughly, the idea is to overlap the communications with the
computations.

INNINN

DTH

INN INN

DTH

PUT

OpenMP

d
e
v
i
c
e
 
q
u
e
u
e
s

intra-node

management

inter-node

computing

9/20



Flat multithreaded execution strategies

To minimise the overhead of the communications, efficient multithreaded execution
strategies are required. Roughly, the idea is to overlap the communications with the
computations.

INNINN

DTH

MPI-I

INN INN

DTH

PUT

OpenMP

M
P
I
 
l
i
b

d
e
v
i
c
e
 
q
u
e
u
e
s

COPY

intra-node

management

inter-node

computing

9/20



Flat multithreaded execution strategies

To minimise the overhead of the communications, efficient multithreaded execution
strategies are required. Roughly, the idea is to overlap the communications with the
computations.

INNINN

DTH

MPI-I

MPI-W

INN INN

DTH

PUT

OpenMP

M
P
I
 
l
i
b

d
e
v
i
c
e
 
q
u
e
u
e
s

COPY

intra-node

management

inter-node

computing

9/20



Flat multithreaded execution strategies

To minimise the overhead of the communications, efficient multithreaded execution
strategies are required. Roughly, the idea is to overlap the communications with the
computations.

INNINN

DTH

MPI-I

MPI-W

INN INN

DTH

HTD HTD

PUT

OpenMP

M
P
I
 
l
i
b

d
e
v
i
c
e
 
q
u
e
u
e
s

COPY

GET

intra-node

management

inter-node

computing

9/20



Flat multithreaded execution strategies

To minimise the overhead of the communications, efficient multithreaded execution
strategies are required. Roughly, the idea is to overlap the communications with the
computations.

INNINN

IFC

DTH

MPI-I

MPI-W

INN INN

IFC IFC IFC

DTH

HTD HTD

PUT

OpenMP

M
P
I
 
l
i
b

d
e
v
i
c
e
 
q
u
e
u
e
s

COPY

GET

intra-node

management

inter-node

computing

9/20



Performance study



HPC systems

MareNostrum 4

#rank42
3456 nodes with:

• 2× Intel Xeon 8160
• 1× Intel Omni-Path

Lomonosov-2

#rank156
1696 nodes with:

• 1× Intel Xeon E5-2697 v3
• 1× NVIDIA Tesla K40M
• 1× InfiniBand FDR

TSUBAME3.0

#rank31
540 nodes with:

• 2× Intel Xeon E5-2680 v4
• 4× NVIDIA Tesla P100
• 4× Intel Omni-Path

Other systems: JFF third- and fourth-generation, MareNostrum 3, MinoTauro, K60, Titan,
Mira, Cori, Marconi100...

10/20



Single-node roofline

Test case
Single-node performance of SpMV, axpy and dot kernels shown in rooflinemodel for two
different architectures. The sparse matrix used arises from the symmetry-preserving
discretization of the Laplacian operator on hex-dominant mesh of 17 million cells. The
sparse matrix storage format used is ELLPACK.

G
fl

o
p
/s

Arithmetic intensity

Intel Xeon 8160

Peak DP

Pe
ak
 b
an
dw
id
th

1/16 1/8 1/4 1/2 1 2 4 8 16 32 64

Arithmetic intensity

NVIDIA A5000

1/16 1/8 1/4 1/2 1 2 4 8 16 32 64
100

101

102

103

104

Pe
ak
 b
an
dw
id
th

Peak DP

axpy

dot

SpMV

axpy

dot

SpMV

11/20



Outline of SpMV

The SpMV is an essential operation in scientific computing, and therefore, it receives a
great deal of attention. Given x⃗ ∈ Rn , y⃗ ∈ Rm , and A ∈ Rm×n :

y⃗ ← Ax⃗ : AIspmv =
2nnz(A)

12nnz(A) + 4m+ 8n+ 8m
≈ 0.13.

Algorithm 1 SpMV implementation using the standard CSR matrix format.
Require: A, x
Ensure: y
1: for i← 1 to m do
2: for j ← A.rptr[i] to A.rptr[i+ 1] do
3: y[i]← y[i] + A.coef [j] · x[A.cidx[j]]

12/20



Outline of SpMM

The SpMM represents the product of a sparse matrix by a dense matrix. It is very ben-
eficial in terms of achievable performance to implement a specific SpMM that takes
advantage of the reuse of the matrix coefficients. Given x⃗ ∈ Rkn , y⃗ ∈ Rkm , and
A ∈ Rm×n :


y1

...
yn

←


A 0

. . .
0 A




x1

...
xn

 : AIspmm =
2knnz(A)

12nnz(A) + 4m+ 8kn+ 8km

Algorithm 2 SpMM implementation using the standard CSR matrix format.
Require: A, x
Ensure: y
1: for i← 1 to m do
2: for j ← A.rptr[i] to A.rptr[i+ 1] do
3: for k ← 1 to K do
4: y[i][k]← y[i][k] + A.coef [j] · x[A.cidx[j]][k]

13/20



Single-node roofline

Test case
Single-node performance of SpMM, SpMV, axpy and dot kernels shown in rooflinemodel
for two different architectures. The sparse matrix used arises from the symmetry-
preserving discretization of the Laplacian operator on hex-dominant mesh of 17 million
cells. The sparse matrix storage format used is ELLPACK.

G
fl

o
p
/s

Arithmetic intensity

Intel Xeon 8160

Peak DP

Pe
ak
 b
an
dw
id
th

Pe
ak
 b
an
dw
id
th

1/16 1/8 1/4 1/2 1

2 4
8

16
2 4

8
16

2 4 8 16 32 64

Arithmetic intensity

NVIDIA A5000

Peak DP

1/16 1/8 1/4 1/2 1 2 4 8 16 32 64
100

101

102

103

104

axpy

dot

SpMV

axpy

dot

SpMV

SpMM SpMM

14/20



Strong scaling on MareNostrum 4

Test case
Multi-node strong scaling of SpMV and SpMM kernels on MareNostrum 4. The sparse
matrix used arise from the symmetry-preserving discretization of the Laplacian oper-
ator on unstructured hex-dominant mesh of 17 million cells (also 110 million in strong
scaling). The sparse matrix storage format used is ELLPACK.

S
p
ee

d
-u

p

1
3
4
 m

il
li

o
n
 c

el
ls

 0

50

25

75

100

100

150

175

200

Nodes (48 cores) Nodes (48 cores)

81 27 64 125 200 81 27 64 125 200

MPIHybrid (overlap) Hybrid (synchro)

SpMM(8)SpMV

15/20



Weak scaling on MareNostrum 4

Test case
Multi-node weak scaling of SpMV and SpMM kernels on MareNostrum 4. The sparse
matrix used arise from the symmetry-preserving discretization of the Laplacian oper-
ator on unstructured hex-dominant mesh of 17 million cells (also 110 million in strong
scaling). The sparse matrix storage format used is ELLPACK.

1
3
4
 m

il
li

o
n
 c

el
ls

 0

20

10

30

40

50

60

70

80

Nodes (48 cores)

81 27 64 125 20081 27 64 125 200

G
fl

o
p
/s

MPIHybrid (overlap) Hybrid (synchro)

SpMM(8)SpMV

16/20



Applications of SpMM

First of all, remark that the SpMV is the most time-consuming kernel in a typical CFD
simulation deployed in our framework, nearly 90%. Therefore, any SpMV optimization
has a huge impact in performance.

• Multiple components of velocity in collocated formulation. Directly k = 3 for 3D
simulations.

• Multiple transport equations (e.g., temperature, chemicals). Considering only tem-
perature (Algorithm 1), increases to k = 4.

• Simulations on a mesh with p symmetries. Increases k by a factor of p2 , and also
reduces memory footprint of discrete operators.

1 Symmetry 2 Symmetries

17/20



Applications of SpMM

First of all, remark that the SpMV is the most time-consuming kernel in a typical CFD
simulation deployed in our framework, nearly 90%. Therefore, any SpMV optimization
has a huge impact in performance.

• Multiple components of velocity in collocated formulation. Directly k = 3 for 3D
simulations.

• Multiple transport equations (e.g., temperature, chemicals). Considering only tem-
perature (Algorithm 1), increases to k = 4.

• Simulations on a mesh with p symmetries. Increases k by a factor of p2 , and also
reduces memory footprint of discrete operators.

1 Symmetry 2 Symmetries

17/20



Applications of SpMM

First of all, remark that the SpMV is the most time-consuming kernel in a typical CFD
simulation deployed in our framework, nearly 90%. Therefore, any SpMV optimization
has a huge impact in performance.

• Multiple components of velocity in collocated formulation. Directly k = 3 for 3D
simulations.

• Multiple transport equations (e.g., temperature, chemicals). Considering only tem-
perature (Algorithm 1), increases to k = 4.

• Simulations on a mesh with p symmetries. Increases k by a factor of p2 , and also
reduces memory footprint of discrete operators.

1 Symmetry 2 Symmetries

17/20



Applications of SpMM

The direct benefits of this approach are:

• Reduces the number of iterations and its computational cost (increased AI).
• Reduces substantially the memory footprint of the matrices.
• Reduces substantially the cost of building complex preconditioners.

18/20



Applications of SpMM

The direct benefits of this approach are:

• Reduces the number of iterations and its computational cost (increased AI).

• Reduces substantially the memory footprint of the matrices.
• Reduces substantially the cost of building complex preconditioners.

18/20



Applications of SpMM

The direct benefits of this approach are:

• Reduces the number of iterations and its computational cost (increased AI).
• Reduces substantially the memory footprint of the matrices.

• Reduces substantially the cost of building complex preconditioners.

18/20



Applications of SpMM

The direct benefits of this approach are:

• Reduces the number of iterations and its computational cost (increased AI).
• Reduces substantially the memory footprint of the matrices.
• Reduces substantially the cost of building complex preconditioners.

18/20



Conclusions and Future Work



Conclusions and Future Work

Conclusions

• An algebra-based framework has been presented as a naturally portable strategy for imple-
menting numerical simulation codes.

• The hierarchical parallel implementation of our framework has been detailed, and its perfor-
mance evaluated on various HPC system.

• The SpMM kernel has proved to increase arithmetic intensity of algebraic implementations;
however, it becomes computationally light and hence difficult to scale.

• The application of SpMM within algebraic frameworks is demonstrated to be versatile and pow-
erful. Particularly, in the presence of mesh symmetries the benefits are threefold: reduces
number of iterations, computational cost and memory footprint.

Future Work

• To design a new update mechanism to accelerate the data exchanges, for instance, taking into
account NUIOA factor in inter- and intra-node exchanges.

• Applying our framework to multiple parameters simulations. Considering n different simu-
lations, increases k by a factor of n, allowing for running multiple simulations faster while
maintaining the memory footprint of discrete operators constant.

• Applying our framework to parallel-in-time simulations. Considering t decompositions in time,
increases k by a factor of t, allowing for solving multiple time-intervals faster while maintaining
the memory footprint of discrete operators constant.

19/20



Conclusions and Future Work

Conclusions
• An algebra-based framework has been presented as a naturally portable strategy for imple-
menting numerical simulation codes.

• The hierarchical parallel implementation of our framework has been detailed, and its perfor-
mance evaluated on various HPC system.

• The SpMM kernel has proved to increase arithmetic intensity of algebraic implementations;
however, it becomes computationally light and hence difficult to scale.

• The application of SpMM within algebraic frameworks is demonstrated to be versatile and pow-
erful. Particularly, in the presence of mesh symmetries the benefits are threefold: reduces
number of iterations, computational cost and memory footprint.

Future Work

• To design a new update mechanism to accelerate the data exchanges, for instance, taking into
account NUIOA factor in inter- and intra-node exchanges.

• Applying our framework to multiple parameters simulations. Considering n different simu-
lations, increases k by a factor of n, allowing for running multiple simulations faster while
maintaining the memory footprint of discrete operators constant.

• Applying our framework to parallel-in-time simulations. Considering t decompositions in time,
increases k by a factor of t, allowing for solving multiple time-intervals faster while maintaining
the memory footprint of discrete operators constant.

19/20



Conclusions and Future Work

Conclusions
• An algebra-based framework has been presented as a naturally portable strategy for imple-
menting numerical simulation codes.

• The hierarchical parallel implementation of our framework has been detailed, and its perfor-
mance evaluated on various HPC system.

• The SpMM kernel has proved to increase arithmetic intensity of algebraic implementations;
however, it becomes computationally light and hence difficult to scale.

• The application of SpMM within algebraic frameworks is demonstrated to be versatile and pow-
erful. Particularly, in the presence of mesh symmetries the benefits are threefold: reduces
number of iterations, computational cost and memory footprint.

Future Work

• To design a new update mechanism to accelerate the data exchanges, for instance, taking into
account NUIOA factor in inter- and intra-node exchanges.

• Applying our framework to multiple parameters simulations. Considering n different simu-
lations, increases k by a factor of n, allowing for running multiple simulations faster while
maintaining the memory footprint of discrete operators constant.

• Applying our framework to parallel-in-time simulations. Considering t decompositions in time,
increases k by a factor of t, allowing for solving multiple time-intervals faster while maintaining
the memory footprint of discrete operators constant.

19/20



Conclusions and Future Work

Conclusions
• An algebra-based framework has been presented as a naturally portable strategy for imple-
menting numerical simulation codes.

• The hierarchical parallel implementation of our framework has been detailed, and its perfor-
mance evaluated on various HPC system.

• The SpMM kernel has proved to increase arithmetic intensity of algebraic implementations;
however, it becomes computationally light and hence difficult to scale.

• The application of SpMM within algebraic frameworks is demonstrated to be versatile and pow-
erful. Particularly, in the presence of mesh symmetries the benefits are threefold: reduces
number of iterations, computational cost and memory footprint.

Future Work

• To design a new update mechanism to accelerate the data exchanges, for instance, taking into
account NUIOA factor in inter- and intra-node exchanges.

• Applying our framework to multiple parameters simulations. Considering n different simu-
lations, increases k by a factor of n, allowing for running multiple simulations faster while
maintaining the memory footprint of discrete operators constant.

• Applying our framework to parallel-in-time simulations. Considering t decompositions in time,
increases k by a factor of t, allowing for solving multiple time-intervals faster while maintaining
the memory footprint of discrete operators constant.

19/20



Conclusions and Future Work

Conclusions
• An algebra-based framework has been presented as a naturally portable strategy for imple-
menting numerical simulation codes.

• The hierarchical parallel implementation of our framework has been detailed, and its perfor-
mance evaluated on various HPC system.

• The SpMM kernel has proved to increase arithmetic intensity of algebraic implementations;
however, it becomes computationally light and hence difficult to scale.

• The application of SpMM within algebraic frameworks is demonstrated to be versatile and pow-
erful. Particularly, in the presence of mesh symmetries the benefits are threefold: reduces
number of iterations, computational cost and memory footprint.

Future Work

• To design a new update mechanism to accelerate the data exchanges, for instance, taking into
account NUIOA factor in inter- and intra-node exchanges.

• Applying our framework to multiple parameters simulations. Considering n different simu-
lations, increases k by a factor of n, allowing for running multiple simulations faster while
maintaining the memory footprint of discrete operators constant.

• Applying our framework to parallel-in-time simulations. Considering t decompositions in time,
increases k by a factor of t, allowing for solving multiple time-intervals faster while maintaining
the memory footprint of discrete operators constant.

19/20



Conclusions and Future Work

Conclusions
• An algebra-based framework has been presented as a naturally portable strategy for imple-
menting numerical simulation codes.

• The hierarchical parallel implementation of our framework has been detailed, and its perfor-
mance evaluated on various HPC system.

• The SpMM kernel has proved to increase arithmetic intensity of algebraic implementations;
however, it becomes computationally light and hence difficult to scale.

• The application of SpMM within algebraic frameworks is demonstrated to be versatile and pow-
erful. Particularly, in the presence of mesh symmetries the benefits are threefold: reduces
number of iterations, computational cost and memory footprint.

Future Work
• To design a new update mechanism to accelerate the data exchanges, for instance, taking into
account NUIOA factor in inter- and intra-node exchanges.

• Applying our framework to multiple parameters simulations. Considering n different simu-
lations, increases k by a factor of n, allowing for running multiple simulations faster while
maintaining the memory footprint of discrete operators constant.

• Applying our framework to parallel-in-time simulations. Considering t decompositions in time,
increases k by a factor of t, allowing for solving multiple time-intervals faster while maintaining
the memory footprint of discrete operators constant.

19/20



Conclusions and Future Work

Conclusions
• An algebra-based framework has been presented as a naturally portable strategy for imple-
menting numerical simulation codes.

• The hierarchical parallel implementation of our framework has been detailed, and its perfor-
mance evaluated on various HPC system.

• The SpMM kernel has proved to increase arithmetic intensity of algebraic implementations;
however, it becomes computationally light and hence difficult to scale.

• The application of SpMM within algebraic frameworks is demonstrated to be versatile and pow-
erful. Particularly, in the presence of mesh symmetries the benefits are threefold: reduces
number of iterations, computational cost and memory footprint.

Future Work
• To design a new update mechanism to accelerate the data exchanges, for instance, taking into
account NUIOA factor in inter- and intra-node exchanges.

• Applying our framework to multiple parameters simulations. Considering n different simu-
lations, increases k by a factor of n, allowing for running multiple simulations faster while
maintaining the memory footprint of discrete operators constant.

• Applying our framework to parallel-in-time simulations. Considering t decompositions in time,
increases k by a factor of t, allowing for solving multiple time-intervals faster while maintaining
the memory footprint of discrete operators constant.

19/20



Conclusions and Future Work

Conclusions
• An algebra-based framework has been presented as a naturally portable strategy for imple-
menting numerical simulation codes.

• The hierarchical parallel implementation of our framework has been detailed, and its perfor-
mance evaluated on various HPC system.

• The SpMM kernel has proved to increase arithmetic intensity of algebraic implementations;
however, it becomes computationally light and hence difficult to scale.

• The application of SpMM within algebraic frameworks is demonstrated to be versatile and pow-
erful. Particularly, in the presence of mesh symmetries the benefits are threefold: reduces
number of iterations, computational cost and memory footprint.

Future Work
• To design a new update mechanism to accelerate the data exchanges, for instance, taking into
account NUIOA factor in inter- and intra-node exchanges.

• Applying our framework to multiple parameters simulations. Considering n different simu-
lations, increases k by a factor of n, allowing for running multiple simulations faster while
maintaining the memory footprint of discrete operators constant.

• Applying our framework to parallel-in-time simulations. Considering t decompositions in time,
increases k by a factor of t, allowing for solving multiple time-intervals faster while maintaining
the memory footprint of discrete operators constant.

19/20



Thank you for your attention

20/20


	Background
	The algebraic approach
	A hierarchical parallel implementation
	Performance study
	Conclusions and Future Work

