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Abstract. The present work presents a strategy to increase the arithmetic intensity of
the solvers. Namely, we profit spatial reflection symmetries to block diagonalise Poisson’s
equation and split the resulting blocks into a common part plus another subsystem-
dependent whose size is, in practice, negligible. By doing so, we reduce the solvers’
memory footprint and replace the standard sparse matrix-vector products with the more
compute-intensive sparse matrix-matrix product. Then, we present a study about the im-
pact of applying such strategies on different architectures. More concretely, we study how
the subsystems’ smaller size may make CPUs benefit from larger speedups when solving
the decoupled blocks sequentially (due to the resulting greater cache reuse). Conversely,
GPUs’ lack of cache memory makes them more suitable for implementations based on
sparse matrix-matrix products.

1 INTRODUCTION

Divergence constraints are present in many disciplines and usually lead to a Poisson
equation whose solution is one of the most computationally intensive parts of scientific
simulation codes. Despite the relevance of theoretical aspects like the solvers’ time com-
plexity or stability, unrelated computational factors may make them impractical for large-
scale simulations. For instance, their excessive memory requirements and intrinsic lack of
parallelism made traditional direct solvers not applicable to large 3D cases.

On top of that, the fact that most algorithms have a low arithmetic intensity makes
them enjoy a small fraction of the systems’ peak performances, which becomes even more
dramatic given the growing unbalance between modern hardware’s bandwidth and peak
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performance. Hence, in the race towards exascale, reversing this trend and developing
more efficient codes is crucial. Approaches trying to remedy this are generally based on
reducing memory traffic, solving multiple right-hand sides (RHSs), using mixed-precision
algorithms or adapting more compute-intensive methods.

This work focuses on a strategy profiting spatial reflection symmetries to block diag-
onalise Poisson’s equation [1, 2]. Then, by recalling the regular structure of the result-
ing subsystems, the solvers’ arithmetic intensity can be considerably increased thanks
to replacing the standard sparse matrix-vector product (SpMV) with the more compute-
intensive sparse matrix-matrix product (SpMM) [3].

Without losing generality, we will focus our numerical experiments on incompressible
CFD simulations, thus arising our discrete Poisson equation from a direct application of
the Fractional Step Method and equalling:

Lp̃n+1 = Mvp, (1)

where p̃n+1 = pn+1∆t stands for the discrete pseudo-pressure, and M and vp for the
discrete divergence and predictor velocity, respectively. Further details about the dis-
cretisation, the algorithm and its implementation can be found in [4, 5].

The rest of the work is organised as follows. Section 2 presents a mathematical descrip-
tion of L’s block diagonalisation and gives the resulting algorithm. Conversely, section 3
discusses the main computational aspects involved and the behaviours expected both from
CPU and GPU.

2 BLOCK DIAGONALISATION OF LAPLACE OPERATOR

For the sake of clarity, let us consider a mesh with a single reflection symmetry. Addi-
tionally, let us impose the same grid points’ ordering on each of the sides [1]. As a result,
the mesh is halved into two subdomains and all the scalar fields satisfy:

x =

(
x1

x2

)
∈ RN , (2)

where x1,x2 ∈ RN/2 correspond to x’s restriction to each of the subdomains. Then,
spatially symmetric points are in the same position within the subvectors, and the discrete
Laplace operator satisfies:

L =

(
Linn Lout
Lout Linn

)
∈ RN×N , (3)

where N stands for the mesh size and Linn, Lout ∈ RN/2×N/2 for the inner- and outer-
subdomain couplings, respectively.

Remarkably enough, another consequence of the grid points’ ordering imposed is that
practically all the operators satisfy the following structure:

Â =

(
A 0
0 A

)
, (4)
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where Â ∈ RN×N stands for the operator itself and A ∈ RN/2p×N/2p for its restriction to
any of the halves.

In such a context, we can define the following change-of-basis matrix:

S :=
1√
2

(
IN/2 IN/2

IN/2 −IN/2

)
∈ RN×N , (5)

which satisfies S−1 = S. Then, changing the basis of L by means of S leads to:

L̂ := SLS−1 =

(
Linn + Lout 0

0 Linn − Lout

)
, (6)

decomposing eq. (1) into two fully-decoupled and half-sized subsystems, L̂1 := Linn + Lout
and L̂2 := Linn − Lout. Algorithm 1 summarises the resulting algorithm.

Algorithm 1 Poisson solver profiting a reflection symmetry

Require: Linn, Lout ∈ RN/2×N/2 and b ∈ im(L) ⊆ RN

1: procedure Solve(b, L̂)
2: Transform b̂ = Sb
3: Decoupled solution of L̂1x̂1 = b̂1 and L̂2x̂2 = b̂2

4: Inverse transform x = S−1x̂
5: end procedure

3 COMPUTATIONAL CHALLENGES

Apart from the theoretical benefits of solving eq. (1) through algorithm 1, L̂’s regular
structure leaves place for computational improvements. In the first place, it reduces the
memory footprint of the solvers substantially. Indeed, recalling eqs. (3) and (4), to hold
the operators L̂ and Â we only require Linn, Lout and A, and, remarkably enough, Lout’s
footprint is negligible with respect to that of Linn.

On the other hand, algorithm 1 allows replacing the standard SpMV with the more
compute-intensive SpMM. Indeed, given a scalar field x, let us define x̄ := (x1|x2) ∈ RN/2×2.
Then, L̂’s matrix multiplications can be computed as:

ȳ = Linnx̄ + Loutx̄, (7)

where y := L̂x. Similarly, defining w := Âx, we have: w̄ = Ax̄. Hence, in both cases
computing matrix multiplications through SpMM allows reducing the amount of times the
matrices are read.

Recalling that SpMV and SpMM are both memory-bound, the maximum speedup achiev-
able by replacing an SpMV with an SpMM equals the ratio AISpMM/AISpMV, which, considering
double-precision floating-point operations and the standard CSR matrix format, reads:

AISpMM
AISpMV

=
[8nnz(A) + 4nnz(A) + 4(m + 1) + 8m + 8n + 8] · [(2nnz(A) + 1)K]

[2nnz(A) + 1] · [8nnz(A) + 4nnz(A) + 4(m + 1) + (8m + 8n + 8)K]
, (8)
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where nnz(A), m, n and K are the number of non-zeros, rows, columns and subvectors,
respectively. It is clear, then, that the larger K is, the higher the speedup becomes and,
on its limit for square matrices (n = m):

lim
K→∞

AISpMM
AISpMV

'
m�1

12nnz(A)/m + 20

16
.

In the conference, we will present the strategy with more detail and discuss the con-
sequences of solving either sequentially or concurrently the subsystems of line 3, i.e., of
computing the matrix multiplications either through two N/2-sized SpMVs or a single SpMM.
Special attention will be paid to the greater CPU cache reuse offered by the SpMV approach
in opposition to the SpMM’s suitability for GPUs.
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